简单曲线的极坐标方程教学设计
简单曲线的极坐标方程教案

简单曲线的极坐标方程教案高二年级数学集体备课材料说课人:李德辉说课时间:2013-5-27构建高效课堂教学设计案(正页)高二年级数学学科课题简单曲线的极坐标系方程预讲授时间 2013年 5月 30 日第 1 课时授课类型新授课知识目标:进一步领会求简单曲线的极坐标方程的基本方法,掌握极坐标方程的意义教和掌握一些特殊位置下的圆和直线(如过极点或垂直于极轴的直线)的极坐标方程.能力目标: 学结合数学实例培养学生归纳类比推理的能力,培养学生逻辑推理能力.目情感目标:标通过观察、探索、发现的创造性过程,培养创新意识,辨析能力以及良好的思维品质。
教学重点求简单曲线的极坐标方程的基本方法教学难点求简单曲线的极坐标方程的基本方法教学方法学生自主探究为主,教师引导为辅三、简单曲线的极坐标系方程板一.圆的极坐标方程: 例1 例2 书设计二.直线的极坐标方程:学在教师的引导下,学生能积极应对互化的原因、方法,也能较好地模仿操作,但情让学生独立自主完成新的问题的解答,明显有困难,需要教师的点拨引导。
这点可采分取的措施是:小组讨论,共同寻找解决问题的方法,很有效。
析构建高效课堂教学设计案(副页)教学环教师活动学生活动节及时(教学内容的呈现及教学方法) (学习活动的设计) 间分配问题1、引例(如图,在极坐标系下半径为a的圆的圆心坐标为引领 ,0)(>0),你能用一个等式表示圆上任意一点, (aa的极坐标(,,,)满足的条件, 4分钟学生观察、思考,教师引导,从而引出本节的课题,并给出概念2、提问:曲线上的点的坐标都满足这个方程吗,自主曲线的极坐标方程与极坐标方程的曲线定义教师板书,强调含义构建 3分钟1.求以点为圆心,为半径的圆C的极aC(a,0)(a,0)学生依据所学知识进行小组合作合作解决相应问题,实现教学内容的探究坐标方程. 获得. 7分钟2.已知圆心的极坐标为,圆的半径为,M(,,,)r 00求圆的极坐标方程.点拨例1(求圆心在点(3,0),且过极点的圆的极坐标学生独立思考回答,教师进提升方程.行纠错,并指导. ,7分钟 (4,)练习:1(求以为圆心,4为半径的圆的极坐 2 标方程. 2.已知一个圆的极坐标方程是 ,,53cos,,5sin,,求圆心的极坐标与半径., l【问题1】:求经过极点,从极轴到直线的夹角是 4合作 l探究的直线的极坐标方程.13分钟【问题2】:求过点A(a,0)(a>0)且垂直与极轴的学生在学习小组内部展开讨直线的极坐标方程. 论,教师指导,然后进行交l【问题3】:设点P的极坐标为(,,,),直线过点P流展示. 教师板书,强调符号11 互相转换的方法 l, 且与极轴所成的角为,求直线的极坐标方程.【问题4】:在问题3中,如果以极点为直角坐标原点,极轴为x轴正半轴建立平面直角坐标系,那么直线l 的直角坐标方程是什么?比较直线l的极坐标方程与直角坐标方程,你对不同坐标系下的直线方程有什么认识?, 例2(求经过极点,且倾斜角是的直线的极坐标方自主学生观察、独立思考回答,6构建程. 教师教师规范步骤.学生整理9分钟记忆.,3 练习:求直线的直角坐标方程. ,,(,,R) 4总结本节课你有哪些收获, 评价知识层面:思想层面: 学生总结归纳,教师提示补充.方法层面: 2分钟布置红对勾 A层 P9: 1-4 6-12P11: 1—3,6—13作业 B层 P9 :5,13,14 P11: 4,5,14总黄酮生物总黄酮是指黄酮类化合物,是一大类天然产物,广泛存在于植物界,是许多中草药的有效成分。
《极坐标系 简单曲线的极坐标方程》教案

三、简单曲线的极坐标方程 【基础知识导学】1、极坐标方程的定义:在极坐标系中,如果平面曲线C 上任一点的极坐标中至少有一个满足方程0),(=θρf ,并且坐标适合方程0),(=θρf 的点都在曲线C 上,那么方程0),(=θρf 叫做曲线C 的极坐标方程。
1. 直线与圆的极坐标方程① 过极点,与极轴成α角的直线极坐标议程为αθραθtan tan )(=∈=或R②以极点为圆心半径等于r 的圆的极坐标方程为 r =ρ【知识迷航指南】 例1求(1)过点)4,2(πA 平行于极轴的直线。
(2)过点)3,3(πA 且和极轴成43π角的直线。
解(1)如图,在直线l 上任取一点),(θρM ,因为)4,2(πA ,所以|MH|=224sin=⋅π在直角三角形MOH 中|MH|=|OM|sin θ即2sin =θρ,所以过点)4,2(πA 平行于极轴的直线为2sin =θρ。
(2)如图 ,设M ),(θρ为直线l 上一点。
)3,3(πA , OA =3,3π=∠AOB xO由已知43π=∠MBx ,所以125343πππ=-=∠OAB ,所以127125πππ=-=∠OAM 又θπθ-=-∠=∠43MBx OMA 在∆MOA 中,根据正弦定理得 127sin)43sin(3πρθπ=- 又426)34sin(127sin+=+=πππ 将)43sin(θπ-展开化简可得23233)cos (sin +=+θθρ 所以过)3,3(πA 且和极轴成43π角的直线为:23233)cos (sin +=+θθρ〔点评〕求曲线方程,关键是找出曲线上点满足的几何条件。
将它用坐标表示。
再通过代数变换进行化简。
例2(1)求以C(4,0)为圆心,半径等于4的圆的极坐标方程。
(2)从极点O 作圆C 的弦ON ,求ON 的中点M 的轨迹方程。
解:(1)设),(θρp 为圆C 上任意一点。
圆C 交极轴于另一点A 。
由已知 OA =8 在直角∆AOD 中θcos OA OD =,即 θρcos 8=, 这就是圆C 的方程。
《1.3简单曲线的极坐标方程》教学案2

《简单曲线的极坐标系方程》教学案教学目标:1.知识目标:进一步领会求简单曲线的极坐标方程的基本方法,掌握极坐标方程的意义和掌握一些特殊位置下的圆和直线(如过极点或垂直于极轴的直线)的极坐标方程.2.能力目标:结合数学实例培养学生归纳类比推理的能力,培养学生逻辑推理能力.3.情感目标:通过观察、探索、发现的创造性过程,培养创新意识,辨析能力以及良好的思维品质. 教学重点:求简单曲线的极坐标方程的基本方法.教学难点:求简单曲线的极坐标方程的基本方法.教学过程:问题引领:1、引例.如图,在极坐标系下半径为a 的圆的圆心坐标为(a ,0)(a >0),你能用一个等式表示圆上任意一点,的极坐标(ρ,θ)满足的条件?2、提问:(1)曲线上的点的坐标都满足这个方程吗?(2)曲线的极坐标方程与极坐标方程的曲线定义自主构建:1.求以点)0)(0,(>a a C 为圆心,a 为半径的圆C 的极坐标方程.2.已知圆心的极坐标为),(00θρM ,圆的半径为r ,求圆的极坐标方程.合作探究:例1.求圆心在点(3,0),且过极点的圆的极坐标方程.点拨提升:练习:1.求以)2,4(π为圆心,4为半径的圆的极坐标方程.2.已知一个圆的极坐标方程是θθρsin 5cos 35-=,求圆心的极坐标与半径. 合作探究:【问题1】:求经过极点,从极轴到直线l 的夹角是4π的直线l 的极坐标方程. 【问题2】:求过点A (a ,0)(a >0)且垂直与极轴的直线的极坐标方程.【问题3】:设点P 的极坐标为),(11θρ,直线l 过点P 且与极轴所成的角为α,求直线l 的极坐标方程.【问题4】:在问题3中,如果以极点为直角坐标原点,极轴为x 轴正半轴建立平面直角坐标系,那么直线l 的直角坐标方程是什么?比较直线l 的极坐标方程与直角坐标方程,你对不同坐标系下的直线方程有什么认识?合作探究:例2.求经过极点,且倾斜角是6π的直线的极坐标方程. 练习:求直线)(43R ∈=ρπρ的直角坐标方程.自主构建:课堂小结本节课你有哪些收获?知识层面:________________________________________;思想层面:________________________________________;方法层面:________________________________________.。
高中数学经典教案三 简单曲线的极坐标方程

简单曲线的极坐标方程
第一课时
课题:常用曲线的极坐标方程(1)
教学目的:
知识目标:了解掌握极坐标系中直线和圆的方程
能力目标:巩固求曲线方程的方法和步骤
德育目标:通过观察、探索、发现的创造性过程,培养创新意识。
教学重点:求直线与圆的极坐标方程
教学难点:寻找关于ρ,θ的等式
授课类型:新授课
教学模式:启发、诱导发现教学.
教 具:多媒体、实物投影仪
教学过程:
一、复习引入:
问题情境
情境1:3cos =θρ , 5=ρ, 2sin =θρ, πθ4
3=分别表示什么曲线? 情境2:上述方程分别表示了直线与圆,把这些直线与圆一般化,它们的方程分别是什么?
二、讲解新课:
1、若直线l 经过),(00θρM 且极轴到此直线的角为α,求直线l 的极坐标方程。
变式训练:直线l 经过)2,3(πM 且该直线到极轴所成角为4
π,求此直线l 的极坐标方程。
把前面所讲特殊直线用此通式来验证。
2、若圆心的坐标为),(00θρM ,圆的半径为r ,求圆的方程。
运用此结果可以推出哪些特殊位置的圆的极坐标方程。
简单曲线的极坐标方程 说课稿 教案 教学设计

常见曲线的极坐标方程教学目标:1.掌握各种圆的极坐标方程;2.能根据圆的极坐标方程画出其对应的图形.教学重点:极坐标系中根据条件求出圆的极坐标方程.教学难点:圆的极坐标方程及其应用.教学过程:一、问题情境:1.阅读课本12-13页回答下面问题⑴直角坐标系和极坐标系中怎样描述点的位置?⑵曲线的方程和方程的曲线(直角坐标系中)定义⑶求曲线方程的步骤2.(1)如图,在极坐标系下半径为a 的圆的圆心坐标为(a ,0)(a >0),你能用一个等式表示圆上任意一点,的极坐标(ρ,θ)满足的条件?(2)曲线上的点的坐标都满足这个方程吗?二、新知探究:思路分析:1.先和学生一齐在黑板上画出圆与极坐标轴2.把所设圆上任意一点的极坐标在所画图形上明确标出来ρ、θ 即明确长度ρ与角度θ是哪一边, 哪一个角3.找边与角能共存的三角形,最好是直角三角形4.利用三角形的边角关系的公式与定理列等式5.列式时要充分利用所给的圆心与半径的条件6.引出指明极坐标方程的条件 三、建构数学 若圆心的坐标为M (ρ0,θ0),圆的半径为r ,求圆的方程. 022********P()MOP MP =OM +OP -2OM OP cos . -2cos()0POM r ≠∆⋅∠-+-=ρρθρρρθθρ解:当时,设圆上任意一点为,,在中,由余弦定理知 可得 022200000=0=r ()-2cos()0r r -+-=ρρρθρρρθθρ当时,圆心位于极点,圆的极坐标方程是,亦满足上面的方程.故圆心为,,半径为的圆的极坐标方程是显然点P 的坐标也是它的解.运用此结果可以推出一些特殊位置的圆的极坐标方程.M(,0)2M(r,)==22r ρθπρθ1.当圆心位于时,由上式可得圆的极坐标方程是 ;.当圆心位于时,由上式可得圆的极坐标2rcos rsi 程是 n 方 .四、数学应用:O MPρρr θ0θx(1)A(3,0) (2)B(8)2 (3)O C(-4,0) (4))6ππ例1 按下列条件写出圆的极坐标方程:以为圆心,且过极点的圆;以,为圆心,且过极点的圆;以极点与点连接的线段为直径的圆;圆心在极轴上,且过极点与点,的圆.(详细解答过程见教材P23)例2 求以点)0)(0,(>a a C 为圆心,a 为半径的圆C 的极坐标方程.变式练习:1.求圆心在点(3,0),且过极点的圆的极坐标方程.2.求以)2,4(π为圆心,4为半径的圆的极坐标方程.例3 已知一个圆的极坐标方程是θθρsin 5cos 35-=,求圆心的极坐标与半径.五、课堂练习:1.在极坐标系中,求适合下列条件的圆的极坐标方程:(1)圆心在)4,1(πA ,半径为1的圆;(2)圆心在)23,(πa ,半径为a 的圆.2.把下列极坐标方程化为直角坐标方程:(1)2=ρ;(2)θρcos 5=.3.求下列圆的圆心的极坐标:(1)θρsin 4=;(2))4cos(2θπρ-=.4.求圆05)sin 3(cos 22=-+-θθρρ的圆心的极坐标与半径.六、回顾小结:如何求圆的极坐标方程。
简单曲线的极坐标方程精品教案

5 来表示。
提问:曲线上的点的坐标都满足这个方 程吗? 小结:“极坐标方程的曲线与曲线的极 坐标方程的定义”,非一一对应关系的 理解,因为极坐标系中点的表示法不唯 一,所以不需要曲线上的任意一点的坐 标都适合方程,只要求曲线上任意一点 都至少有一个极坐标适合方程即可,从 而曲线的极坐标方程也不唯一,还可以 思考,为了达到一一对应需要添加的条 件。 三、思考归纳,生成概念 定义:一般地,在极坐标系中,如果平
教学过程
教学步骤 一、情景引入 多媒体播放百岁山矿泉水广告(素材启 发自笛卡尔的爱情故事),引出极坐标 方程表示的笛卡尔心形线 二、探究问题,引出概念 问题 1、直角坐标系建立可以描述点的 位置在极坐标系是否也有同样作用? 问题 2、直角坐标系的建立可以求曲线 的方程,极坐标系的建立是否可以求曲 线方程? 思考:以极点 O 为圆心 5 为半径的圆上
3.情感、态度与价值观目标: 通过不同坐标系的选择与变换理解事物的多样性及其中必然的内在的联系性,可以多 角度、多层次地分析问题.;通过练习体验小组探究合作学习,体会团结协作精神;通过阿 基米德螺线,四叶玫瑰线,双曲螺线,心脏线,双纽线,星形线,三叶玫瑰线的绘制感受 数学与生活的联系 ,欣赏和感受数学中的美,渗透数学文化,激发学习兴趣 教学重点:圆的极坐标方程的求法
预习作业较容 易,学生通过 阅读课本能较 好完成
结合问题尝试 归纳,生成概 念
类比平面直角 坐标系中曲线 与方程的概 念,应能较好 给出极坐标系 中相应概念, 学生可能对定 义中“任意一 点的极坐标中 至少有一个满
设计意图 激发兴趣,引出极 坐标方程
简单曲线的极坐标方程教案

简单曲线的极坐标方程教案As a person, we must have independent thoughts and personality.简单曲线的极坐标方程【教学目标】1.熟练掌握简单曲线的极坐标方程的求法,提高应用极坐标系的概念和极坐标和直角坐标的互化解决问题的能力.2.自主学习,合作交流,探究并归纳总结简单曲线的极坐标方程的求法.3.激情投入,高效学习,体验探究、归纳、总结的过程,增强应用数学的能力.【教学重难点】简单曲线的极坐标方程的求法【教学过程】一、复习、预习自学:222y x +=ρ, )0(tan ≠=x x yθ 3.曲线和方程(平面直角坐标系中(P12))曲线C 上的点的坐标都是方程0),(=y x f 的解;以方程0),(=y x f 的解为坐标的点都在曲线C 上.(3)极坐标系中如何用方程表示曲线【复习、预习自测】1.极坐标化为直角坐标:→)4,3(π________,→)32,2(π________2. 直角坐标化为极坐标:→)3,3( ________,→-)35,0(________二、合作探究探究点一:圆的极坐标方程(P12-13)如图,半径为a 的圆的圆心坐标为C(a,0)(a>0).你能用一个等式表示圆上任意一点的极坐标),(θρ满足的条件吗探究点1图 拓展1图小结(P13):一般的,在极坐标系中,如果满足下列两个条件,那么方程0),(=θρf 叫做曲线C 的极坐标方程:(1) (2)拓展1(P13):已知圆O 的半径为r ,建立怎样的极坐标系,可以使圆的极坐标方程更简单并将所得结果与直角坐标方程进行比较.探究点二:直线的极坐标方程(P13)如图,直线l 经过极点,从极轴到直线l 的角是4π,求直线l 的极坐标方程.探究点2图 拓展2图 拓展3图拓展2(P14):求过点A(a,0)(a>0),且垂直于极轴的直线l 的极坐标方程.拓展3(P14):设P 点的极坐标为),(11θρ,直线l 过点P 且与极轴所成的角为α,求直线l 的极坐标方程.【课堂小结】 1.知识方面_____________________________________________________________________2.数学思想方面_______________________________________________________________ __探究点三:圆锥曲线的极坐标方程已知椭圆C的焦距为2c,长轴长为2a,离心率为e(0<e<1),建立合理的极坐标系,求椭圆C的极坐标方程.。
高中数学_简单曲线的极坐标方程教学设计学情分析教材分析课后反思

简单曲线的极坐标教学设计简单曲线的极坐标方程学情分析本班学生是高二文科班,学生数学基础比较薄弱。
知识上:刚学习了极坐标的概念和极坐标和直角坐标的互化,为学习简单曲线的极坐标方程作了必要的知识准备,虽然进行了简单的坐标互化练习,由于极坐标是全新的概念学生还不是很熟悉,还需要一段接受熟知的过程。
思维上:文科学生数学思维稍弱,注意提前预习,浅入浅出。
能力上:注意引导学生主动探究,学会分析问题,探究问题,解决问题,自主归纳总结得出结论。
简单曲线的极坐标方程效果分析本节课实现了“三维”教学目标的有机统一,教学目标可观测,可评价;教师能根据教学过程中的新情况、新变化,生成新的教学目标,及时解决学生遇到的新问题。
教学目标达成度高。
本节课做到了面向全体,鼓励学生积极探索,交流合作,教师及时地鼓。
另外,抓知识选择的切入点,从学生原有的认知水平和所需的知识特点入手,让学生在解决预习问题过程中学习,观察,类比,思考,探究,概括,动手尝试相结合,体现学生的主体地位,突出了重点,突破了难点,增强了学生由特殊到一般的数学思维能力,增强了探索精神,形成了严谨的科学态度。
简单曲线的极坐标方程教材分析本节课是选修4-4简单曲线的极坐标方程,包括圆的极坐标方程和直线的极坐标方程,其核心重点是直角坐标方程和极坐标方程的互化。
理解它的关键是从根本上理解直角坐标和极坐标互化公式。
因此,通过本节课对简单极坐标方程的推导,不仅能复习巩固互化公式,还可使学生更深的理解极坐标系和互化公式,从而更熟练的进行方程互化,解决实际问题。
而且通过对方程的探究,能使学生体验到数学发现和创造的历程,进而培养学生自主探究,合作探究等研究性学习能力。
文科学生数学思维稍弱,注意提前预习,浅入浅出。
根据学生具体情况,制定如下教学目标:1、知识与技能:掌握简单图形(过极点的圆,圆心在极点的圆,过极点的直线,垂直或平行于极径的直线)的极坐标方程;能熟练进行两种方程的互化2、方法与过程:通过课前预习自主研究简单图形的极坐标方程的特点,比较简单图形在极坐标系和平面直角坐标系中的方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生:求解回答问题;说出两者的差异。
6:如何解答例1
让学生熟悉求曲线极坐标方程的基本步骤;引导学生体会如何根据问题的集合特征建立适当的极坐标系。
师:提出问题
生:回答问题并得出结论;把极点放在圆心上,可以使方程最简洁。
7:教材p13的“探究”
学生会求直线的极坐标方程,并体会其与直角坐标系下直线方程的“唯一确定性”的区别。
生:先做出图形,再根据集合条件建立关于 和 的方程
4:怎样理解极坐标方程的定义中“至少有一个满足方程”
先让学生思考,再引导他们从点的极坐标的多值性进行解释。
师:提出问题
生:回答问题;对极坐标多值性的认识。
5:是否可以求出这题的直角坐标方程/
让学生对两个方程及其求解过程进行比较,以使学生体会两者之间的差异,从而加深对选择坐标系重要性的认识。
(1)曲线的极坐标方程的概念
(2)圆的极坐标方程
(3)直线的极坐标方程
(4)怎样求曲线的极坐标方程布 Nhomakorabea作业作业:教材p15 1.(1)(2);2.(2)(3)
预习下节内容
师:提出问题。
生:动手求解,并全班讨论。
8:如何解答例2
掌握求直线极坐标方程的方法,并注意总结求解直线极坐标方程的基本步骤。
师:提出问题
生:独立完成,再进行全班交流
9:p15的“思考”
通过比较同一直线在不同坐标系的方程,让学生体会适当选择坐标系的重要性。
师:提出问题,最后进行点评
生:各抒己见
小结本节课所学内容
教学难点:建立直线的极坐标方程;理解直线极坐标方程形式的不唯一性。
三、教学基本流程
四、教学情境设计
问题
设计意图
师生互动
1:回顾上节课学过的极坐标系的定义以及如何建立曲线的直角坐标方程
引入极坐标系,让学生形成类比意识。
师:提出问题,引导学生回忆极坐标系的概念。
生:回忆、归纳流程图的本质,
2:在平面直角坐标系下,平面曲线C可用 表示,那么在极坐标系下,平面曲线是否可用方程 表示呢
§简单曲线的极坐标方程
一、教学任务分析
知识与技能了解极坐标系中曲线和方程的关系,能求直线和圆的极坐标方程;
过程与方法掌握求曲线极坐标方程的步骤;能求直线和圆的极坐标方程;
情感、态度、价值观认识极坐标中方程和曲线的关系,并能求简单曲线的极坐标方程。
二、教学重、难点
教学重点:能建立圆和直线的极坐标方程。
在引导学生回顾直角坐标系下曲线与方程关系的基础上,用类比的方式引进曲线的极坐标方程。
师:解释直角坐标系下,曲线C与方程 的关系
生:类比回答极坐标系下曲线与方程的关系,并引发学生思考在直角坐标系下成立的结论是否在极坐标系下也成立。
3:教材p12的“探究”
引导学生类比直角坐标系下求圆的方程的过程。
师:提出问题