2014年四川高考文科数学试卷(word版)和答案

合集下载

2014高考全国2卷数学文科试题及答案详解解析

2014高考全国2卷数学文科试题及答案详解解析

2014 年普通高等学校招生全国统一考试数学第Ⅰ卷一、选择题:本大题共12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合A { 2,0,2} ,2B {x| x x 2 0},则A B=2 0 2(A) (B)(C)(D)考点:交集及其运算.分析:先解出集合B,再求两集合的交集即可得出正确选项.解答:解:∵ A={﹣2,0,2},B={x|x2 ﹣x﹣2=0}={﹣1,2},∴A∩B={2}.故选: B点评:本题考查交的运算,理解好交的定义是解答的关键.1 3i(2)1 i()(A)1 2i (B) 1 2i (C)1-2i (D) 1-2i考点:复数代数形式的乘除运算.分析:分子分母同乘以分母的共轭复数1+i 化简即可.解答:解:化简可得====﹣1+2i故选: B点评:本题考查复数代数形式的化简,分子分母同乘以分母的共轭复数是解决问题的关键,属基础题.f x在x x0 处导数存在,若(3)函数p: f (x ) 0;q : x x0 0是f x 的极值点,则()(A) p 是 q 的充分必要条件(B) p 是q 的充分条件,但不是q 的必要条件(C) p 是q 的必要条件,但不是q 的充分条件(D) p 既不是 q的充分条件,也不是q 的必要条件考点:必要条件、充分条件与充要条件的判断.菁优网版权所有分析:根据可导函数的极值和导数之间的关系,利用充分条件和必要条件的定义即可得到结论.解答:函数f(x)=x3 的导数为f'(x)=3x2,由 f′(x0)=0,得x0=0,但此时函数f(x)单调递增,无极值,充分性不成立.根据极值的定义和性质,若x=x0 是 f(x)的极值点,则f′(x0)=0 成立,即必要性成立,故p 是 q 的必要条件,但不是q 的充分条件,故选: C点评:本题主要考查充分条件和必要条件的判断,利用函数单调性和极值之间的关系是解决本题的关键,比较基础.1(4)设向量a,b 满足|a+b|= 10 ,|a-b|= 6,则a·b= ()(A)1 (B)2 (C)3 (D) 5考点:平面向量数量积的运算.分析:将等式进行平方,相加即可得到结论.解答:∵| + |= ,| ﹣|= ,∴分别平方得,+2 ? + =10,﹣2 ? + =6,两式相减得4? ? =10﹣6=4,即? =1,故选: A点评:本题主要考查向量的基本运算,利用平方进行相加是解决本题的关键,比较基础.(5)等差数列a n 的公差为2,若a2 ,a4 ,a8成等比数列,则a n 的前n 项Sn =()n n 1 n n 1n n 1 n n 12 2 (A)(B)(C)(D)考点:等差数列的性质.分析:由题意可得a42=(a4﹣4)(a4+8),解得a4 可得 a1,代入求和公式可得.解答:由题意可得a42=a2?a8,即 a42=(a4﹣4)(a4+8),解得a4=8,∴a1=a4﹣3×2=2,∴Sn=na1+d,=2n+× 2=n(n+1),故选: A点评:本题考查等差数列的性质和求和公式,属基础题.如图,网格纸上正方形小格的边长为1(表示 1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为 6c m 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()17 5 10 1(A )27 (B)9 (C) 27 (D)3考点:由三视图求面积、体积.菁优网版权所有分析:由三视图判断几何体的形状,通过三视图的数据求解几何体的体积即可.解答:几何体是由两个圆柱组成,一个是底面半径为 3 高为 2,一个是底面半径为2,高为 4,组合体体积是:32π?2+22π?4=34π.底面半径为3cm,高为6cm 的圆柱体毛坯的体积为:32π× 6=54π切削掉部分的体积与原来毛坯体积的比值为:=.故选: C.点评:本题考查三视图与几何体的关系,几何体的体积的求法,考查空间想象能力以及计算能力.2正三棱柱ABC A1 B1C1 的底面边长为2,侧棱长为3 ,D为B C中点,则三棱锥 A B1DC 的体积为()13 3(A)3 (B)2 (C)1 (D)2考点:棱柱、棱锥、棱台的体积.菁优网版权所有分析:由题意求出底面B1DC1的面积,求出 A 到底面的距离,即可求解三棱锥的体积.解答:∵正三棱柱ABC﹣A1B1C1的底面边长为2,侧棱长为,D为B C中点,∴底面B1DC1的面积:=,A 到底面的距离就是底面正三角形的高:.三棱锥A﹣B1DC1的体积为:=1.故选:C.点评:本题考查几何体的体积的求法,求解几何体的底面面积与高是解题的关键.(8)执行右面的程序框图,如果如果输入的x,t 均为2,则输出的S= ()(A)4 (B)5 (C)6 (D)7考点:程序框图.菁优网版权所有分析:根据条件,依次运行程序,即可得到结论.解答:若x=t=2,则第一次循环,1≤2 成立,则M=,S=2+3=5,k=2,第二次循环,2≤2 成立,则M=,S=2+5=7,k=3,此时3≤2 不成立,输出S=7,故选:D.点评:本题主要考查程序框图的识别和判断,比较基础.x y 1 0x y 1 0x 3y 3 0(9)设x,y 满足的约束条件,则z x 2y 的最大值为()( A)8 (B)7 ( C)2 (D)1考点:简单线性规划.分析:作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z 的最大值.解答:作出不等式对应的平面区域,由z=x+2y,得y=﹣,平移直线y=﹣,由图象可知当直线y=﹣经过点 A 时,直线y=﹣的截距最大,此时z 最大.由,得,即A(3,2),此时z 的最大值为z=3+2×2=7,故选:B.点评:本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法3(10)设F为抛物线2C : y 3x的焦点,过 F 且倾斜角为30 的直线交于C于A,B 两点,则AB= ()°30(A)3 (B)6 (C)12 (D)73考点:抛物线的简单性质.分析:求出焦点坐标,利用点斜式求出直线的方程,代入抛物线的方程,利用根与系数的关系,由弦长公式求得|AB| .解答:由y2=3x 得其焦点F(,0),准线方程为x=﹣.则过抛物线y2=3x 的焦点F 且倾斜角为30°的直线方程为y=tan30°( x﹣)= (x﹣).代入抛物线方程,消去y,得16x2﹣168x+9=0.设A(x1,y1),B(x2,y2)则x1+x2= ,所以 |AB|=x1+ +x2+ = + + =12故答案为:12.点评:本题考查抛物线的标准方程,以及简单性质的应用,弦长公式的应用,运用弦长公式是解题的难点和关键.(11)若函数 f (x) kx ln x 在区间(1,+ )单调递增,则k 的取值范围是(), 2 , 1 2, 1,(A)(B)( C)(D)考点:函数单调性的性质.分析:由题意可得,当x>1 时, f′( x)=k﹣≥0,故k﹣1>0,由此求得k 的范围.解答:函数f(x)=kx﹣lnx 在区间(1, +∞)单调递增,∴当x>1 时, f′( x)=k﹣≥0,∴ k﹣1≥0,∴ k≥1,故选:D.点评:本题主要考查利用导数研究函数的单调性,函数的单调性的性质,属于基础题.4(12)设点M ( x0,1),若在圆2 2O : x y 1上存在点N,使得°OMN 45 ,则x0 的取值范围是()1,1(A)(B)1 1,2 2 (C)2, 2(D)2 2,2 2考点:直线和圆的方程的应用.菁优网版权所有分析:根据直线和圆的位置关系,利用数形结合即可得到结论.解答:由题意画出图形如图:∵点 M(x0,1),∴若在圆O:x2+y2=1 上存在点N,使得∠ OMN=45°,∴圆上的点到MN 的距离的最大值为1,要使MN=1,才能使得∠OMN=45 °,图中 M′显然不满足题意,当MN 垂直 x 轴时,满足题意,∴x0 的取值范围是[﹣1,1].故选: A点评:本题考查直线与圆的位置关系,直线与直线设出角的求法,数形结合是快速解得本题的策略之一.第Ⅱ卷本卷包括必考题和选考题两部分。

2014年四川省高考数学试卷(文科)学生版

2014年四川省高考数学试卷(文科)学生版

2014 年四川省高考数学试卷(文科)一、选择题(共10 小题,每题 5 分,共 50 分)1.( 5 分)(2014?四川)已知会合 A={ x| (x+1)( x﹣ 2)≤0} ,会合 B 为整数集,则 A∩B=()A.{ ﹣1,0}B.{ 0,1}C.{ ﹣2,﹣ 1,0,1} D.{ ﹣1,0,1,2}2.(5 分)(2014?四川)在“世界念书日”前夜,为了认识某地5000 名居民某天的阅读时间,从中抽取了200 名居民的阅读时间进行统计剖析,在这个问题中, 5000 名居民的阅读时间的全体是()A.整体B.个体C.样本的容量D.从整体中抽取的一个样本3.(5 分)(2014?四川)为了获得函数y=sin(x+1)的图象,只要把函数y=sinx 的图象上全部的点()A.向左平行挪动 1 个单位长度B.向右平行挪动 1 个单位长度C.向左平行挪动π个单位长度D.向右平行挪动π个单位长度4.(5 分)(2014?四川)某三棱锥的侧视图、俯视图以下图,则该三棱锥的体积为()(锥体体积公式: V= Sh,此中 S 为底面面积, h 为高)A.3B.2C.D.15.(5 分)(2014?四川)若 a>b>0,c<d<0,则必定有()A.>B.<C.>D.<6.(5 分)(2014?四川)履行以下图的程序框图,若输入的x,y∈ R,那么输出的 S 的最大值为()A.0B.1C.2D.37.(5 分)(2014?四川)已知 b>0,log5b=a, lgb=c, 5d =10,则以下等式必定成立的是()A.d=ac B.a=cd C.c=ad D.d=a+c8.(5 分)(2014?四川)如图,从气球 A 上测得正前面的河流的两岸B,C的俯角分别为75°, 30°,此时气球的高是60m,则河流的宽度BC等于()A.m B.m C.m D.m 9.(5 分)(2014?四川)设 m∈ R,过定点 A 的动直线 x+my=0 和过定点 B 的直线 mx﹣ y﹣m+3=0 交于点P( x, y),则 | PA|+| PB| 的取值范围是()A.[, 2]B.[,2]C.[,4]D.[ 2,4] 10.(5 分)( 2014?四川)已知 F 为抛物线 y2=x 的焦点,点 A,B 在该抛物线上且位于 x 轴的双侧,? =2(此中 O 为坐标原点),则△ ABO 与△ AFO 面积之和的最小值是()A .2B .3C .D .二、填空题(本大题共 5 小题,每题 5 分,共 25 分)11.( 5 分)(2014?四川)双曲线 ﹣ y 2=1 的离心率等于 .12.( 5 分)(2014?四川)复数=.13.(5 分)(2014?四川)设 f (x )是定义在 R 上的周期为 2 的函数,当 x ∈ [ ﹣ 1,)时, ( ) , <,则 f ( )= .1 f x = , <14.( 5 分)(2014?四川)平面向量 =(1,2), =( 4, 2), =m + (m ∈ R ),且 与 的夹角等于与 的夹角,则 m=.15.( 5 分)(2014?四川)以 A 表示值域为 R 的函数构成的会合, B 表示拥有以下性质的函数 φ(x )构成的会合:关于函数 φ(x ),存在一个正数 M ,使得函数 φ(x )的值域包括于区间 [ ﹣M ,M ] .比如,当 φ1(x )=x 3,φ2(x )=sinx 时, φ1(x )∈ A ,φ2(x )∈ B .现有以下命题:①设函数 f ( x )的定义域为 D ,则 “f(x )∈ A ”的充要条件是 “? b ∈R ,? a ∈D ,f(a )=b ”;②函数 f (x )∈ B 的充要条件是 f (x )有最大值和最小值;③若函数 f ( x ),g (x )的定义域同样,且 f ( x )∈ A ,g (x )∈ B ,则 f (x )+g( x )?B .④若函数 f ( x )=aln (x+2)+(x >﹣ 2,a ∈R )有最大值,则 f (x )∈ B .此中的真命题有.(写出全部真命题的序)三、解答题(共 6 小题,共 75 分)16.(12 分)(2014?四川)一个盒子里装有三张卡片, 分别标志有数字1、2、3,这三张卡片除标志的数字外完整同样.随机有放回地抽取 3 次,每次抽取 1,将抽取的卡片上的数字挨次 a、b、c.(Ⅰ)求“抽取的卡片上的数字足 a+b=c”的概率;(Ⅱ)求“抽取的卡片上的数字a、b、c 不完整同样”的概率.17.( 12 分)( 2014?四川)已知函数 f (x)=sin(3x+ ).(1)求 f (x)的增区;(2)若α是第二象限角, f()= cos(α+ )cos2α,求 cosα sin α的.18.( 12 分)( 2014?四川)在如所示的多面体中,四形1 1和 ACC1 1都ABB A A矩形(Ⅰ)若 AC⊥ BC,明:直 BC⊥平面 ACC;1A1(Ⅱ) D、E 分是段 BC、CC1的中点,在段AB 上能否存在一点 M,使直 DE∥平面A1 MC?明你的.19.(12 分)(2014?四川)等差数列 { a n} 的公差 d,点( a n,b n)在函数 f( x)=2x的象上( n∈N*)(Ⅰ)明:数列 { b n} 等比数列;(Ⅱ)若 a1=1,函数 f(x)的象在点( a2,b2)的切在 x 上的截距 2,求数列 { a n b n2} 的前 n 和 S n.20.(13 分)(2014?四川)已知 C:+ =1(a>b>0)的左焦点 F( 2,0),离心率.(Ⅰ)求 C 的准方程;(Ⅱ) O 坐原点, T 直 x= 3 上一点, F 作 TF 的垂交于 P、Q,当四形 OPTQ是平行四形,求四形OPTQ的面.21.(14 分)(2014?四川)已知函数(fx)=e x ax2 bx 1,此中 a,b∈ R,e=2.71828⋯自然数的底数.(1)设 g( x)是函数 f(x)的导函数,求函数 g(x)在区间 [ 0,1] 上的最小值;(2)若 f (1)=0,函数 f (x)在区间( 0,1)内有零点,求 a 的取值范围.。

2014年全国高考文科数学试题及答案-全国卷

2014年全国高考文科数学试题及答案-全国卷

2014年普通高等学校统一考试(大纲)文科第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合{1,2,4,6,8},{1,2,3,5,6,7}M N ==,则M N 中元素的个数为( )A .2B .3C .5D .72. 已知角α的终边经过点(4,3)-,则cos α=( )A .45B .35C .35-D .45- 3. 不等式组(2)0||1x x x +>⎧⎨<⎩的解集为( )A .{|21}x x -<<-B .{|10}x x -<<C .{|01}x x <<D .{|1}x x > 4. 已知正四面体ABCD 中,E 是AB 的中点,则异面直线CE 与BD 所成角的余弦值为( )A .16B C .13D5. 函数1)(1)y x =>-的反函数是( )A .3(1)(1)x y e x =->- B .3(1)(1)xy e x =->- C .3(1)()x y e x R =-∈ D .3(1)()xy e x R =-∈6. 已知a b 、为单位向量,其夹角为060,则(2)a b b -∙=( ) A .-1 B .0 C .1 D .27. 有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( )A .60种B .70种C .75种D .150种8. 设等比数列{}n a 的前n 项和为n S ,若243,15,S S ==则6S =( )A .31B .32C .63D .649. 已知椭圆C :22221x y a b+=(0)a b >>的左、右焦点为1F 、2F,过2F 的直线l 交C 于A 、B 两点,若1AF B ∆的周长为C 的方程为( )A .22132x y +=B .2213x y += C .221128x y += D .221124x y += 10. 正四棱锥的顶点都在同一球面上,若该棱锥的高位4,底面边长为2,则该球的表面积为( )A .814π B .16π C .9π D .274π11. 双曲线C :22221(0,0)x y a b a b-=>>的离心率为2,,则C 的焦距等于( )A .2 B. C .4 D.12. 奇函数()f x 的定义域为R ,若(2)f x +为偶函数,且(1)1f =,则(8)(9)f f +=( )A .-2B .-1C .0D .1第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13. 6(2)x -的展开式中3x 的系数为 .(用数字作答) 14. 函数cos22sin y x x =+的最大值为 .15. 设x 、y 满足约束条件02321x y x y x y -≥⎧⎪+≤⎨⎪-≤⎩,则4z x y =+的最大值为 .16. 直线1l 和2l 是圆222x y +=的两条切线,若1l 与2l 的交点为(1,3),则1l 与2l 的夹角的正切值等于 .三、解答题 (本大题共6小题. 解答应写出文字说明、证明过程或演算步骤.) 17. (本小题满分10分)数列{}n a 满足12212,2,22n n n a a a a a ++===-+. (1)设1n n n b a a +=-,证明{}n b 是等差数列; (2)求{}n a 的通项公式. 18. (本小题满分12分)ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,已知13cos 2cos ,tan 3a C c A A ==,求B.19. (本小题满分12分)如图,三棱柱111ABC A B C -中,点1A 在平面ABC 内的射影D 在AC 上,090ACB ∠=,11,2BC AC CC ===.(1)证明:11AC A B ⊥;(2)设直线1AA 与平面11BCC B 1A AB C --的大小. 20.(本小题满分12分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别是0.6,0.5,0.5,0.4,各人是否使用设备相互独立,(1)求同一工作日至少3人需使用设备的概率;(2)实验室计划购买k 台设备供甲、乙、丙、丁使用,若要求“同一工作日需使用设备的人数大于k ”的概率小于0.1,求k 的最小值.21. (本小题满分12分)函数32()33(0)f x ax x x a =++≠.(1)讨论函数()f x 的单调性;(2)若函数()f x 在区间(1,2)是增函数,求a 的取值范围. 22. (本小题满分12分)已知抛物线C:22(0)y px p =>的焦点为F ,直线4y =与y 轴的交点为P ,与C 的交点为Q ,且54QF PQ =. (1)求抛物线C 的方程;(2)过F 的直线l 与C 相交于A,B 两点,若AB 的垂直平分线l '与C 相交于M,N 两点,且A,M,B,N四点在同一个圆上,求直线l的方程.参考答案一、选择题1.B2.D3.C4.B5.D6.B7.C8.C9.A10.A11.C12.D二、填空题13. -16014.3215. 5 16.43三、解答题:解答应写出文字说明,证明过程或演算步骤。

2014年全国统一高考数学试卷(文科)(新课标ⅰ)(附参考答案+详细解析Word打印版)

2014年全国统一高考数学试卷(文科)(新课标ⅰ)(附参考答案+详细解析Word打印版)

2014年全国普通高等学校招生统一考试数学试卷(文科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)已知集合M={x|﹣1<x<3},N={x|﹣2<x<1},则M∩N=()A.(﹣2,1)B.(﹣1,1)C.(1,3) D.(﹣2,3)2.(5分)若tanα>0,则()A.sinα>0 B.cosα>0 C.sin2α>0 D.cos2α>03.(5分)设z=+i,则|z|=()A.B.C.D.24.(5分)已知双曲线﹣=1(a>0)的离心率为2,则实数a=()A.2 B.C.D.15.(5分)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是()A.f(x)•g(x)是偶函数B.|f(x)|•g(x)是奇函数C.f(x)•|g(x)|是奇函数D.|f(x)•g(x)|是奇函数6.(5分)设D,E,F分别为△ABC的三边BC,CA,AB的中点,则+=()A.B.C.D.7.(5分)在函数①y=cos|2x|,②y=|cosx|,③y=cos(2x+),④y=tan(2x﹣)中,最小正周期为π的所有函数为()A.①②③B.①③④C.②④D.①③8.(5分)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱9.(5分)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=()A.B.C.D.10.(5分)已知抛物线C:y2=x的焦点为F,A(x0,y0)是C上一点,AF=|x0|,则x0=()A.1 B.2 C.4 D.811.(5分)设x,y满足约束条件且z=x+ay的最小值为7,则a=()A.﹣5 B.3 C.﹣5或3 D.5或﹣312.(5分)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围是()A.(1,+∞)B.(2,+∞)C.(﹣∞,﹣1)D.(﹣∞,﹣2)二、填空题:本大题共4小题,每小题5分13.(5分)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为.14.(5分)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为.15.(5分)设函数f(x)=,则使得f(x)≤2成立的x的取值范围是.16.(5分)如图,为测量山高MN,选择A和另一座的山顶C为测量观测点,从A点测得M点的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°,已知山高BC=100m,则山高MN=m.三、解答题:解答应写出文字说明.证明过程或演算步骤17.(12分)已知{a n}是递增的等差数列,a2,a4是方程x2﹣5x+6=0的根.(1)求{a n}的通项公式;(2)求数列{}的前n项和.18.(12分)从某企业生产的产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:(1)在表格中作出这些数据的频率分布直方图;(2)估计这种产品质量指标的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.(1)证明:B1C⊥AB;(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC﹣A1B1C1的高.20.(12分)已知点P(2,2),圆C:x2+y2﹣8y=0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点.(1)求M的轨迹方程;(2)当|OP|=|OM|时,求l的方程及△POM的面积.21.(12分)设函数f(x)=alnx+x2﹣bx(a≠1),曲线y=f(x)在点(1,f (1))处的切线斜率为0,(1)求b;(2)若存在x0≥1,使得f(x0)<,求a的取值范围.请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题记分。

2014年高考文科数学四川卷-答案

2014年高考文科数学四川卷-答案

设 ABP ,则 PA
10 sin , PB
10cos
,由 |
PA |
0且|
PB
|
0
,可得
0,
π 2
∴ | PA | | PB |
10(sin cos ) 2
5 sin


4

,∵

0,
π 2

,∴

π 4
m

0
,根据韦达定理有
y1 y2
m ,∵ OA OB 2 ,∴ x1
x2 y1
y2
2 ,结合
y12 x1 及 y22 x2 ,得 ( y1 y2 )2 y1 y2 2 0 ,∵点 A,B 位于 x 轴的两侧,∴ y1 y2 2 ,故 m 2 .
不妨令点
2 / 10
【解析】解:如图:
由图可知, DAB 15 ,∵ tan15 tan(45-30)= tan 45 tan 30
1
3 3
2
3.
1 tan 45 tan 30
11
3 3
在 Rt△ADB 中,又 AD 60 ,∴ DB AD tan15 60 (2 3) 120 60 3 .

π 4

x

2kπ 3

π 12
,故函数的增区间为

2kπ 3

π 4
,2kπ 3

π 12
,k

Z
.
(2)由函数的解析式可得
f

a 3


sin


π 4

2014年四川高考文科数学试卷(word版)和答案

 2014年四川高考文科数学试卷(word版)和答案

2014年普通高等学校招生全国统一考试(四川卷)数 学(文史类)本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)。

第Ⅰ卷1至2页,第Ⅱ卷3至4页,共4页。

满分150分。

考试时间120分钟。

考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效。

考试结束后,将本试题卷和答题卡一并交回。

第Ⅰ卷 (选择题 共50分)注意事项:必须使用2B 铅笔在答题卡上将所选答案对应的标号涂黑。

第Ⅰ卷共10小题。

一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一个是符合题目要求的。

1、已知集合{|(1)(2)0}A x x x =+-≤,集合B 为整数集,则A B =( )A 、{1,0}-B 、{0,1}C 、{2,1,0,1}--D 、{1,0,1,2}-2、在“世界读书日”前夕,为了了解某地5000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析。

在这个问题中,5000名居民的阅读时间的全体是( )A 、总体B 、个体C 、样本的容量D 、从总体中抽取的一个样本3、为了得到函数sin(1)y x =+的图象,只需把函数sin y x =的图象上所有的点( )A 、向左平行移动1个单位长度B 、向右平行移动1个单位长度C 、向左平行移动π个单位长度D 、向右平行移动π个单位长度 4、某三棱锥的侧视图、俯视图如图所示,则该三棱锥的体积是( )(锥体体积公式:13V Sh=,其中S 为底面面积,h 为高)学科网A 、3B 、2C 、3D 、15、若0a b >>,0c d <<,则一定有( )侧视图俯视图11222211A 、a b d c >B 、a b d c <C 、a b c d >D 、a b c d <6、执行如图的程序框图,如果输入的,x y R ∈,那么输出的S 的最大值为( ) A 、0B 、1C 、2D 、37、已知0b >,5log b a =,lg b c =,510d =,则下列等式一定成立的是( )A 、d ac =B 、a cd =C 、c ad =D 、d a c =+8、如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为75,30,此时气球的高是60cm ,则河流的宽度BC 等于( )A、1)m B、1)m - C、1)m -D、1)m +9、设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB +的取值范围是( )学科网A、B、C、D、10、已知F 为抛物线2y x =的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,2OA OB ⋅=(其中O 为坐标原点),则ABO ∆与AFO ∆面积之和的最小值是( )A 、2B 、3CD第Ⅱ卷 (非选择题 共100分)注意事项:必须使用0.5毫米黑色墨迹签字笔在答题卡上题目所示的答题区域内作答。

2014四川高考压轴卷数学文Word版含解析

2014四川高考压轴卷数学文Word版含解析

GKXX2014四川省高考压轴卷数 学(文史类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)。

第Ⅰ卷1至2页,第Ⅱ卷3至4页。

考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效。

满分150分。

考试时间120分钟,考试结束后,将本试题卷和答题卡一并收回。

第Ⅰ卷 (选择题 共50分)注意事项:必须使用2B 铅笔在答题卡上将所选答案的标号涂黑。

一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合M={|ln(1)x y x =-},集合N={|,xy y e x R =∈},(e 为自然对数的底数) 则M N =( )A .{|1x x <}B .{|1x x >}C .{|01x x <<}D .∅ 2.已知i 为虚数单位,复数z =i (2一i )的模|z |=( )A. 1B.C D.33. 函数 y=log 2(x 2+2x -3)的单调递减区间为 ( ) A .(-∞,-3) B .(-∞,-1) C .(1,+∞)D .(-3,-1)4.在等差数列{}n a 中,1315310a a a ++=,则5a 的值为( )A .2B .3C .4D .55.函数x x y sin =在[]ππ,-上的图象是( )6. 运行右图所示框图的相应程序,若输入,a b 的值分别为 2log 3和3log 2,则输出M 的值是( )A.0B.1C. 2D. -17.已知不重合的直线m 、l 和平面αβ、,且m α⊥,l β⊂.给出下列命题: ①若//αβ,则m l ⊥;②若αβ⊥,则//m l ;③若m l ⊥,则//αβ;④若//m l ,则αβ⊥, 其中正确命题的个数是( ) A .1 B .2 C .3 D .48.三棱锥S-ABC 的所有顶点都在球O 的表面上,SA ⊥平面ABC ,AB ⊥BC ,又SA=AB= BC=1,则球O 的表面积为( )(B) 32π (C) 3π (D) 12π9.我国第一艘航母“辽宁舰”在某次舰载机起降飞行训练中,有5架歼一15飞机准备着舰,如果甲、乙两机必须相邻着舰,而丙、丁两机不能相邻着舰,那么不同的着舰方法种数为( ) A. 12 B .18 C .24 D.4810.定义域为R 的函数()f x 满足(2)2()f x f x +=,当[0,2)x ∈时,23||2,[0,1),()1(),[1,2),2x x x x f x x -⎧-∈⎪=⎨-∈⎪⎩若当[4,2)x ∈--时,函数21()42t f x t ≥-+恒成立,则实数t 的取值范围为( )(A)23t ≤≤ (B)13t ≤≤ (C)14t ≤≤ (D)24t ≤≤第Ⅱ卷 (非选择题 共100分)注意事项:必须使用0.5毫米黑色签字笔在答题卡上题目指示的答题区域内作答。

2014年高考文科数学全国卷2(含详细答案)

2014年高考文科数学全国卷2(含详细答案)

数学试卷 第1页(共30页)数学试卷 第2页(共30页) 数学试卷 第3页(共30页)绝密★启用前2014年普通高等学校招生全国统一考试(全国新课标卷2)文科数学使用地区:海南、宁夏、黑龙江、吉林、新疆、云南、内蒙古、青海、贵州、甘肃、西藏注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号框涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号框.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合2,{2}0,A -=,2{|20}B x x x =--=,则A B =( )A .∅B .{2}C .{0}D .{2}- 2.13i =1i+-( )A .12i +B .12i -+C .12i -D .12i --3.函数()f x 在0x x =处导数存在.若p :0()0f x '=;q :0x x =是()f x 的极值点,则( ) A .p 是q 的充分必要条件B .p 是q 的充分条件,但不是q 的必要条件C .p 是q 的必要条件,但不是q 的充分条件D .p 既不是q 的充分条件,也不是q 的必要条件 4.设向量a ,b 满足|a +b |10=,|a -b |6=,则a b =( )A .1B .2C .3D .55.等差数列{}n a 的公差为2,若2a ,4a ,8a 成等比数列,则{}n a 的前n 项和n S = ( ) A .(1)n n +B .(1)n n -C .(1)2n n + D .(1)2n n - 6.如图,网格纸上正方形小格的边长为1(表示1 cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm ,高为6 cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为 ( )A .1727B .59C .1027D .137.正三棱柱111ABC A B C -的底面边长为2,侧棱长为3,D 为BC 中点,则三棱锥11A B DC -的体积为( )A .3B .32C .1D .328.执行如图所示的程序框图,如果输入的x ,t 均为2,则输出的S =( ) A .4 B .5 C .6D .79.设x ,y 满足约束条件10,10,330,x y x y x y +-⎧⎪--⎨⎪-+⎩≥≤≥则2z x y =+的最大值为( ) A .8 B .7 C .2D .110.设F 为抛物线C :23y x =的焦点,过F 且倾斜角为30的直线交于C 于A ,B 两点,则||AB =( )A .303B .6C .12D .7311.若函数()ln f x kx x =-在区间(1,)+∞上单调递增,则k 的取值范围是( )A .(,2]-∞-B .(,1]-∞-C .[2,)+∞D .[1,)+∞12.设点0(,1)M x ,若在圆O :221x y +=上存在点N ,使得45OMN ∠=,则0x 的取值范围是( )A .[1,1]-B .11[,]22-C .[2,2]-D .22[,]22-第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分.13.甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为 .14.函数()sin()2sin cos f x x x ϕϕ=+-的最大值为 .15.偶函数()y f x =的图象关于直线2x =对称,(3)3f =,则(1)f -= .16.数列{}n a 满足111n n a a +=-,82a =,则1a = .三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)四边形ABCD 的内角A 与C 互补,1AB =,3BC =,2CD DA ==. (Ⅰ)求C 和BD ;(Ⅱ)求四边形ABCD 的面积.18.(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点. (Ⅰ)证明:PB平面AEC ;(Ⅱ)设1AP =,3AD =,三棱锥P ABD -的体积34V =,求A 到平面PBC 的距离.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共30页) 数学试卷 第5页(共30页) 数学试卷 第6页(共30页)19.(本小题满分12分)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民,根据这50位市民对(Ⅰ)分别估计该市的市民对甲、乙两部门评分的中位数; (Ⅱ)分别估计该市的市民对甲、乙两部门的评分高于90的概率; (Ⅲ)根据茎叶图分析该市的市民对甲、乙两部门的评价.20.(本小题满分12分) 设1F ,2F 分别是椭圆C :22221(0)x y a b a b+=>>的左,右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N .(Ⅰ)若直线MN 的斜率为34,求C 的离心率;(Ⅱ)若直线MN 在y 轴上的截距为2,且1||5||MN F N =,求a ,b .21.(本小题满分12分)已知函数32()32f x x x ax =-++,曲线()y f x =在点(0,2)处的切线与x 轴交点的横坐标为2-. (Ⅰ)求a ;(Ⅱ)证明:当1k <时,曲线()y f x =与直线2y kx =-只有一个交点.请从下面所给的22、23、24三题中选定一题作答,并用2B 铅笔在答题卡上将所选题目对应的题号方框涂黑,按所涂题号进行评分;不涂、多涂均按所答第一题评分;多答按所答第一题评分.22.(本小题满分10分)选修4—1:几何证明选讲如图,P 是O 外一点,PA 是切线,A 为切点,割线PBC 与O 相交于点B ,C ,2PC PA =,D 为PC 的中点,AD 的延长线交O 于点E ,证明:(Ⅰ)BE EC =; (Ⅱ)22AD DE PB =.23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为2cos ρθ=,π[0,]2θ∈.(Ⅰ)求C 的参数方程;(Ⅱ)设点D 在C 上,C 在D 处的切线与直线l :2y =+垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标.24.(本小题满分10分)选修4—5:不等式选讲设函数1()||||(0)f x x x a a a =++->.(Ⅰ)证明:()2f x ≥;(Ⅱ)若(3)5f <,求a 的取值范围.3 / 10{2}A B =,选(1+3i)(1+i)-2+4i ==-1+2ii)(1+i)2【解析】由已知得,22210a a b b ++=,2226a a b b -+=,两式相减得,44a b =,故1a b =。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年普通高等学校招生全国统一考试(四川卷)
数 学(文史类)
本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)。

第Ⅰ卷1至2页,第Ⅱ卷3至4页,共4页。

满分150分。

考试时间120分钟。

考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效。

考试结束后,将本试题卷和答题卡一并交回。

第Ⅰ卷 (选择题 共50分)
注意事项:
必须使用2B 铅笔在答题卡上将所选答案对应的标号涂黑。

第Ⅰ卷共10小题。

一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一个是符合题目要求的。

1、已知集合{|(1)(2)0}A x x x =+-≤,集合B 为整数集,则A B =( )
A 、{1,0}-
B 、{0,1}
C 、{2,1,0,1}--
D 、{1,0,1,2}-
2、在“世界读书日”前夕,为了了解某地5000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析。

在这个问题中,5000名居民的阅读时间的全体是( ) A 、总体B 、个体
C 、样本的容量
D 、从总体中抽取的一个样本
3、为了得到函数sin(1)y x =+的图象,只需把函数sin y x =的图象上所有的点( )
A 、向左平行移动1个单位长度
B 、向右平行移动1个单位长度
C 、向左平行移动π个单位长度
D 、向右平行移动π个单位长度 4、某三棱锥的侧视图、俯视图如图所示,则该三棱锥的体积是( )(锥体体积公式:1
3
V Sh =
,其中S 为底面面积,h 为高)学科网 A 、3B 、2C 、3D 、1
5、若0a b >>,0c d <<,则一定有( ) A 、
a b d c >B 、a b d c
< C 、a b c d >D 、a b c d < 6、执行如图的程序框图,如果输入的,x y R ∈,那么输出的S 的最
侧视图
俯视图
11
2
2
2
21
1
大值为( ) A 、0B 、1C 、2D 、3
7、已知0b >,5log b a =,lg b c =,510d
=,则下列等式一定成立的是( ) A 、d ac =B 、a cd =C 、c ad =D 、d a c =+
8、如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为75,30,此时气球的高是60cm ,则河流的宽度BC 等于( ) A
、1)m B
、1)m C
、1)m D
、1)m +
9、设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB +的取值范围是( )学科网
A
、B
、C
、D

10、已知F 为抛物线2
y x =的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,2OA OB ⋅=(其中O 为坐标原点),则ABO ∆与AFO ∆面积之和的最小值是( ) A 、2B 、3C
D
第Ⅱ卷 (非选择题 共100分)
注意事项:
必须使用0.5毫米黑色墨迹签字笔在答题卡上题目所示的答题区域内作答。

作图题可先用铅笔绘出,确认后再用0.5毫米黑色墨迹签字笔描清楚。

答在试题卷、草稿纸上无效。

第Ⅱ卷共11小题。

二、填空题:本大题共5小题,每小题5分,共25分。

11、双曲线2
214
x y -=的离心率等于____________。

12、复数
221i
i
-=+____________。

13、设()f x 是定义在R 上的周期为2的函数,当[1,1)x ∈-时,242,10,
(),
01,x x f x x x ⎧-+-≤<=⎨≤<⎩,
则3
()2
f =____________。

14、平面向量(1,2)a =,(4,2)b =,c ma b =+(m R ∈),且c 与a 的夹角等于c 与b 的夹角,则
m =____________。

15、以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数()x ϕ组成的集合:对于函数
()x ϕ,存在一个正数M ,使得函数()x ϕ的值域包含于区间[,]M M -。

例如,当31()x x ϕ=,2()sin x x ϕ=时,1()x A ϕ∈,2()x B ϕ∈。

现有如下命题:
①设函数()f x 的定义域为D ,则“()f x A ∈”的充要条件是“b R ∀∈,x R ∃∈,()f a b =”; ②若函数()f x B ∈,则()f x 有最大值和最小值;学科网
③若函数()f x ,()g x 的定义域相同,且()f x A ∈,()g x B ∈,则()()f x g x B +∉; ④若函数2
()ln(2)1
x
f x a x x =++
+(2x >-,a R ∈)有最大值,则()f x B ∈。

其中的真命题有____________。

(写出所有真命题的序号)。

三、解答题:本大题共6小题,共75分。

解答应写出文字说明,证明过程或演算步骤。

16、(本小题满分12分)
一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同。


机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a ,b ,c 。

(Ⅰ)求“抽取的卡片上的数字满足a b c +=”的概率; (Ⅱ)求“抽取的卡片上的数字a ,b ,c 不完全相同”的概率。

17、(本小题满分12分)
已知函数()sin(3)4
f x x π
=+
(Ⅰ)求()f x 的单调递增区间;
(Ⅱ)若α是第二象限角,4()cos()cos 23
54
f α
π
αα=
+,求cos sin αα-的值。

18、(本小题满分12分)
在如图所示的多面体中,四边形11ABB A 和11ACC A 都为矩形。

(Ⅰ)若AC BC ⊥,证明:直线BC ⊥平面11ACC A ;
(Ⅱ)设D ,E 分别是线段BC ,1CC 的中点,在线段AB 上是否存在一点
M ,使直线//DE 平面1A MC ?请证明你的结论。

19、(本小题满分12分)
设等差数列{}n a 的公差为d ,点(,)n n a b 在函数()2x
f x =的图象上(n N *
∈)。

(Ⅰ)证明:数列{}n b 为等差数列;学科网
(Ⅱ)若11a =,函数()f x 的图象在点22(,)a b 处的切线在x 轴上的截距为12ln 2
-,求数列2
{}n n a b 的前n 项和n S 。

D E
B 1
C 1A
C
B
A 1
20、(本小题满分13分)
已知椭圆C :22
221x y a b
+=(0a b >>)的左焦点为(2,0)F -,离心率为3
(Ⅰ)求椭圆C 的标准方程;
(Ⅱ)设O 为坐标原点,T 为直线3x =-上一点,过F 作TF 的垂线交椭圆于P ,Q 。

当四边形OPTQ 是平行四边形时,求四边形OPTQ 的面积。

21、(本小题满分14分)
已知函数2
()1x
f x e ax bx =---,其中,a b R ∈, 2.71828e =⋅⋅⋅为自然对数的底数。

(Ⅰ)设()g x 是函数()f x 的导函数,求函数()g x 在区间[0,1]上的最小值;学科网 (Ⅱ)若(1)0f =,函数()f x 在区间(0,1)内有零点,证明:21e a -<<。

相关文档
最新文档