各种不等式解法练习试题

合集下载

不等式的题目

不等式的题目

不等式的题目一、一元一次不等式1. 解不等式3x - 5 < 4- 解析:- 首先将不等式进行移项,得到3x<4 + 5,即3x<9。

- 然后两边同时除以3,解得x < 3。

2. 解不等式2(x+1)-3x≥0- 解析:- 先展开括号得2x+2 - 3x≥0。

- 合并同类项得-x+2≥0。

- 移项得-x≥ - 2。

- 两边同时乘以-1,不等号方向改变,解得x≤2。

3. 不等式5x+12 - 8(x - 1)<0的解集是多少?- 解析:- 先展开括号得5x + 12-8x + 8<0。

- 合并同类项得-3x+20 < 0。

- 移项得-3x<-20。

- 两边同时除以-3,不等号方向改变,解得x>(20)/(3)。

4. 解不等式(2x - 1)/(3)≤(3x+2)/(4)-1- 解析:- 首先给不等式两边同时乘以12去分母,得到4(2x - 1)≤3(3x + 2)-12。

- 展开括号得8x-4≤9x + 6-12。

- 移项得8x-9x≤6 - 12 + 4。

- 合并同类项得-x≤ - 2。

- 两边同时乘以-1,不等号方向改变,解得x≥2。

5. 若关于x的不等式3x - m≤0的正整数解是1,2,3,则m的取值范围是多少?- 解析:- 解不等式3x - m≤0,得x≤(m)/(3)。

- 因为正整数解是1,2,3,所以3≤(m)/(3)<4。

- 解3≤(m)/(3)得m≥9;解(m)/(3)<4得m < 12。

- 所以m的取值范围是9≤ m<12。

二、一元一次不等式组6. 解不等式组cases(x+3>02x - 1≤3)- 解析:- 解不等式x + 3>0,得x>- 3。

- 解不等式2x-1≤3,移项得2x≤3 + 1,即2x≤4,解得x≤2。

- 所以不等式组的解集为-3 < x≤2。

7. 解不等式组cases(3x - 1>2x+12x<4)- 解析:- 解不等式3x - 1>2x + 1,移项得3x-2x>1 + 1,解得x>2。

不等式练习(含答案)

不等式练习(含答案)

不等式练习考点一:一元二次不等式的解法1 •不等式X2—2X—3C0的解集是()A. (_3,1)B. (-1,3)C. (",_1 切(3,咼)D.(, 一3切(1, +处)2•不等式2x2—x—1 A0的解集是()1八1A. (——,1) B • (1 , +R)2C . (-°o,12 (2,畑)D• (-°0,-一2 (3*°)23 •不等式x(x—1)v0的解集是()A. {x|x<0}B. {x|xc1}C. {x|0cxc1} D . {x|x c0 或x>1}4 •已知集合A={x|0cxc2}, B={x|(x_1)(x+1)>0},则 B =()A. (0,1) B . (1,2) C. (",-1)U(0,邑) D•(严-1)U(1S5 .已知集合A = {x乏R2x-3^0},集合B ={x^ R2x—3x + 2c0},则A"B =()f (A) x x迢f(B) x31Ex c2》(C){ x 1 £X < 2}f(D) i31£X£2I2J2J I2J 6•不等式x(x-2)^0的解集是()A. [0,2) B • [0,2] C. (-::,0]IJ[2,二)D • (-::,0) U (2,)7 •设集合A = {x|x>l},B ={x|x(x—2) <0},则B 等于( )A. {x|x>2} B • {x|0c x c2} C. {x| 1<x<2} D • {x|0cx£l}考点二:含绝对值不等式的解法28•不等式x -2 <2的解集是( )(A)-1,1 (B) -2,2 (0 -1,0 U 0,1 ( D) -2,0 u 0,29 •不等式丨2-x|> 1的解集是A、{x | 1 < x< 3}B、{x | x< 1 或x> 3}C、{ x | x< 1}D、{x | x >3}10 •不等式|x -1|:::2的解集为( )A. ^x| -V x < 3B. ^x|x 3C.「x|x::—1D.1x|x :T或x - 3^11 • 7.不等式3-2x^5的解集是()A. {x x 兰一1}B. {x —1 兰x 兰4}C. {x x 兰一1或x>4}D. {x x Z 4}12 •不等式x2-x c2的解集为()考点三:利用均值不等式求函数的最值113 •若a 一1,则a 的取值范围是()a +1A. [1, ::)B. [2, ::)C • [-2,2] D • [-2,0)(0,2]414.若x 0,则函数y =3x 有()xA.最大值2 3B.最小值2 3115 .若x 1,则X —1 • -------- 的最小值是A. -2x -1B. 14x 的最小值是(x16. 若x 0,则J*A.2B.3 C. 2.2 D.41x17. 已知x t求x _1的最小值A. 1B.2C. 3D. 4C.最大值4 3 D.最小值4 3)C. 2D. 3)(A) -1,2(B)一1,1(C)一2,1(D)-2,2参考答案1. B【解析】试题分析:由x2-2x -3 :::0:二(x -3)(x • 1) :::0= -1 :::x :::3 ,所以不等式2x -2x-3:::0 的解集为(-1,3),故选B.考点:1. 一元二次不等式.2. D.【解析】1试题分析:将不等式2x2 -x-1・0化简为:2(x -1)(x ) • 0 ,根据一元二次不等式与21 2二次函数的关系知,x 1或x ,即不等式2x2-x-1・0的解集是2—1 - -(-〜)(1, ■-).2考点:一元二次不等式的解法.3. C【解析】试题分析:画出x(x -1) ::: 0对应二次函数的草图,如下图所示,是开口方向向上,与x轴的交点分别是x=0,x=1,应用口诀“小于取中间”写出解集,所以x(x-1):::0的解集为:x |0 ::x : 1 ?。

不等式解法15种典型例题

不等式解法15种典型例题

不等式解法15种典型例题典型例题一解15种典型例题的不等式,需要注意处理好有重根的情况。

例如,如果多项式f(x)可分解为n个一次式的积,则一元高次不等式f(x)>(或f(x)<)可用“穿根法”求解。

对于偶次或奇次重根,可以转化为不含重根的不等式,也可直接用“穿根法”,但要注意“奇穿偶不穿”,其法如图。

下面分别解两个例题:例题一:解不等式2x-x²-15x>0;(x+4)(x+5)(2-x)<231)原不等式可化为x(2x+5)(x-3)>0.把方程x(2x+5)(x -3)=0的三个根5,-1,3顺次标上数轴。

然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分。

∴原不等式解集为{x|-5<x<0}∪{x|x>3}。

2)原不等式等价于(x+4)(x+5)(x-2)>23.用“穿根法”得到原不等式解集为{x|x<-5或-5<x<-4或x>2}。

典型例题二解分式不等式时,要注意它的等价变形。

当分式不等式化为f(x)/g(x)<(或≤)时,可以按如下方法解题。

1)解:原不等式等价于3(x+2)-x(x-2)-x²+5x+6/3x(x+2)<1-2x+2.化简后得到原不等式等价于(x-6)(x+1)(x-2)(x+2)≥0.用“穿根法”得到原不等式解集为{x|x<-2或-1≤x≤2或x≥6}。

2)解法一:原不等式等价于2x²-3x+1/2x²-9x+14>0.化简后得到原不等式等价于(x-1)(2x-1)(3x-7)<0.用“穿根法”得到原不等式解集为{x|x<1/2或7/3<x<1}。

解法二:原不等式等价于(2x-1)(x-1)<0.用“穿根法”得到原不等式解集为{x|x<1/2或x>1}。

例7解不等式2ax-a2>1-x(a>0)。

分析:将不等式移项整理得到2ax+x>a2+1,然后按照无理不等式的解法化为两个不等式组,再分类讨论求解。

解:原不等式等价于(1) 2ax-a2>1-x,或(2) 2ax-a2<1-x。

不等式练习题

不等式练习题

不等式练习题一、基本不等式1. 已知a > b,求证:a + c > b + c。

2. 已知x > 3,求证:x^2 > 9。

3. 已知0 < x < 1,求证:x^3 < x。

4. 已知a, b均为正数,求证:a^2 + b^2 > 2ab。

5. 已知|x| > |y|,求证:x^2 > y^2。

二、一元一次不等式1. 解不等式:3x 7 > 2x + 4。

2. 解不等式:5 2(x 3) ≤ 3x 1。

3. 解不等式:2(x 1) 3(x + 2) > 7。

4. 解不等式:4 3(x 2) ≥ 2x + 5。

5. 解不等式:5(x 3) + 2(2x + 1) < 7x 9。

三、一元二次不等式1. 解不等式:x^2 5x + 6 > 0。

2. 解不等式:2x^2 3x 2 < 0。

3. 解不等式:x^2 4x + 4 ≤ 0。

4. 解不等式:3x^2 + 4x 4 > 0。

5. 解不等式:x^2 + 5x 6 < 0。

四、分式不等式1. 解不等式:x / (x 1) > 2。

2. 解不等式:1 / (x + 3) 1 / (x 2) ≤ 0。

3. 解不等式:(x 1) / (x + 1) < 0。

4. 解不等式:(2x + 3) / (x 4) ≥ 1。

5. 解不等式:(3x 2) / (x^2 5x + 6) > 0。

五、含绝对值的不等式1. 解不等式:|x 2| > 3。

2. 解不等式:|2x + 1| ≤ 5。

3. 解不等式:|3x 4| < 2。

4. 解不等式:|x + 3| |x 2| > 1。

5. 解不等式:|x 5| + |x + 1| < 6。

六、综合应用题1. 已知不等式组:$\begin{cases} 2x 3y > 6 \\ x + 4y ≤ 8 \end{cases}$,求x的取值范围。

基本不等式题型练习含答案

基本不等式题型练习含答案

基本不等式题型练习含答案题目1:解不等式2x + 5 > 9。

解答1: 2x + 5 > 9 首先,将不等式两边都减去5。

2x > 4 然后,将不等式两边都除以2。

x > 2 所以,不等式的解集为x > 2。

题目2:解不等式3 - 2x ≤ 7。

解答2: 3 - 2x ≤ 7 首先,将不等式两边都减去3。

-2x ≤ 4 然后,将不等式两边都除以-2。

注意,因为除以负数会改变不等号的方向,所以需要将不等号反转。

x ≥ -2 所以,不等式的解集为x ≥ -2。

题目3:解不等式4x + 3 < 19。

解答3: 4x + 3 < 19 首先,将不等式两边都减去3。

4x < 16 然后,将不等式两边都除以4。

x < 4 所以,不等式的解集为x < 4。

题目4:解不等式5 - 3x > 8。

解答4: 5 - 3x > 8 首先,将不等式两边都减去5。

-3x > 3 然后,将不等式两边都除以-3。

注意,因为除以负数会改变不等号的方向,所以需要将不等号反转。

x < -1 所以,不等式的解集为x < -1。

题目5:解不等式2x - 1 ≤ 5x + 3。

解答5: 2x - 1 ≤ 5x + 3 首先,将不等式两边都减去2x。

-1 ≤ 3x + 3 然后,将不等式两边都减去3。

-4 ≤ 3x 最后,将不等式两边都除以3。

-4/3 ≤ x 所以,不等式的解集为x ≥ -4/3。

题目6:解不等式4 - 2x ≥ 10 - 3x。

解答6: 4 - 2x ≥ 10 - 3x 首先,将不等式两边都加上3x。

4 + x ≥ 10 然后,将不等式两边都减去4。

x ≥ 6 所以,不等式的解集为x ≥ 6。

题目7:解不等式2(3x + 1) > 4x + 6。

解答7: 2(3x + 1) > 4x + 6 首先,将不等式两边都展开。

完整版)解不等式组计算专项练习60题(有答案)

完整版)解不等式组计算专项练习60题(有答案)

完整版)解不等式组计算专项练习60题(有答案)1.解不等式组60题参考答案:1.解:由不等式①得2a-3x+1≥0,即x≤(2a+1)/3;由不等式②得3b-2x-16≥0,即x≤(3b-16)/2.又因为a≤4<b,所以2a+1≤9,3b-16≥8,所以x的取值范围为x≤3或x≥-11/2.2.解:由不等式①得x≤-1或x≥3;由不等式②得x≤4/3或x≥2.综合起来,x的取值范围为x≤-1或x≥3,或者4/3≤x≤2.3.解:由不等式①得x>(a+1)/2;由不等式②得x0,所以a/2>(a+1)/2,所以不等式组的解集为a/2<x<(a+1)/2.4.解:由不等式①得x≥1;由不等式②得x<3.所以不等式组的解集为1≤x<3.5.解:由不等式①得x≤-2;由不等式②得x>-3.所以不等式组的解集为-3<x≤-2.6.解:由不等式①得x>-1;由不等式②得x≤2.所以不等式组的解集为-1<x≤2.7.解:由不等式①得x≤-1;由不等式②得x≥-2.所以不等式组的解集为-2≤x≤-1.8.解:由不等式①得x>-3;由不等式②得x≤1.所以不等式组的解集为-3<x≤1.9.解:由不等式①得x>-1;由不等式②得x≤4.所以不等式组的解集为-1<x≤4.10.解:由不等式①得x-3.所以不等式组的解集为-3<x<2.11.解:由不等式①得x≥1;由不等式②得x<3.所以不等式组的解集为1≤x<3.1.由不等式组的①得x≥-1,由不等式组的②得 x<4,因此不等式组的解集为 -1≤x<4.2.由不等式①得x≤3,由不等式②得 x>0,因此不等式组的解集为0<x≤3.3.解不等式①得x≥1,解不等式②得 x<4,因此不等式组的解集为1≤x<4.4.原不等式组可化为:x+45,x<-1.因此不等式组的解集为-3<x≤3.5.解不等式①得 x<5,解不等式②得x≥-2,因此不等式组的解集为 -2≤x<5.6.解不等式①得x≥1,解不等式②得 x<4,因此不等式组的解集为1≤x<4.7.解不等式①得x≥-1,解不等式②得 x<3,因此不等式组的解集为 -1≤x<3.8.解不等式①得 x<1,解不等式②得x≥-2,因此不等式组的解集为 -2≤x<1.9.解不等式①得 x>-1,解不等式②得x≤4,因此不等式组的解集为 -1<x≤4.10.解不等式①得x≥1,解不等式②得 x<4,因此不等式组的解集为1≤x<4.11.解不等式①得 x>-1,解不等式②得x≤4,因此不等式组的解集为 -1<x≤4.12.解不等式组的①得-∞<x<1,因为②中的不等式没有解,所以不等式组的解集为 -∞<x<1.13.解不等式①得x≥1,解不等式②得 x<4,因此不等式组的解集为1≤x<4.14.原不等式组可化为:x>-3,x≤3.因此不等式组的解集为-3<x≤3.15.解不等式组的①得 x<1,因为②中的不等式没有解,所以不等式组的解集为 -∞<x<1.16.解不等式①得 x<2,解不等式②得x≥-1,因此不等式组的解集为 -1≤x<2.17.解不等式①得x≥1,解不等式②得1≤x<4,因此不等式组的解集为1≤x<4.18.解不等式①得x≥-1,解不等式②得 x<3,因此不等式组的解集为 -1≤x<3.19.解不等式①得 x<1,解不等式②得x≥-2,因此不等式组的解集为 -2≤x<1.20.解不等式①得 x>-1,解不等式②得x≤4,因此不等式组的解集为 -1<x≤4.21.不等式①的解集为x≥1,不等式②的解集为 x<4,因此原不等式的解集为1≤x<4.22.解不等式①得 x<0,解不等式②得x≥3,因此原不等式无解。

高一数学不等式练习题

高一数学不等式练习题

高一数学不等式练习题在高中数学的学习中,不等式是基础而重要的概念之一,它在解决实际问题中有着广泛的应用。

以下是一些高一数学不等式的练习题,供同学们练习和巩固知识。

练习题一:解绝对值不等式1. 解不等式 |x - 3| < 2。

2. 解不等式|x + 4| ≥ 5。

练习题二:解一元一次不等式3. 解不等式 3x - 5 > 10。

4. 解不等式 -2x + 1 ≤ -4。

练习题三:解一元二次不等式5. 解不等式 x^2 - 4x + 3 > 0。

6. 解不等式 2x^2 + 5x - 3 ≤ 0。

练习题四:解含有分式的不等式7. 解不等式 \(\frac{x - 1}{x + 2} > 0\)。

8. 解不等式 \(\frac{2x - 3}{x^2 - 1} < 0\)。

练习题五:解含有根式的不等式9. 解不等式 \(\sqrt{x} - 2 < 0\)。

10. 解不等式 \(\sqrt{2x + 3} ≥ x\)。

练习题六:解含有指数和对数的不等式11. 解不等式 \(2^x > 8\)。

12. 解不等式 \(\log_2(x - 1) < 1\)。

练习题七:解不等式组13. 解不等式组:\[\begin{cases}x + 2 > 0 \\3 - 2x ≥ 4\end{cases}\]14. 解不等式组:\[\begin{cases}3x - 1 < 5x + 2 \\x^2 - 4x + 4 ≤ 0\end{cases}\]练习题八:应用题15. 某工厂需要生产一批零件,每件零件的成本为 \(c\) 元,售价为\(s\) 元。

若工厂希望每件零件的利润不低于 5 元,求 \(c\) 和\(s\) 之间的关系。

16. 某公司计划购买一批电脑,每台电脑的价格不超过 3000 元。

如果公司希望每台电脑的利润率不低于 20%,求电脑的最低进价。

不等式解法(全部)

不等式解法(全部)

1.(x-1)x-2)>0 ; (
( x-3)< 0; 4. x2-2x-3 < 0 . 3.(x+1)
x2-3x+2 <0. 解不等式 2 x -2x-3
解: 原不等式可化为 (x-1)x-2) ( <0. ( (x+1) x-3)
即 (x-1) (x-2) (x+1) (x-3)<0. 根据数轴标根法,
所以,当a>1时,原不等式的解集为{x|a≤x<a2};
当0<a<1时,原不等式的解集为{x|a2<x ≤a}.
logx 2 (x 2) 1
A {x | logx (5x 8x 3) 2}
2
底 数 不 型 logx0.8<1


B {x | x 2x 1 k 0}
M loga N = logaM-logaN
logaMn= nlogaM
1 log a M loga n M = n log b N (b 0且b 1) 3、换底公式:logaN= log b a 4、定义域: (0,+∞) 值域:R
5、单调性:(1)a>1时,为 增
(2)0<a<1时,为 减
例题分析:
例题1. 解不等式
例题2.
| x – 500 | ≤5 解不等式 | 2x+5 | > 7 | 5x-6 | < 5 - x
例题3. 解不等式4 〈 | 1-3 x | ≤ 7 例题4. 解不等式 例题5. 例题
| 2x+1 |> | x+2 |
| 5x-6| > 5-x
课堂练习:
(2)0<a<1时,有 4+3x-x2>0 4+3x-x2<2 (2x-1) 2<x<4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

yxO AB一元二次不等式一、知识导学1. 一元一次不等式与一次函数的关系对于不等式ax>b, (1)当a>0时,解为___________; (2)当a <0时,解为____________(3)当a =0,b ≥0时___________;当a =0,b <0时,解为_______________.①作出21y x =+的图像,观察21x +>0,21x +=0,21x +<0的解与图像的关系21x +>0的解集表示当x 取何值时,21y x =+的图像______________________ 21x +<0的解集表示当x 取何值时,21y x =+的图像______________________ 21x +=0表示__________________.总结:(1)y>0时,x•的取值范围就是______________的图像所对应的x 的取值范围. (2)y<0时,x 的取值范围就是_______________的图像所对应的x 的取值范围. (3)y=0时,x 的值就是图像与_______________交点的横坐标.(4)当y>a 或y<a (a ≠0)时,应先确定当y=a 时对应的x 值,然后再进一步确定x 的取值范围. 练习题1.当自变量x 时,函数45+=x y 的值大于0;当x 时,函数45+=x y 的值小于0。

2.已知函数82+-=x y ,当x 时,4>y ;当x 时,2-≤y 。

3.如图,直线l 是一次函数b kx y +=的图象,观察图象,可知: (1)=b ;=k 。

(2)当2>y 时,x 。

②已知直线y 1=ax+b 和y 2=mx+n 的图象如图所示,根据图象填空.⑴ 当x_ _时,y 1>y 2;当x___ _时,y 1=y 2;当x___ ___时,y 1<y 2.⑵ 方程组y=ax+by =mx+n ⎧⎨⎩的解为___________它表示 .利用函数图象解一元一次不等式:(1)6345+>-x x ; (2)9632-<+x x 。

练习:如图,直线y kx b =+经过(21)A ,,(12)B --,两点,则不 等式122x kx b >+>-的解集为 .2. 一元二次不等式作出下列二次函数的图像,观察图像填空函数图像y=0y>0y ≥0y<0y ≤0yO 123123-1-12. 一元二次不等式:(如下表)其中a >0,x 1,x 2是一元二次方程ax 2+bx+c=0的两实根,且x 1<x 2,其中x 1 =_____________________ x 2=__________________________, x 1+ x 2=_________ x 1x 2=_________.二、练习题1、解下列不等式:210x -< 22x ≤ 29x ≥(1)(2)0x x -+< 223x x +> 260x x --<;23100x x -++<; 21104x x -+≥ 22350x x -+-≥(2)(3)(2)x x x -+<- (5)(32)6x x +-< 23440x x -<-≤2、①已知()()230a b x a b ++-<的解集为13x x ⎧⎫<-⎨⎬⎩⎭,则不等式()320a b x b a -+->的解集为223y x x =--221y x x =-+223y x x =-+类型解集 Y=ax 2+bx+c 的图像ax 2+bx+c=0ax 2+bx+c >0ax 2+bx+c≥0ax 2+bx+c <0ax 2+bx+c≤0Δ>0Δ=0Δ<0②二次不等式220ax bx ++>的解集是{}1123x x -<<,则a b +的值是 .A 10 .B 10- .C 14 .D 14-③已知不等式20ax bx c ++>的解集为{|24}x x <<,则不等式20cx bx a ++<的解集为④关于x 的不等式02<++c bx ax 的解集为}212|{->-<x x x 或,求不等式02>+-c bx ax 的解集.⑤已知不等式ax 2+bx+c >0的解集是{x|}βα<<x (α>0),求不等式cx 2+bx+a >0的解集。

3、①如果kx 2+2kx -(k+2)<0恒成立,则实数k 的取值范围是___. A. -1≤k ≤0 B. -1≤k<0 C. -1<k ≤0 D. -1<k<0②若不等式2(2)2(2)40a x a x -+--<对一切x R ∈成立,则a 的范围是③函数268y kx kx k =-++R ,求k 的取值范围。

分式不等式和高次不等式一、分式不等式 ①不等式右边为0,)()(x g x f >0⇔_______________ )()(x g x f ≥0⇔____________________________________________②不等式右边不为0,______________________.注意___________________。

解下列不等式:)2)(1()1()2(32<-+-+x x x x 01312>+-x x 103x x -≤+ 11x >1x x -≥2二、一元高次不等式:可用穿线法(或称根轴法)求解,其步骤是:①将f(x)的最高次项的系数化为正数;②将f(x)分解为若干个一次因式的积; ③将每一个一次因式的根标在数轴上,从右上方依次通过每一点画曲线;规律是__________________________________________________________________ 1、解下列不等式:(1)(2<0x x x --) (x+2)2(x+3)(x -2)0≥2、关于x 的不等式 解集为x<1,解不等式01ax bx +≤-3、 已知关于x 的不等式232x ax x --+≥0的解集为{1x x <≤a 或2}x >,求a 的范围.4、k 为何值时,:13642222<++++x x kkx x对于任意x R ∈成立。

绝对值的不等式和无理不等式一、绝对值的不等式绝对值的几何意义: _________________________________.|x |>a(a >0)⇔_____________________规律:_____________ |x |<a(a >0) ⇔____________________规律:_____________ 三角不等式||a |-|b ||≤|a ±b |≤|a |+|b |,此不等式可推广如下:0ax b ->0)2)(54(22<++--x x x x 62323+>+x x x 0322322<--+-x x x x (1)(2)0(2)(1)x x x x x +-≥+-1116-<-x x 221x x +≥+113x x -≤+2113x x -≥+2(1)(2)(4)x x x x +-≥+32215x x x ->235223x x x -≥+-|a 1+a 2+a 3+…+a n |≤|a 1|+|a 2|+|a 3|+…+|a n |当且仅当a 1,a 2,a 3,…a _________________________________取等号.1.不等式|x-2|>3的解集是( )A.{x |x <5}B.{x |-1<x <5}C.{x |x <-1}D.{x |x <-1或x >5} 2.不等式2<|x |≤5的解集是( )A.{x |2<x ≤5}B.{x |-5≤x ≤5}C.{x |-5≤x ≤-2}D.{x |-5≤x <-2或2<x ≤5}不等式组⎪⎩⎪⎨⎧+->+->x x x x x 22330的解集是 ( )A.(0,2)B.(0,25) C.(0,6) D(0,3)3、不等式|2x-1|<2-3x 的解集是( )A.{x |x < } B {x |x <1} C.{x | <x <1} D.{x |0<x < }4、不等式|x+1|>|x-3|的解集是( )A.{x |x >-1}B.{x |x >3}C.{x |-1<x <3}D.{x |x >1}5、不等式|1|(21)0x x +-≥解集为 ( )1.2A x ≥1.12B x x ≤-≥或 1.12C x x ≥=-或 1.12D x -≤≤6、|x |>x 的解集是_______________7、|1- |≤2的解集是___________________________8、3≤|x-2|<4的解集是__________________ 9、|x +1|>|2x -1|的解集是___________________________10、23100x x --≤的解集是________________11.不等式x 2-4|x |+3<0的解集为 .12、|x 2-4|≤x +2 的解集是___________________13、||||x x ++->213的解集是___________________________ 14、|x -1|+|2x +1|<4.的解集是___________________________15、若关于x 的不等式|x +2|+|x -1|<a 的解集为∅,则a 的取值范围是 ( ) A.(3,+∞) B.[)+∞,3 C.(]3,∞- D )3,(-∞二、无理不等式对于无理不等式的求解,通常是转化为有理不等式(或有理不等式组)求解.其基本类型有两类:()_____________________g x >⇔()_______________________g x <⇔.解无理不等式.(1)1-x >2; (2) 1-x >2x -4; (3) 1+x <2x +1.312-x(4)3+x >3-x ; (5)221x -≤x +1. (6)|x +1|-x ≤3 不等式31-x >1的解集是 ( )A.(4,+∞)B.(-∞,4)C.[3,4]D.(3,4)4.不等式142+<-x x 的解集是 ( )A.⎪⎪⎭⎫ ⎝⎛--+-271,271B.⎥⎥⎦⎤ ⎝⎛+-2,271C.⎥⎥⎦⎤ ⎝⎛+-2,271D.⎪⎪⎭⎫⎝⎛+-∞-271,不等式xx x ||42+-≥0的解集是 ( ) A.[-2,2] B.[)(]2,00,3⋃- C.[)(]2,00,2⋃- D.[)(]3,00,3⋃-解含参数的不等式1、解关于x 的不等式)()(ab x b ab x a +>-2、解关于x 的不等式:2(1)0,()x a x a a R -++≥∈ 解关于x 的不等式20x ax a-<-()a R ∈解关于x 的不等式:x 2-ax -2a 2<0. 解关于x 的不等式:x 2-(a +a 2)x +a 3>0(a ∈R)3、解关于x 的不等式:(2)(2)0,()x ax a R --≥∈ 解关于x 的不等式:22ax -≥2x ax -()a R ∈解关于x 的不等式:()(1)0,()x a ax a R --≥∈4、解关于x 的不等式:1,()1x a a R x ≤-∈- 解关于x 的不等式:1,()1ax a R x ≤∈-5、解关于x 的不等式:2210,()x ax a R -+≥∈ 解关于x 的不等式:2210,()ax x a R -+≥∈6、解关于x 的不等式: 0)3)(1(≤-+-x x ax7、函数2()(,x f x a b ax b=+为常数),方程()12f x x =-的两根分别为123,4x x ==。

相关文档
最新文档