中考数学一轮复习 第二十一讲 图形的平移、旋转与对称专题训练

合集下载

2021中考数学一轮知识点系统复习之图形的平移、旋转与轴对称能力达标测试题(附答案详解)

2021中考数学一轮知识点系统复习之图形的平移、旋转与轴对称能力达标测试题(附答案详解)

2021中考数学一轮知识点系统复习之图形的平移、旋转与轴对称能力达标测试题(附答案详解)1.在平行四边形ABCD 中,AB=6,AD=8,∠B 是锐角,将△ACD 沿对角线AC 折叠,点D 落在△ABC 所在平面内的点E 处.如果AE 过BC 的中点,则平行四边形ABCD 的面积等于( )A .48 B .106 C .127 D .242 2.如图,在直角坐标系中,△OBC 的顶点O (0,0),B (﹣6,0),且∠OCB=90°,OC=BC ,则点C 关于y 轴对称的点的坐标是( )A .(3,3)B .(﹣3,3)C .(﹣3,﹣3)D .(32,32) 3.下列各组图形,可以经过平移变换由一个图形得到另一个图形的是( ).A .B .C .D . 4.如图,COD 是AOB 绕点O 顺时针方向旋转38后所得的图形,点C 恰好在AB 上,AOD 90∠=,那么BOC ∠的度数为( )A .12°B .14°C .24°D .30°5.点P (﹣4,﹣3)关于原点对称的点的坐标是( )A .(4,3)B .(﹣4,3)C .(﹣4,﹣3)D .(4,﹣3)6.如图,将∠BAC 沿DE 向∠BAC 内折叠,使AD 与A′D 重合,A′E 与AE 重合,若∠A=30°,则∠1+∠2=( )A .50°B .60°C .45°D .以上都不对 7.图中由“○”和“□”组成轴对称图形,该图形的对称轴是直线( )8.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.9.下列分子结构模型平面图中,只有一条对称轴的是()A.B.C.D.10.如图,ABCD和DCGH是两块全等的正方形铁皮,要使它们重合,则存在的旋转中心有()A.1个B.2个C.3个D.4个11.如图,点P在等边△ABC的内部,且PC=6,PA=8,PB=10,将线段PC绕点C顺时针旋转60°得到P'C,连接AP',则sin∠PAP'的值为________.12.如图,正方形ABCD的边长为4,E是边BC上的一点且BE=1,P为对角线AC上的一动点,连接PB,PE,当点P在AC上运动时,△PBE周长的最小值是____.13.如图,把△ABC经过一定的变换得到△A′B′C′,如果图中△ABC上的点P的坐标为(a,b),那么它的对应点P′的坐标为________.14.如图,将△ABE向右平移3cm得到△DCF,如果△ABE的周长是12cm,那么四边形ABFD的周长是_____cm.15.将点P(﹣1,3)绕原点顺时针旋转180°后坐标变为_____.16.已知平面直角坐标系内点P的坐标为(-1,3),如果将平面直角坐标系.......向左平移3个单位,再向下平移2个单位,那么平移后点P的坐标为___________17.在平面直角坐标系中,已知点P0的坐标为(1,0),将P0绕原点O按逆时针方向旋转30°得点P1,延长OP1到P2,使OP2=2OP1,再将点P2绕原点O按逆时针方向转动30°得到点P3,延长OP3到P4,使OP4=2OP3,…,如果继续下去,点P2016的坐标为_________.18.如图,△ABC中,AC=10,AB=12,△ABC的面积为48,AD平分∠BAC,F,E分别为AC,AD上两动点,连接CE,EF,则CE+EF的最小值为______.19.在等腰三角形ABC中,∠C=90°,BC=2cm.如果以AC的中点O为旋转中心,将这个三角形旋转180°,点B落在点B′处,那么点B′与点B的原来位置相距_____cm.20.如图①,在平面直角坐标系中,等边△ABC的顶点A,B的坐标分别为(5,0),(9,0),点D是x轴正半轴上一个动点,连接CD,将△ACD绕点C逆时针旋转60°得到△BCE,连接DE.(1)直接写出点C的坐标,并判断△CDE的形状,说明理由;(2)如图②,当点D在线段AB上运动时,△BDE的周长是否存在最小值?若存在,求出△BDE的最小周长及此时点D的坐标;若不存在,说明理由;(3)当△BDE是直角三角形时,求点D的坐标.(直接写出结果即可)21.三角形右边的是由左边的怎样平移得到的?22.如图,已知在△ABC中,AB=AC,AD⊥BC于D,且AD=BC=4,若将三角形沿AD剪开成为两个三角形,在平面上把这两个三角形拼成一个四边形,你能拼出所有的不同形状的四边形吗?画出所拼四边形的示意图(标出图中的直角),并分别写出所拼四边形的对角线的长.(只需写出结果即可)23.如图,正方形ABCD和正方形A1B1C1D1的对角线(正方形相对顶点之间所连的线段)BD,B1D1都在x轴上,O,O1分别为正方形ABCD和正方形A1B1C1D1的中心(正方形对角线的交点称为正方形的中心),O为平面直角坐标系的原点.OD=3,O1D1=2.(1)如果O1在x轴上平移时,正方形A1B1C1D1也随之平移,其形状、大小没有改变,当中心O1在x轴上平移到两个正方形只有一个公共点时,求此时正方形A1B1C1D1各顶点的坐标;(2)如果O在x轴上平移时,正方形ABCD也随之平移,其形状、大小没有改变,当中心O在x轴上平移到两个正方形公共部分的面积为2个平方单位时,求此时正方形ABCD 各顶点的坐标.24.如图,正方形网格中的△ABC,若小方格边长为1,格点三角形(顶点是网格线交点的三角形)ABC的顶点A,C的坐标分别为(﹣1,1),(0,﹣2),请你根据所学的知识.(1)在如图所示的网格平面内作出平面直角坐标系;(2)作出三角形ABC关于y轴对称的三角形A1B1C1;(3)判断△ABC的形状,并求出△ABC的面积.25.在平面直角坐标系中,△ABC的三个顶点坐标分别为A(2,﹣1),B(3,﹣3),C(0,﹣4)(1)画出△ABC关于原点O成中心对称的△A1B1C1;(2)画出△A1B1C1关于y轴对称的△A2B2C2.26.如图,在正方形网格中,每个小正方形的边长为1,格点△ABC(顶点在网格线的交点上)的顶点A、C的坐标分别为A(﹣3,4)C(0,2)(1)请在网格所在的平面内建立平面直角坐标系,并写出点B的坐标;(2)画出△ABC关于原点对称的图形△A1B1C1;(3)求△ABC的面积;(4)在x轴上存在一点P,使PA+PB的值最小,请直接写出点P的坐标.27.已知:如图,在△ABC中,∠BAC=120°,以BC为边向形外作等边三角形BCD,把△ABD绕着点D按顺时针方向旋转60°后得到△ECD,若AB=5,AC=3,求∠BAD 的度数与AD的长.28.将△ABC的∠C折起,翻折后角的顶点位置记作C′,当C′落在AC上时(如图1),易证:∠1=2∠2.当C′点落在CA和CB之间(如图2)时,或当C′落在CB、CA的同旁(如图3)时,∠1、∠2、∠3关系又如何,请写出你的猜想,并就其中一种情况给出证明.图1 图2 图329.已知,△AOB中,AB=BC=2,∠ABC=90°,点O是线段AC的中点,连接OB,将△AOB 绕点A逆时针旋转α度得到△ANM,连接CM,点P是线段CM的中点,连接PN、PB.(1)如图1,当α=180°时,直接写出线段PN和PB之间的位置关系和数量关系;(2)如图2,当α=90°时,探究线段PN和PB之间的位置关系和数量关系,并给出完整的证明过程;(3)如图3,直接写出当△AOB在绕点A逆时针旋转的过程中,线段PN的最大值和最小值.参考答案1.C【解析】设AE 与BC 交于O 点,O 点是BC 的中点.∵四边形ABCD 是平行四边形,∴∠B =∠D .AB ∥CD ,又由折叠的性质推知∠D =∠E ,CE =CD∴∠B =∠E .CE =AB∴△ABO 和△ECO 中 ,所以△ABO ≌△CEO (AAS ),所以AO =CO =4,OE =OB =4.∴AE =AD =8.∴△AED 为等腰三角形,又C 为底边中点,故三线合一可知∠ACE =90°,从而由勾股定理求得AC =. 平行四边形ABCD 的面积=AC ×CD =12.故选:C .2.A【解析】试题解析:已知90,OCB OC BC ∠=︒=,∴OBC 为等腰直角三角形,又因为顶点()()00,60,O B -,, 过点C 作CD OB ⊥于点D ,则 3.OD DC ==所以C 点坐标为()33-,,点C 关于y 轴对称的点的坐标是()33., 故选A .点睛:关于y轴对称的点的坐标特征:纵坐标不变,横坐标互为相反数. 3.A【解析】试题分析:根据平移的性质,结合图形对选项进行一一分析,选出正确答案.解:A、图形的形状和大小没有变化,符合平移的性质,属于平移得到;B、图形的大小发生变化,不符合平移的性质,不属于平移得到;C、图形的方向发生变化,不符合平移的性质,不属于平移得到;D、图形由轴对称得到,不属于平移得到.故选A.考点:生活中的平移现象.4.B【解析】【分析】直接利用旋转的性质得出∠AOC=∠BOD=38°,进而得出∠BOC的度数.【详解】∵△COD是△AOB绕点O顺时针方向旋转38°后所得的图形,∴∠AOC=∠BOD=38°,∵∠AOD=90°,∴∠BOC=90°-38°-38°=14°.故选:B.【点睛】此题主要考查了旋转的性质,正确得出∠AOC=∠BOD是解题关键.5.A【解析】解:点P(-4,-3)关于原点对称的点的坐标是(4,3).故选A.6.B【解析】试题解析:∵∠1=180﹣2∠ADE;∠2=180﹣2∠AED.∴∠1+∠2=360°﹣2(∠ADE+∠AED)=360°﹣2(180°﹣30°)=60°.故选B.7.C【解析】【分析】根据轴对称图形的定义进行判断即可得到对称轴.【详解】解:观察可知沿l1折叠时,直线两旁的部分不能够完全重合,故l1不是对称轴;沿l2折叠时,直线两旁的部分不能够完全重合,故l2不是对称轴;沿l3折叠时,直线两旁的部分能够完全重合,故l3是对称轴,所以该图形的对称轴是直线l3,故选C.【点睛】本题主要考查了轴对称图形,关键是掌握轴对称图形的定义.根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.8.B【解析】分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.详解:A.该图形是是轴对称图形不是中心对称图形,故本选项错误;B.该图形既是轴对称图形,又是中心对称图形,故本选项正确;C.该图形不是轴对称图形,是中心对称图形,故本选项错误;D.该图形是是轴对称图形,不是中心对称图形,故本选项错误.故选B.点睛:本题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.9.A【解析】根据图形可得:选项A有1条对称轴,选项B、C各有2条对称轴,选项D有6条对称轴,故选A.【点睛】本题主要考查了轴对称图形的定义,关键是正确找出每个图形的对称轴.10.C【解析】分析:旋转中心即是对应点连线的垂直平分线的交点.详解:根据旋转中心即是对应点连线的垂直平分线的交点,可得要使正方形ABCD和DCGH重合,有3种方法,可以分别绕D,C或CD的中点旋转,即旋转中心有3个.故选C.点睛:本题考查了旋转的性质旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等,旋转中心即是对应点连线的垂直平分线的交点.11.35.【解析】解:连接PP′.如图,∵线段PC绕点C顺时针旋转60°得到P'C,∴CP=CP′=6,∠PCP′=60°,∴△CPP′为等边三角形,∴PP′=PC=6.∵△ABC为等边三角形,∴CB=CA,∠ACB=60°,∴∠PCB=∠P′CA.在△PCB和△P′CA中,∵PC=P′C,∠PCB=∠P′CA,CB=CA,∴△PCB≌△P′CA,∴PB=P′A=10.∵62+82=102,∴PP′2+AP2=P′A2,∴△APP′为直角三角形,∠APP′=90°,∴sin∠P AP′='6'10PPP A=35.故答案为35.12.6【解析】连接DE于AC交于点P′,连接BP′,则此时△BP′E的周长就是△PBE周长的最小值,∵BE=1,BC=CD=4,∴CE=3,DE=5,∴BP′+P′E=DE=5,∴△PBE周长的最小值是5+1=6,故答案为6.13.(﹣a﹣2,﹣b)【解析】由图可知,△ABC关于点(﹣1,0)对称变换得到△A′B′C′,∵△ABC上的点P的坐标为(a,b),∴它的对应点P′的坐标为(﹣a﹣2,﹣b),故答案为:(﹣a﹣2,﹣b).14.18.【解析】【分析】根据平移的性质可得DF=AE,然后判断出四边形ABFD的周长=△ABE的周长+AD+EF,然后代入数据计算即可得解.【详解】∵△ABE向右平移3cm得到△DCF,∴DF=AE,∴四边形ABFD的周长=AB+BE+DF+AD+EF,=AB+BE+AE+AD+EF,=△ABE的周长+AD+EF,∵平移距离为3cm,∴AD=EF=3cm,∵△ABE的周长是12cm,∴四边形ABFD的周长=12+3+3=18cm.故答案为18cm.【点睛】本题考查了平移的性质,解题的关键是熟练的掌握平移的性质.15.(1,﹣3)【解析】【分析】画出平面直角坐标系,然后作出点P绕原点O顺时针旋转180°的点P′的位置,再根据平面直角坐标系写出坐标即可.【详解】如图所示:点P(-1,3)绕原点O顺时针旋转180°后的对应点P′的坐标为(1,-3).故答案是:(1,-3).【点睛】考查了坐标与图形变化-旋转,作出图形,利用数形结合的思想求解更简便,形象直观.16.(2,5)【解析】【分析】平面直角坐标系.......向左平移3个单位,再向下平移2个单位,相当于将点(-1,3)向右平移3个单位,再向上平移2个单位.应用点的平移与坐标关系便可得出答案.【详解】因为将平面直角坐标系.......向左平移3个单位,再向下平移2个单位,相当于将点(-1,3)向右平移3个单位,再向上平移2个单位,此时得到对应点的坐标是(-1+3,3+2),即(2,5).故正确答案为: (2,5).【点睛】此题考核知识点:点的平移和坐标.关键要弄清点移动的方向和距离,特别要注意此题是移动平面直角坐标系........17.(21008,0)【解析】∵点P0的坐标为(1,0),∴OP0=1,∴OP2=2OP1=2,OP3=OP2=2,OP4=2OP3=2×2=22,…,OP2016=21008,∵2016÷24=84,∴点P2016是第84循环组的最后一个点,在x轴正半轴,∴点P2016的坐标为(21008,0).故答案为:(21008,0).点睛:本田考查了坐标与图形的变化-旋转,点的坐标变化规律,读懂题目信息,理解点的规律变化是解题的关键.18.8【解析】【分析】根据题意画出符合条件的图形,作F关于AD的对称点为M,作AB边上的高CP,求出EM+EC=MC,根据垂线段最短得出EM+EC=MC≥PC,求出PC即可得出CE+EF的最小值.【详解】试题分析:作F关于AD的对称点为M,作AB边上的高CP,∵AD平分∠CAB,△ABC为锐角三角形,∴M必在AC上,∵F关于AD的对称点为M,∴ME=EF,∴EF+EC=EM+EC,即EM+EC=MC≥PC(垂线段最短),∵△ABC的面积是48,AB=12,∴12×12×PC=48,∴PC=8,即CE+EF的最小值为8.故答案为8.点睛:本题考查了最短路线问题,关键是画出符合条件的图形,题目具有一定的代表性,是一道比较好的题目.19..【解析】分析:由中心对称的性质得OA=OC,OB=OB′,用勾股定理求出OB即可.详解:根据中心对称的性质得,OB=OB′,OC=1,又BC=2,由勾股定理得BO BB′=2OB=故答案为点睛:中心对称的性质有:①关于中心对称的两个图形是全等形;②关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分;③关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等.20.(Ⅰ)C(7,△CDE是等边三角形;(Ⅱ)存在;4 ;D(7,0);(Ⅲ)D(1,0)或(13,0).【解析】分析:(1)如图1,过点C作CH⊥x轴于点H,由△ABC是等边三角形易得AH=12AB=2,结合AC=AB=4、OA=5,可得CH=OH=7,由此即可得到点C的坐标;由旋转的性质可知CE=CD,结合旋转角∠DCE=60°可知△CDE是等边三角形;(2)如图2,由(1)可知△CDE是等边三角形,由此可得DE=CD,由△CDE是由△CAD绕点C旋转得到的,由此可得BE=AD,从而可得△BDE的周长=BD+BE+DE=BD+AD+CD=AB+CD=4+CD,由此可知,当CD⊥AB时,CD最小,此时△BDE 的周长最小,由(1)可知,此时CD=23,OD=7,即当点D的坐标为(7,0)时,△BDE 的周长最小,最小值为423+;(3)如图3,由∠CBE=∠CAD=120°可得∠ABC=60°,由此可得∠DBE=60°≠90°,结合△BDE是直角三角形,可知:存在①∠BED=90°;②∠BDE=90°(如图3,∠BD'E'=90°)两种情况,分两种情况画出符合要求的图形,并结合已知条件进行分析计算即可.详解:(Ⅰ)如图1,过点C作CH⊥AB于H,∵△ABC是等边三角形,CH⊥AB于点H,∴∠AHC=90°,AH=12AB=12(9﹣5)=2,∴OH=OA+AH=7,∵AC=AB=4,∴在Rt△ACH中,224223-=∴ C(723),;∵△CBE是由△CAD绕点C逆时针旋转60°得到的,∴∠DCE=60°,DC=EC,∴△CDE是等边三角形;(Ⅱ)存在,理由如下:如图2,由(Ⅰ)知,△CDE是等边三角形,∴DE=CD,由旋转知,BE=AD,∴C△DBE=BE+DB+DE=AB+DE=4+DE=4+CD,由垂线段最短可知,CD⊥AB于D时,△BDE的周长最小,此时,由(1)可知CD=23,OD=7,∴△BDE的周长最小值为4+23,点D(7,0);(Ⅲ)如图3,∵由旋转知,∠CBE=∠CAD=120°,∵∠ABC=60°,∴∠DBE=60°≠90°,∵△BDE是直角三角形,∴存在∠BED=90°或∠BDE=90°(如图3,∠BD'E'=90°)两种情况,①当∠BED=90°时,∵△CDE是等边三角形,∴∠CED=60°,∴∠BEC=30°,∵∠CBE=∠CAD=120°,∴∠BCE=30°,∴BE=BC=AB=4,在Rt△BDE中,∠DBE=∠CBE﹣∠ABC=60°,∴BD=2BE=8,∵OB=9,∴OD=OB﹣BD=1,∴D(1,0),②当∠BD'E'=90°时,∵△CD'E'是等边三角形,∴∠CD'E'=60°,∴∠BD'C=30°,∵∠ABC=60°,∴∠BCD'=30°=∠BD'E,∴BD'=BC=6,∵OB=9,∴OD'=OB+BD'=13,∴D'(13,0),即:存在点D使△BDE是直角三角形,此时点D的坐标分别为:(1,0)或(13,0).点睛:(1)解第1小题的关键是:作出如图1所示的辅助线,利用等边三角形的性质和直角三角形的性质求得AH和CH的长;(2)解第2小题的关键是:利用旋转的性质得到BE=AD,从而把△BDE的周长转化为为:(4+CD)来表达,这样当CD⊥x轴时,CD最短,则△BDE 的周长就最小,由此即可使问题得到解决;(3)解第3小题的要点是:根据已知条件分析存在∠BED=90°或∠BDE=90°两种情况,然后画出符合题意的图形,再进行分析计算即可得到所求结果.21.向右平移7个单位.【解析】试题分析:观察图形中对应点的变化,即可得出图形的变化规律.试题解析:找出对应点来后会发现右边的图形是由左边的向右平移7个单位长度得到的.22.略【解析】可让两斜边重合,得到一个矩形和一个一般的四边形,根据勾股定理和三角形的面积公式可求得对角线长;让两长直角边重合或两短直角边重合,可得到一个平行四边形,利用勾股定理求得一对角线的长.图1是矩形,两条对角线长相等,均为2;图2是平行四边形,两条对角线长4和4;图3是平行四边形,两条对角线长2和2;图4是一般的四边形,两条对角线长2和.23.(1)A1(5,2),B1(3,0),C1(5,-2),D1(7,0);(2)A(11,3),B(8,0),C(11,-3),D(14,0).【解析】【分析】(1)两个正方形只有一个公共点时,分D和B1为公共点,B和D1为公共点两种情况,结合平移的性质写出各点的坐标;(2)根据两个正方形的位置可知公共部分肯定是个正方形,面积是2,可以算出它的对角线长为2,所以有两种情况:点D和O1重合,点B和O1重合,据此解答.【详解】解:(1)当点B1与点D重合时,两个正方形只有一个公共点,此时A1(5,2),B1(3,0),C1(5,-2),D1(7,0);当点B与D1重合时,两个正方形只有一个公共点,此时A1(-5,2),B1(-7,0),C1(-5,-2),D1(-3,0).(2)当点D与O1重合时,两个正方形公共部分的面积为2个平方单位,此时A(5,3),B(2,0),C (5,-3),D (8,0);当点B 与O 1重合时,两个正方形公共部分的面积为2个平方单位,此时A (11,3),B (8,0),C (11,-3),D (14,0).【点睛】本题考查了坐标与图形变化-平移,解题的关键是熟练的掌握平移的相关知识点. 24.(1)见解析;(2)见解析;(3)直角三角形,2.【解析】【分析】(1)根据点A 和点C 的坐标即可作出坐标系;(2)分别作出三角形的三顶点关于y 轴的对称点,顺次连接可得;(3)根据勾股定理的逆定理可得.【详解】解:(1)如图所示:(2)如图所示,△A 1B 1C 1即为所求;(3)∵正方形小方格边长为1,∴AB 2211+2,BC 2222+2,AC 2213+10,∴AB 2+BC 2=AC 2,∴网格中的△ABC 是直角三角形.△ABC 的面积为122×2=2. 【点睛】本题考查的是作图﹣轴对称变换,熟知关于y 轴对称的点的坐标特点是解答此题的关键. 25.(1)答案见解析;(2)答案见解析.【解析】试题分析:(1)根据网格结构找出点A 、B 、C 关于原点对称的点A 1、B 1、C 1的位置,然后顺次连接即可;(2)根据网格结构找出点A1、B1、C1关于y轴对称的点A2、B2、C2的位置,然后顺次连接即可.试题解析:(1)△A1B1C1如图所示;(2)△A2B2C2如图所示.考点:(1)作图-旋转变换;(2)作图-轴对称变换26.(1)坐标系详见解析,点B的坐标(﹣2,0);(2)详见解析;(3)5;(4)点P 的坐标(﹣2,0).【解析】【分析】(1)根据A、C点坐标,作出的平面直角坐标系即可,根据作出的平面直角坐标系写出B 点的坐标即可;(2)根据原点对称的特点画出图形即可;(3)利用矩形面积减去周围三角形面积得出即可;(4)根据轴对称的性质解答即可.【详解】解:(1)如图所示:点B的坐标(-2,0);(2)如图所示,△A1B1C1即为所求;(3)△ABC的面积111 34222314222=⨯-⨯⨯-⨯⨯-⨯⨯=5;(4)点P的坐标(-2,0).【点睛】本题考查的知识点是平移变换以及三角形面积求法和坐标轴确定方法,解题关键是正确平移顶点.27.∠BAD=60°,AD=8.【解析】【分析】根据旋转的性质先证明△ADE是等边三角形,由相似三角形的性质可得∠EAD=60°,AD=AE,即可得到∠BAD=∠BAC﹣∠CAD=60°,AD=AE=AC+CE=AC+AB=3+5=8.【详解】∵△ABD≌△ECD,∴AD=DE,∠BDA=∠DCE,∴∠BDC=∠ADE=60°,∠ABD=∠ECD,∵∠BAC=120°,∠BDC=60°,∴∠BAC+∠BDC=180°,∴∠ABD+∠ACD=180°,∴∠ACD+∠ECD=180°,∴A、C、E共线,∴△ADE是等边三角形,∴∠EAD=60°,AD=AE,∴∠BAD=∠BAC﹣∠CAD=60°,∴AD=AE=AC+CE=AC+AB=3+5=8.【点睛】本题考查了旋转的性质、等边三角形的判定与性质,证明△AED是等边三角形是解决问题的关键.28.∠1-∠3=2∠2,证明见解析.【解析】【分析】利用轴对称的知识找出等解即可进行推理判断.【详解】解:当C′点落在CA和CB之间(如图2)时,∠1+∠3=2∠2;当C′落在CB、CA的同旁(如图3)时,∠1-∠3=2∠2;对于图2证明如下:连结CC’,如图4所示,∵⊿EC’D是由⊿ECD翻折得到的,∴⊿EC’D≌⊿ECD,由此得EC=EC’,DC=DC’,∠EC’D=∠ECD,∴∠EC’C=∠ECC;∠DC’C=∠DCC,∵∠1=∠DC’C+∠DCC’ ,∠3=∠EC’C+∠ECC’ ,∴∠1+∠3=∠DC’C+∠DCC’ +∠EC’C+∠ECC’=2∠D C’C+2∠ EC’C =2(∠DC’C+∠EC’C)= 2∠2;∴∠1+∠3=2∠2;对于图3证明如下:设AC与DC’在⊿ABC内部所夹角为∠4,如图5所示,则有∠1=∠C +∠4,∠4=∠3+∠2,又由翻折得:∠2=∠C ,∴∠1=∠2+∠3+∠2=∠3+2∠2,∴∠1-∠3=2∠2.【点睛】本题主要考查了轴对称的性质.找准对称轴是解题的关键.29.(1)PN=PB ,PN⊥PB;(2)略;221-【解析】(1)由旋转的性质可得△ABC ≌△ANM ,再由直角三角形斜边的中线等于斜边的一半,得到PN 和PB 之间的位置关系和数量关系;(2)结论一样,证明的方法与(1)一样;(3)连接OP ,利用勾股定理可得出线段PN 的最大值和最小值.解:(1)PN PB ⊥,PN PB =.(2)连接PO ,∵90α=︒,∴90MAB ∠=︒.∵90ABC ∠=︒,∴//AM BC . ∵AMN ≌ABO ,∴AB AM =,OB MN =,∴//AM BC ,=AM BC ,又∵90ABC ∠=︒,∴四边形ABCM 为正方形.∵P 为CM 中点,O 为AC 中点,∴12OP AM , ∴OP PM =,45POC MAC ∠=∠=︒, ∴135BOP BOC POC ∠=∠+∠=︒. ∵9045135PMN ∠=︒+︒=︒, ∴PMN POB ∠=∠. PMN ≌POB , ∴PN PB =,MPN OPB ∠=∠. ∵90MPO ∠=︒, ∴90NPB ∠=︒, ∴PN PB ⊥.(3)连接OP . ∵P ,O 为AC ,MC 中点, ∴11122OP AM AB ===. 在Rt AOB 中, ∵OA OB =,2AB =,∴OB =PO OP PB BO PO -≤≤+. ∵PB PN =,11PN ≤≤.PN ∴11.。

2023年九年级中考数学一轮专题练习 图形的平移、折叠和旋转(含解析)

2023年九年级中考数学一轮专题练习 图形的平移、折叠和旋转(含解析)

2023年中考数学一轮专题练习 ——图形的平移、折叠和旋转5一、单选题(本大题共12小题)1. (重庆市2022年)下列北京冬奥会运动标识图案是轴对称图形的是( ) A . B .C .D .2. (浙江省台州市2022年)如图是战机在空中展示的轴对称队形.以飞机B ,C 所在直线为x 轴、队形的对称轴为y 轴,建立平面直角坐标系.若飞机E 的坐标为(40,a ),则飞机D 的坐标为( )A .(40,)a -B .(40,)a -C .(40,)a --D .(,40)a - 3. (浙江省嘉兴市2022年)“方胜”是中国古代妇女的一种发饰,其图案由两个全等正方形相叠组成,寓意是同心吉祥.如图,将边长为2cm 的正方形ABCD 沿对角线BD 方向平移1cm 得到正方形A B C D '''',形成一个“方胜”图案,则点D ,B ′之间的距离为( )A .1cmB .2cmC .-1)cmD .(2-1)cm4. (浙江省杭州市2022年)如图,在平面直角坐标系中,已知点P(0,2),点A(4,2).以点P为旋转中心,把点A按逆时针方向旋转60°,得点B.在1M⎛⎫⎪⎪⎝⎭,()21M-,()31,4M,4112,2M⎛⎫⎪⎝⎭四个点中,直线PB经过的点是()A.1M B.2M C.3M D.4M5. (四川省德阳市2022年)下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.6. (四川省广安市2022年)如图,菱形ABCD的边长为2,点P是对角线AC上的一个动点,点E、F分别为边AD、DC的中点,则PE + PF的最小值是()A.2 B.C.1.5 D7. (黑龙江省省龙东地区2022年)下列图形是汽车的标识,其中是中心对称图形但不是轴对称图形的是()A .B .C .D .8. (北京市2022年)图中的图形为轴对称图形,该图形的对称轴的条数为( )A .1B .2C .3D .59. (福建省2022年)如图,现有一把直尺和一块三角尺,其中90ABC ∠=︒,60CAB ∠=︒,AB =8,点A 对应直尺的刻度为12.将该三角尺沿着直尺边缘平移,使得△ABC 移动到A B C ''',点A '对应直尺的刻度为0,则四边形ACC A ''的面积是( )A .96B .C .192D . 10. (广东省2022年)在平面直角坐标系中,将点()1,1向右平移2个单位后,得到的点的坐标是( )A .()3,1B .()1,1-C .()1,3D .()1,1- 11. (广西百色市2022年)如图,在△ABC 中,点A (3,1),B (1,2),将△ABC 向左平移2个单位,再向上平移1个单位,则点B 的对应点B ′的坐标为( )A .(3,-3)B .(3,3)C .(-1,1)D .(-1,3) 12. (浙江省金华市2022年)如图是一张矩形纸片ABCD ,点E 为AD 中点,点F 在BC 上,把该纸片沿EF 折叠,点A ,B 的对应点分别为A B A E ''',,与BC 相交于点G ,B A ''的延长线过点C .若23BF GC =,则AD AB的值为( )A .B .C .207D .83二、填空题(本大题共6小题)13. (浙江省丽水市2022年)三个能够重合的正六边形的位置如图.已知B 点的坐标是(,则A 点的坐标是 .14. (浙江省台州市2022年)如图,△ABC的边BC长为4cm.将△ABC平移2cm得到△A′B′C′,且BB′⊥BC,则阴影部分的面积为2cm.15. (山东省潍坊市2022年)如图,在直角坐标系中,边长为2个单位长度的正方形ABCO绕原点O逆时针旋转75︒,再沿y轴方向向上平移1个单位长度,则点B''的坐标为.16. (浙江省台州市2022年)如图,在菱形ABCD中,∠A=60°,AB=6.折叠该菱形,使点A落在边BC上的点M处,折痕分别与边AB,AD交于点E,F.当点M与点B 重合时,EF的长为;当点M的位置变化时,DF长的最大值为.17. (浙江省丽水市2022年)一副三角板按图1放置,O 是边()BC DF 的中点,12cm BC =.如图2,将ABC 绕点O 顺时针旋转60︒,AC 与EF 相交于点G ,则FG 的长是 cm .18. (山东省潍坊市2022年)小莹按照如图所示的步骤折叠A 4纸,折完后,发现折痕AB ′与A 4纸的长边AB 恰好重合,那么A 4纸的长AB 与宽AD 的比值为 .三、解答题(本大题共9小题)19. (浙江省丽水市2022年)如图,将矩形纸片折叠,使点B 与点D 重合,点A 落在点P 处,折痕为.(1)求证:PDE CDF △≌△;(2)若4cm,5cm CD EF ==,求BC 的长.20. (浙江省丽水市2022年)如图,在66⨯的方格纸中,点A ,B ,C 均在格点上,试按要求画出相应格点图形.ABCDEF(1)如图1,作一条线段,使它是AB 向右平移一格后的图形;(2)如图2,作一个轴对称图形,使AB 和AC 是它的两条边;(3)如图3,作一个与ABC 相似的三角形,相似比不等于1.21. (黑龙江省省龙东地区2022年)如图,在正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,ABC 的三个顶点坐标分别为()1,1A -,()2,5B -,()5,4C -.(1)将ABC 先向左平移6个单位,再向上平移4个单位,得到111A B C △,画出两次平移后的111A B C △,并写出点1A 的坐标;(2)画出111A B C △绕点1C 顺时针旋转90°后得到221A B C △,并写出点2A 的坐标;(3)在(2)的条件下,求点1A 旋转到点2A 的过程中所经过的路径长(结果保留π). 22. (四川省广安市2022年)数学活动课上,张老师组织同学们设计多姿多彩的几何图形, 下图都是由边长为1的小等边三角形构成的网格,每个网格图中有3个小等边三角形已涂上阴影,请同学们在余下的空白小等边三角形中选取一个涂上阴影,使得4个阴影小等边三角形组成一个轴对称图形或中心对称图形,请画出4种不同的设计图形.规定:凡通过旋转能重合的图形视为同一种图形)23. (黑龙江省2022年)如图,在边长为1个单位长度的小正方形组成的网格中,△ABC与△DEF关于点O成中心对称,△ABC与△DEF的顶点均在格点上,请按要求完成下列各题.(1)在图中画出点O的位置;(2)将△ABC先向右平移4个单位长度,再向下平移2个单位长度,得到△A1B1C1,请画出△A1B1C1;(3)在网格中画出格点M,使A1M平分∠B1A1C124. (黑龙江省齐齐哈尔市2022年)综合与实践数学是以数量关系和空间形式为主要研究对象的科学.数学实践活动有利于我们在图形运动变化的过程中去发现其中的位置关系和数量关系,让我们在学习与探索中发现数学的美,体会数学实践活动带给我们的乐趣.如图①,在矩形ABCD中,点E、F、G分别为边BC、AB、AD的中点,连接EF、DF,H为DF的中点,连接GH.将△BEF绕点B旋转,线段DF、GH和CE的位置和长度也随之变化.当△BEF绕点B顺时针旋转90°时,请解决下列问题:(1)图②中,AB=BC,此时点E落在AB的延长线上,点F落在线段BC上,连接AF,猜想GH与CE之间的数量关系,并证明你的猜想;(2)图③中,AB=2,BC=3,则GHCE=;(3)当AB=m , BC=n时.GHCE=.(4)在(2)的条件下,连接图③中矩形的对角线AC,并沿对角线AC剪开,得△ABC (如图④).点M、N分别在AC、BC上,连接MN,将△CMN沿MN翻折,使点C的对应点P落在AB的延长线上,若PM平分∠APN,则CM长为.25. (黑龙江省省龙东地区2022年)ABC和ADE都是等边三角形.(1)将ADE绕点A旋转到图①的位置时,连接BD,CE并延长相交于点P(点P与点A重合),有PA PB PC+=(或PA PC PB+=)成立;请证明.(2)将ADE绕点A旋转到图②的位置时,连接BD,CE相交于点P,连接PA,猜想线段PA、PB、PC之间有怎样的数量关系?并加以证明;(3)将ADE 绕点A 旋转到图③的位置时,连接BD ,CE 相交于点P ,连接PA ,猜想线段PA 、PB 、PC 之间有怎样的数量关系?直接写出结论,不需要证明.26. (北京市2022年)在平面直角坐标系xOy 中,已知点(,),.M a b N 对于点P 给出如下定义:将点P 向右(0)a ≥或向左(0)a <平移a 个单位长度,再向上(0)b ≥或向下(0)b <平移b 个单位长度,得到点P',点P'关于点N 的对称点为Q ,称点Q 为点P 的“对应点”.(1)如图,点(1,1),M 点N 在线段OM 的延长线上,若点(2,0),P -点Q 为点P 的“对应点”.①在图中画出点Q ;②连接,PQ 交线段ON 于点.T 求证:1;2NT OM = (2)O 的半径为1,M 是O 上一点,点N 在线段OM 上,且1(1)2ON t t =<<,若P 为O 外一点,点Q 为点P 的“对应点”,连接.PQ 当点M 在O 上运动时直接写出PQ 长的最大值与最小值的差(用含t 的式子表示)27. (河南省2022年)综合与实践综合与实践课上,老师让同学们以“矩形的折叠”为主题开展数学活动.(1)操作判断操作一:对折矩形纸片ABCD ,使AD 与BC 重合,得到折痕EF ,把纸片展平; 操作二:在AD 上选一点P ,沿BP 折叠,使点A 落在矩形内部点M 处,把纸片展平,连接PM ,BM .根据以上操作,当点M 在EF 上时,写出图1中一个30°的角: .(2)迁移探究小华将矩形纸片换成正方形纸片,继续探究,过程如下:将正方形纸片ABCD按照(1)中的方式操作,并延长PM交CD于点Q,连接BQ.①如图2,当点M在EF上时,∠MBQ= °,∠CBQ= °;②改变点P在AD上的位置(点P不与点A,D重合),如图3,判断∠MBQ与∠CBQ的数量关系,并说明理由.(3)拓展应用在(2)的探究中,已知正方形纸片ABCD的边长为8cm,当FQ=1cm时,直接写出AP的长.参考答案1. 【答案】C【分析】根据轴对称图形的定义进行逐一判断即可.【详解】A.不是轴对称图形,故A错误;B.不是轴对称图形,故B错误;C.是轴对称图形,故C正确;D.不是轴对称图形,故D错误.故选:C.2. 【答案】B【分析】直接利用关于y轴对称,纵坐标相同,横坐标互为相反数,进而得出答案.【详解】解:根据题意,点E与点D关于y轴对称,∵飞机E的坐标为(40,a),∴飞机D的坐标为(-40,a),故选:B.3. 【答案】D【分析】-′求解即可.先求出BD,再根据平移性质求得BB'=1cm,然后由BD BB【详解】解:由题意,BD=,由平移性质得BB'=1cm,∴点D,B′之间的距离为DB'=BD BB-′=(1)cm,故选:D.4. 【答案】B【分析】根据含30°角的直角三角形的性质可得B(2,PB的解析式,依次将M1,M2,M3,M4四个点的一个坐标代入y+2中可解答.【详解】解:∵点A(4,2),点P(0,2),∴PA ⊥y 轴,PA =4,由旋转得:∠APB =60°,AP =PB =4,如图,过点B 作BC ⊥y 轴于C ,∴∠BPC =30°,∴BC =2,PC∴B (2,2+2设直线PB 的解析式为:y =kx +b ,则222k b b ⎧+=+⎪⎨=⎪⎩∴2k b ⎧=⎪⎨=⎪⎩∴直线PB 的解析式为:y =x +2,当y =0+2=0,x∴点M 1(-0)不在直线PB 上,当x y =-3+2=1,∴M 2(-1)在直线PB 上,当x =1时,y =+2,∴M 3(1,4)不在直线PB 上,当x =2时,y ,∴M 4(2,112)不在直线PB 上. 故选:B .5. 【答案】A【分析】根据轴对称和中心对称的定义逐项判断即可.轴对称图形是把一个图形沿一条直线折叠,直线两旁的部分能够互相重合;中心对称图形是把一个图形绕某一点旋转180°,旋转后的图形能够与原来的图形重合.【详解】A 、既是中心对称图形,又是轴对称图形,符合题意;B 、是轴对称图形,但不是中心对称图形,不符合题意;C 、是轴对称图形,但不是中心对称图形,不符合题意;D 、是中心对称图形,但不是轴对称图形,不符合题意;故选:A .6. 【答案】A【分析】取AB 中点G 点,根据菱形的性质可知E 点、G 点关于对角线AC 对称,即有PE =PG ,则当G 、P 、F 三点共线时,PE +PF =PG +PF 最小,再证明四边形AGFD 是平行四边形,即可求得FG =AD .【详解】解:取AB 中点G 点,连接PG ,如图,∵四边形ABCD 是菱形,且边长为2,∴AD =DC =AB =BC =2,∵E 点、G 点分别为AD 、AB 的中点,∴根据菱形的性质可知点E 、点G 关于对角线AC 轴对称,∴PE =PG ,∴PE +PF =PG +PF ,即可知当G 、P 、F 三点共线时,PE +PF =PG +PF 最小,且为线段FG ,如下图,G 、P 、F 三点共线,连接FG ,∵F 点是DC 中点,G 点为AB 中点,∴, 1122DF DC AB AG ===∵在菱形ABCD 中,,∴,∴四边形AGFD 是平行四边形,∴FG =AD =2,故PE +PF 的最小值为2,故选:A .7. 【答案】C【分析】根据中心对称图形的定义判断即可.【详解】解:∵是轴对称图形,也是中心对称图形, ∴不符合题意;∵是轴对称图形,不是中心对称图形∴不符合题意;∵不是轴对称图形,是中心对称图形∴符合题意;∵是轴对称图形,不是中心对称图形∴不符合题意;故选C .8. 【答案】D【分析】根据题意,画出该图形的对称轴,即可求解.【详解】解∶如图,DC AB ∥DF AG ∥一共有5条对称轴.故选:D9. 【答案】B【分析】根据直尺与三角尺的夹角为60°,根据四边形ACC A ''的面积为sin602sin60AA AC AB AA ⋅'︒︒⋅'=,即可求解.【详解】解:依题意ACC A ''为平行四边形,∵90ABC ∠=︒,60CAB ∠=︒,AB =8,12AA '=.2AC AB ∴=∴平行四边形ACC A ''的面积=sin602sin60AA AC AB AA ''⋅︒=︒⋅2812=⨯⨯=故选B10. 【答案】A【分析】把点()1,1的横坐标加2,纵坐标不变,得到()3,1,就是平移后的对应点的坐标.【详解】解:点()1,1向右平移2个单位长度后得到的点的坐标为()3,1.故选A .11. 【答案】D【分析】根据图形的平移性质求解.【详解】解:根据图形平移的性质,B ′(1-2,2+1),即B ′(-1,3);故选:D .12. 【答案】A【分析】令BF =2x ,CG =3x ,FG =y ,易证CGA CFB ''△∽△,得出CG A G CF B F'=',进而得出y =3x ,则AE =4x ,AD =8x ,过点E 作EH ⊥BC 于点H ,根据勾股定理得出EH =,最后求出AD AB的值. 【详解】解:过点E 作EH ⊥BC 于点H ,又四边形ABCD 为矩形,∴∠A =∠B =∠D =∠BCD =90°,AD =BC ,∴四边形ABHE 和四边形CDEH 为矩形,∴AB =EH ,ED =CH , ∵23BF GC =, ∴令BF =2x ,CG =3x ,FG =y ,则CF =3x +y ,2B F x '=,, 由题意,得==90CA G CB F ''︒∠∠,又GCA '∠为公共角,∴CGA CFB ''△∽△, ∴CG A GCF B F '=', 则53232x yx x y x-=+,整理,得()()30x y x y +-=,解得x =-y (舍去),y =3x ,∴AD =BC =5x +y =8x ,EG =3x ,HG =x ,在Rt △EGH 中EH 2+HG 2=EG 2,则EH 2+x 2=(3x )2,解得EH=, EH=-(舍),∴AB=,∴ADAB ==.故选:A .13.【答案】3A【分析】 52x y A G -'=如图,延长正六边形的边BM 与x 轴交于点E ,过A 作AN x ⊥轴于N ,连接AO ,BO ,证明,BOE AON 可得,,A O B 三点共线,可得,A B 关于O 对称,从而可得答案.【详解】解:如图,延长正六边形的边BM 与x 轴交于点E ,过A 作AN x ⊥轴于N ,连接AO ,BO ,∴ 三个正六边形,O 为原点,,120,BM MO OH AH BMO OHA,BMO OHA ≌,OB OA 11209030,18012030,2MOE BMO MOB60,90,BOE BEO同理:120303060,906030,AON OAN,BOE AON,,A O B ∴三点共线,,A B ∴关于O 对称,3,3.A故答案为:3.A14. 【答案】8【分析】根据平移的性质即可求解.【详解】解:由平移的性质S △A ′B ′C ′=S △ABC ,BC =B ′C ′,BC ∥B ′C ′,∴四边形B ′C ′CB 为平行四边形,∵BB ′⊥BC ,∴四边形B ′C ′CB 为矩形,∵阴影部分的面积=S △A ′B ′C ′+S 矩形B ′C ′CB -S △ABC=S 矩形B ′C ′CB=4×2=8(cm 2).故答案为:8.15.【答案】(1)【分析】连接OB ,OB '由题意可得∠BOB '=75°,可得出∠COB '=30°,可求出B '的坐标,即可得出点B ''的坐标.【详解】解:如图:连接OB ,OB ',作B M '⊥y 轴∵ABCO 是正方形,OA =2∴∠COB =45°,OB=∵绕原点O 逆时针旋转75︒∴∠BOB '=75°∴∠COB '=30°∵=OB =∴,∴∵沿y 轴方向向上平移1个单位长度∴故答案为:16. 【答案】6-【分析】当点M 与点B 重合时,EF垂直平分AB ,利用三角函数即可求得EF的长;【详解】解:当点M 与点B 重合时,由折叠的性质知EF 垂直平分AB ,∴AE =EB =12AB =3, OB 'MB 'MO =B '(B ''(1)(1)在Rt △AEF 中,∠A =60°,AE =3,tan60°=EF AB, ∴EF =3当AF 长取得最小值时,DF 长取得最大值,由折叠的性质知EF 垂直平分AM ,则AF =FM ,∴FM ⊥BC 时,FM 长取得最小值,此时DF 长取得最大值,过点D 作DG ⊥BC 于点C ,则四边形DGMF 为矩形,∴FM =DG ,在Rt △DGC 中,∠C =∠A =60°,DC =AB =6,∴DG =DC sin60°∴DF 长的最大值为AD -AF =AD -FM =AD -DG =6-3故答案为:36-317. 【答案】3【分析】BC 交EF 于点N ,由题意得,=90EDF BAC ∠=∠︒,60DEF ∠=︒,30DFE ∠=︒,=45ABC ACB ∠=∠︒,BC =DF =12,根据锐角三角函数即可得DE ,FE ,根据旋转的性质得ONF △是直角三角形,根据直角三角形的性质得3ON =,即3NC =,根据角之间的关系得CNG △是等腰直角三角形,即3NG NC ==cm ,根据90FNO FED ∠=∠=︒,30NFO DFE ∠=∠=︒得FON FED △∽△,即ON FN DE DF=,解得FN = 【详解】解:如图所示,BC 交EF 于点N ,由题意得,=90EDF BAC ∠=∠︒,60DEF ∠=︒,30DFE ∠=︒,=45ABC ACB ∠=∠︒,BC =DF =12,在Rt EDF 中,12tan tan 60DF DE EDF ===∠︒12sin sin 60DF EF EDF ===∠︒∵△ABC 绕点O 顺时针旋转60°,∴60BOD NOF ∠=∠=︒,∴90NOF F ∠+∠=︒,∴18090FNO NOF F ∠=︒-∠-∠=︒,∴ONF △是直角三角形, ∴132ON OF ==(cm ), ∴3NC OC ON =-=(cm ),∵90FNO ∠=︒,∴18090GNC FNO ∠=︒-∠=︒,∴NGC 是直角三角形,∴18045NGC GNC ACB ∠=-∠-∠=︒,∴CNG △是等腰直角三角形,∴3NG NC ==cm ,∵90FNO FED ∠=∠=︒,30NFO DFE ∠=∠=︒,∴FON FED △∽△, 即ON FN DE DF=,12FN =,FN =∴3FG FN NG =-=(cm ),故答案为:3.18. 1【分析】判定△AB ′D ′是等腰直角三角形,即可得出AB ′=AD ,再根据AB ′= AB ,再计算即可得到结论.【详解】解:∵四边形ABCD 是矩形,∴∠D =∠B =∠DAB =90°,由操作一可知:∠DAB ′=∠D ′AB ′=45°,∠AD ′B ′=∠D =90°,AD =AD ′,∴△AB ′D ′是等腰直角三角形,∴AD =AD ′= B ′D ′,由勾股定理得AB ′=,又由操作二可知:AB ′=AB ,∴=AB ,∴AB AD=, ∴A 4纸的长AB 与宽AD:1.故答案为::1.19. 【答案】(1)证明见解析 (2)163cm 【分析】(1)利用ASA 证明即可;(2)过点E 作EG ⊥BC 交于点G ,求出FG 的长,设AE =x ,用x 表示出DE 的长,在Rt △PED 中,由勾股定理求得答案.(1)∵四边形ABCD 是矩形,∴AB =CD ,∠A =∠B =∠ADC =∠C =90°,由折叠知,AB =PD ,∠A =∠P ,∠B =∠PDF =90°,∴PD =CD ,∠P =∠C ,∠PDF =∠ADC ,∴∠PDF -∠EDF =∠ADC -∠EDF ,∴∠PDE =∠CDF ,在△PDE 和△CDF 中,P C PD CDPDE CDF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴PDE CDF △≌△(ASA );(2)如图,过点E 作EG ⊥BC 交于点G ,∵四边形ABCD 是矩形,∴AB =CD =EG =4cm ,又∵EF =5cm ,∴3GF =,设AE =x ,∴EP =x ,由PDE CDF △≌△知,EP =CF =x ,∴DE =GC =GF +FC =3+x ,在Rt △PED 中,222PE PD DE +=,即()22243x x +=+, 解得,76x =, ∴BC =BG +GC = 77163663++=cm . 20. 【答案】(1)画图见解析(2)画图见解析(3)画图见解析【分析】(1)分别确定A ,B 平移后的对应点C ,D ,从而可得答案;(2)确定线段AB ,AC 关于直线BC 对称的线段即可;(3)分别计算ABC 的三边长度,再利用相似三角形的对应边成比例确定DEF 的三边长度,再画出DEF 即可.(1)解:如图,线段CD 即为所求作的线段,(2)如图,四边形ABDC 是所求作的轴对称图形,(3)如图,如图,DEF 即为所求作的三角形,由勾股定理可得:221310,2,ABAC 而2,BC = 同理:2226210,22,DF DE 而4,EF 1,2AB AC BC DF DE EF .ABC DFE ∽21. 【答案】(1)见解析;()15,3A -(2)见解析;()22,4A(3)点1A 旋转到点2A 所经过的路径长为5π2【分析】(1)根据题目中的平移方式进行平移,然后读出点的坐标即可;(2)先找出旋转后的对应点,然后顺次连接即可;(3)根据旋转可得点1A 旋转到点2A 为弧长,利用勾股定理确定圆弧半径,然后根据弧长公式求解即可.(1)解:如图所示△A 1B 1C 1即为所求,()15,3A -;(2)如图所示△A 2B 2C 2即为所求,;(3)∵ ∴点旋转到点所经过的路径长为. 22. 【答案】见解析【分析】根据轴对称图形的定义、中心对称图形的定义画出图形即可 ()22,4A 115AC 1A 2A 90π55π1802⨯=【详解】解:如下图所示:23. 【答案】(1)作图见解析;(2)作图见解析;(3)作图见解析;【分析】(1)连接对应点B 、F ,对应点C 、E ,其交点即为旋转中心的位置;(2)利用网格结构找出平移后的点的位置,然后顺次连接即可;(3)根据网格结构的特点作出即可.【详解】解:(1)如图所示,连接BF ,CE 交于点O ,点O 即为所求.(2)如图所示,△A 1B 1C 1为所求;(3)如图所示,点M 即为所求.理由:连接11,B M C M ,根据题意得:111111A B AC B M C M ====∴四边形111A B MC 菱形,∴A 1M 平分∠B 1A 1C 1.24. 【答案】(1)12GH CE =,证明见解析 (2)13GH CE = (3)2GH m CE n =(4)【分析】(1)先证明△ABF ≌△CBE ,得AF =CE ,再根据中位线性质得GH =12AF ,等量代换即可; (2)连接AF ,先证明△ABF ∽△CBE ,得到AF :CE 的比值,再根据中位线性质得GH =12AF ,等量代换即可; (3)连接AF ,先证明△ABF ∽△CBE ,用含m 、n 的代数式表达出AF :CE 的比值,再根据中位线性质得GH =12AF ,等量代换即可; (4)过M 作MH ⊥AB 于H ,根据折叠性质得∠C =∠MPN ,根据角平分线证明出∠C =∠PMH ,设CM =PM =x ,HM =y ,根据三角函数定义找到x 、y 之间的关系,再利用△AHM ∽△ABC ,得到CM BC H AM A =,代入解方程即可. (1) 解:12GH CE =,理由如下: ∵AB =BC ,四边形ABCD 为矩形,∴四边形ABCD 为正方形,∴∠ABC =∠CBE =90°,∵E 、F 为BC ,AB 中点,∴BE =BF ,∴△ABF ≌△CBE ,∴AF =CE ,∵H 为DF 中点,G 为AD 中点,∴GH =12AF , ∴12GH CE =. (2) 解:13GH CE =, 连接AF ,如图所示,由题意知,BF =12AB =1,BE =12BC =32, ∴, 由矩形ABCD 性质及旋转知,∠ABC =∠CBE =90°,∴△ABF ∽△CBE ,∴AF :CE =2:3,∵G 为AD 中点,H 为DF 中点,∴GH =, ∴. 故答案为:. (3)解:, 连接AF ,如图所示,23AB BF BC BE ==12AF 13GH CE =132GH m CE n=由题意知,BF ==,BE ==, ∴, 由矩形ABCD 性质及旋转知,∠ABC =∠CBE =90°,∴△ABF ∽△CBE ,∴AF :CE =m :n ,∵G 为AD 中点,H 为DF 中点,∴GH =, ∴. 故答案为:. (4)解:过M 作MH ⊥AB 于H ,如图所示,由折叠知,CM =PM ,∠C =∠MPN ,12AB 2m 12BC 2n AB BF m BC BE n==12AF 2GH m CE n =2mn∵PM 平分∠APN ,∴∠APM =∠MPN ,∴∠C =∠APM ,∵AB =2,BC =3,∴AC设CM =PM =x ,HM =y ,由知,, 即,∵HM ∥BC ,∴△AHM ∽△ABC ,∴, 即,, ∴,解得:x, 故答案为:. 25. 【答案】(1)证明见解析(2)图②结论:PB PA PC =+,证明见解析(3)图③结论:PA PB PC +=【分析】(1)由△ABC 是等边三角形,得AB =AC ,再因为点P 与点A 重合,所以PB =AB ,PC =AC ,PA =0,即可得出结论;(2)在BP 上截取BF CP =,连接AF ,证明BAD CAE ≌(SAS ),得ABD ACE ∠=∠,再证明CAP BAF ≌△△(SAS ),得CAP BAF ∠=∠,AF AP =,然后证明AFP 是等边三角形,得PF AP =,即可得出结论;(3)在CP 上截取CF BP =,连接AF ,证明BAD CAE ≌(SAS ),得ABD ACE ∠=∠,再证明BAP CAF ≌△△(SAS ),得出CAF BAP ∠=∠,AP AF =,然后证明AFP 是等边三角形,得PF AP =,即可得出结论:PA PB PF CF PC +=+=.(1)证明:∵△ABC 是等边三角形,∴AB =AC ,∵点P 与点A 重合,∴PB =AB ,PC =AC ,PA =0,sin sin C APM ∠=∠AB HM AC PM =y x =y =C M BC H AM A =3y =3y =3=∴PA PB PC +=或PA PC PB +=;(2)解:图②结论:PB PA PC =+证明:在BP 上截取BF CP =,连接AF ,∵ABC 和ADE 都是等边三角形, ∴AB AC =,AD AE =,60BAC DAE ∠=∠=︒ ∴BAC CAD DAE CAD ∠+∠=∠+∠, ∴BAD CAE ∠=∠,∴BAD CAE ≌(SAS ),∴ABD ACE ∠=∠,∵AC =AB ,CP =BF ,∴CAP BAF ≌△△(SAS ),∴CAP BAF ∠=∠,AF AP =, ∴CAP CAF BAF CAF ∠+∠=∠+∠, ∴60FAP BAC ∠=∠=︒,∴AFP 是等边三角形,∴PF AP =,∴PA PC PF BF PB +=+=;(3)解:图③结论:PA PB PC +=,理由:在CP 上截取CF BP =,连接AF ,∵ABC 和ADE 都是等边三角形,∴AB AC =,AD AE =,60BAC DAE ∠=∠=︒∴BAC BAE DAE BAE ∠+∠=∠+∠,∴BAD CAE ∠=∠,∴BAD CAE ≌(SAS ),∴ABD ACE ∠=∠,∵AB =AC ,BP =CF ,∴BAP CAF ≌△△(SAS ),∴CAF BAP ∠=∠,AP AF =,∴BAF BAP BAF CAF ∠+∠=∠+∠,∴60FAP BAC ∠=∠=︒,∴AFP 是等边三角形,∴PF AP =,∴PA PB PF CF PC +=+=,即PA PB PC +=.26. 【答案】(1)见解析(2)42t -【分析】(1)①先根据定义和(1,1)M 求出点P'的坐标,再根据点P'关于点N 的对称点为Q 求出点Q 的坐标;②延长ON 至点()3,3A ,连接AQ ,利用AAS 证明ΔΔAQT OPT ≅,得到12TA TO OA ==,再计算出OA ,OM ,ON ,即可求出12NT ON OT OM =-==; (2)连接PO 并延长至S ,使OP OS =,延长SQ 至T ,使ST OM =,结合对称的性质得出NM 为Δ'P QT 的中位线,推出1=2NM QT ,得出()12221SQ ST TQ t t =-=--=-,则()()max min 2PQ PQ PS QS PS QS QS -=+--=.(1)解:①点Q 如下图所示.∵点(1,1)M ,∴点(2,0)P -向右平移1个单位长度,再向上平移1个单位长度,得到点P', ∴()'1,1P -,∵点P'关于点N 的对称点为Q ,()2,2N ,∴点Q 的横坐标为:()2215⨯--=,纵坐标为:2213⨯-=,∴点()5,3Q ,在坐标系内找出该点即可;②证明:如图延长ON 至点()3,3A ,连接AQ ,∵ //AQ OP ,∴AQT OPT ∠=∠,在ΔAQT 与ΔOPT ∠中,AQT OPT ATQ OTP AQ OP ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()ΔΔAQT OPT AAS ≅, ∴12TA TO OA ==, ∵ ()3,3A ,(1,1)M ,(2,2)N ,∴OA ==OMON =∴12TO OA ==∴NT ON OT =-= ∴12NT OM =; (2)解:如图所示,连接PO 并延长至S ,使OP OS =,延长SQ 至T ,使ST OM =,∵(,)M a b ,点P 向右(0)a ≥或向左(0)a <平移a 个单位长度,再向上(0)b ≥或向下(0)b <平移b 个单位长度,得到点P',∴'1PP OM ==,∵点P'关于点N 的对称点为Q ,∴'NP NQ =,又∵OP OS =,∴OM ∥ST ,∴NM 为Δ'P QT 的中位线,∴//NM QT ,1=2NM QT , ∵1NM OM ON t =-=-,∴222TQ NM t ==-,∴()12221SQ ST TQ t t =-=--=-,在ΔPQS 中,PS QS PQ PS QS -<<+,结合题意,max PQ PS QS =+,min PQ PS QS =-,∴()()max min 242PQ PQ PS QS PS QS QS t -=+--==-,即PQ 长的最大值与最小值的差为42t -.27. 【答案】(1)BME ∠或ABP ∠或PBM ∠或MBC ∠(2)①15,15;②MBQ CBQ ∠=∠,理由见解析 (3)4011AP =cm 或24cm 13【分析】(1)根据折叠的性质,得12BE BM =,结合矩形的性质得30BME ∠=︒,进而可得30ABP PBM MBC ∠=∠=∠=︒; (2)根据折叠的性质,可证()Rt Rt HL BQM BQC ∆≅∆,即可求解;(3)由(2)可得QM QC =,分两种情况:当点Q 在点F 的下方时,当点Q 在点F 的上方时,设AP PM x ==,分别表示出PD ,DQ ,PQ ,由勾股定理即可求解.(1) 解:12AE BE AB AB BM ===, 12BE BM =∴ 90BEM ∠=︒∵30BME ∠=︒∴60MBE ∠=︒∴ABP PBM ∠=∠∵30ABP PBM MBC ∠=∠=∠=︒∴(2)∵四边形ABCD 是正方形∴AB =BC ,∠A =∠ABC =∠C =90°由折叠性质得:AB =BM ,∠PMB =∠BMQ =∠A =90°∴BM =BC①BM BC BQ BQ ==∵,∴()Rt Rt HL BQM BQC ∆≅∆MBQ CBQ ∠=∠∴30MBC15MBQ CBQ ∠=∠=︒∴②BM BC BQ BQ ==∵,()Rt Rt HL BQM BQC ∆≅∆∴MBQ CBQ ∠=∠∴(3)当点Q 在点F 的下方时,如图,1cm 4cm 8cm FQ DF FC AB ====∵,,8413(cm)QC CD DF FQ =--=--=∴,DQ =DF +FQ =4+1=5(cm) 由(2)可知,QM QC =设8AP PM x PD x ===-,,222PD DQ PQ +=∴,即()()222853x x -+=+ 解得:4011x =∴40cm 11AP =; 当当点Q 在点F 的上方时,如图,1cm 4cm 8cm FQ DF FC AB ====∵,, 5QC =∴cm ,DQ =3cm , 由(2)可知,QM QC =设8AP PM x PD x ===-,,222PD DQ PQ +=∴,即()()222835x x -+=+ 解得:2413x =∴24cm 13AP =.。

中考数学第1编知识梳理篇第7章图形与变换第21讲图形的对称、平移与旋转(精讲)试题(new)

中考数学第1编知识梳理篇第7章图形与变换第21讲图形的对称、平移与旋转(精讲)试题(new)

第二十一讲图形的对称、平移与旋转,考标完全解读)考点考试内容考试要求图形的对称、平移与旋转概念轴对称与轴对称图形,基本性质了解平移,基本性质了解旋转、旋转中心,基本性质了解线段垂直平分线,角平分线了解旋转对称图形,中心对称图形,基本性质了解图形全等,边角关系了解图形三种基本变换(轴对称、平移、旋转)与图形全等关系理解图形的对称、平移与旋转应用轴对称在生活中的应用理解平移变换基本特征理解图形的对称、平移与旋转拓展轴对称性质、平移性质、旋转性质,体验进行图案设计的过程掌握,感受宜宾中考)1.(2015宜宾拔尖)在平面直角坐标系中,矩形OABC如图所示.点A在x轴正半轴上,点C在y轴正半轴上,且OA=6,OC=4,D为OC中点,点E,F在线段OA上,点E在点F左侧,EF=3。

当四边形BDEF的周长最小时,点E的坐标是( B)A.(3,0) B.(1,0)C.(4,0) D.(2,0),(第1题图)) ,(第2题图))2.(2016宜宾中考)如图,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则B,D两点间的距离为( A)A。

错误!B.2错误!C.3 D.2错误!3.(2017宜宾中考)如图,将△AOB绕点O按逆时针方向旋转45°后得到△COD,若∠AOB =15°,则∠AOD的度数是__60°__.,核心知识梳理)轴对称与轴对称图形1.概念:把一个图形沿着某一条直线翻折,如果它能够与另一个图形__完全重合__,那么就说这两个图形关于这条直线(成轴)对称,这条直线叫做__对称轴__,如果一个图形沿着某条直线对折后,直线两旁的部分能够__完全重合__,那么这个图形就叫__轴对称图形__.2.轴对称与轴对称图形的区别与联系中心对称与中心对称图形3.概念:在平面内,一个图形绕着中心点旋转180°后,与自身重合,我们把这种图形叫做中心对称图形.这个中心点叫做__对称中心__.中心对称图形是旋转角度为180°的__旋转对称图形__.4.中心对称与中心对称图形的区别和联系图形的平移5.在平面内,将一个图形沿__一定方向__移动__一定距离__,这样的图形运动称为平移,平移不改变图形的形状和大小.6.平移的特征:平移后的图形与原来的图形的对应线段平行并且相等(对应线段也可能在一条直线上),图形的__形状与大小__都没有发生变化;平移后对应点所连的线段平行并且相等(对应点所连的线段也可能在一条直线上).7.平移作图的基本步骤(1)根据题意,确定平移方向和平移距离;(2)找出原图形的关键点;(3)按平移方向和平移距离,平移各个关键点,得到各关键点的对应点;(4)按原图形依次连结得到各关键点的对应点,得到平移后的图形.图形的旋转8.平面内某一个或几个基本的图形绕一个定点沿某__一个方向__(顺时针或逆时针)__转动一个角度__,这样的图形运动叫做旋转,这个定点叫做__旋转中心__,这个角度叫做__旋转角__.9.旋转的三大要素:旋转中心在旋转过程中保持不动,图形的旋转由__旋转中心__、__旋转的角度__、__旋转的方向__所决定.10.旋转的特征(1)图形中每一点都绕着旋转中心按同一旋转方向旋转同样大小的角度;(2)对应点到旋转中心距离相等.对应线段相等,对应角相等;(3)图形的形状与大小都没有发生变化.11.旋转作图的基本步骤(1)根据题意,确定旋转中心及旋转方向、旋转角;(2)找出原图形的关键点;(3)连结关键点与旋转中心,按旋转方向与旋转角将它们旋转,得到各个关键点的对应点;(4)按原图形依次连结得到旋转后的图形.,重点难点解析)图形平移、旋转、轴对称【命题规律】主要考查图形平移、旋转、轴对称的概念和特征,有基础题目也有中难度题.【例1】下列图形是中心对称图形的是( C)【解析】把一个图形绕着某一点旋转180°,如果它能与另一个图形重合,那么就说这两个图形点对称或中心对称.【答案】C【针对训练】1.(2017福建中考)下列关于图形对称性的命题,正确的是( A)A.圆既是轴对称性图形,又是中心对称图形B.正三角形既是轴对称图形,又是中心对称图形C.线段是轴对称图形,但不是中心对称图形D.菱形是中心对称图形,但不是轴对称图形2.(2017天津中考)如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E 恰好落在AB延长线上,连结AD。

中考专题 图形变换(精选17题)(平移、轴对称、旋转)练习及答案

中考专题 图形变换(精选17题)(平移、轴对称、旋转)练习及答案

中考复习专题:图形变换(精选17题)(平移、轴对称、旋转)练习及答案一、翻折翻折:翻折是指把一个图形按某一直线翻折180º后所形成的新的图形的变化.翻折特征:平面上的两个图形,将其中一个图形沿着一条直线翻折过去,如果它能够与另一个图形重合,那么说这两个图形关于这条直线对称,这条直线就是对称轴.解这类题抓住翻折前后两个图形是全等的,弄清翻折后不变的要素.翻折在三大图形运动中是比较重要的,考查得较多.另外,从运动变化得图形得特殊位置探索出一般的结论或者从中获得解题启示,这种由特殊到一般的思想对我们解决运动变化问题是极为重要的,值得大家留意.1.(2012•丽水)如图是一台球桌面示意图,图中小正方形的边长均相等,黑球放在如图所示的位置,经白球撞击后沿箭头方向运动,经桌边反弹最后进入球洞的序号是( )A.①B.②C.⑤D.⑥2.(2012•济宁)如图,将矩形ABCD的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH,EH=12厘米,EF=16厘米,则边AD的长是()A.12厘米B.16厘米C.20厘米D.28厘米3.(2012泰安)如图,菱形OABC的顶点O在坐标原点,顶点A在x轴上,∠B=120°,OA=2,将菱形OABC绕原点顺时针旋转105°至OA′B′C′的位置,则点B′的坐标为()A.B.(C.(2012泰安)D.4.(2012•梅州)如图,在折纸活动中,小明制作了一张△ABC纸片,点D、E分别是边AB、AC 上,将△ABC沿着DE折叠压平,A与A′重合,若∠A=75°,则∠1+∠2=()A.150°B.210°C.105°D.75°5.(2012绍兴)如图,直角三角形纸片ABC中,AB=3,AC=4,D为斜边BC中点,第1次将纸片折叠,使点A与点D重合,折痕与AD交与点P1;设P1D的中点为D1,第2次将纸片折叠,使点A与点D1重合,折痕与AD交于点P2;设P2D1的中点为D2,第3次将纸片折叠,使点A 与点D2重合,折痕与AD交于点P3;…;设P n﹣1D n﹣2的中点为D n﹣1,第n次将纸片折叠,使点A与点D n﹣1重合,折痕与AD交于点P n(n>2),则AP6的长为()A.512532⨯B.69352⨯C.614532⨯D.711352⨯6.(2012•连云港)小明在学习“锐角三角函数”中发现,将如图所示的矩形纸片ABCD沿过点B的直线折叠,使点A落在BC上的点E处,还原后,再沿过点E的直线折叠,使点A落在BC上的点F处,这样就可以求出67.5°角的正切值是( )A.+1B.+1 C.2.5 D.7、(2012山东滨州10分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(﹣2,﹣4),O(0,0),B(2,0)三点.(1)求抛物线y=ax2+bx+c的解析式;(2)若点M是该抛物线对称轴上的一点,求AM+OM的最小值.8、.(2006年南京市)已知矩形纸片ABCD,AB=2,AD=1,将纸片折叠,使顶点A与边CD上的点E重合.(1)如果折痕FG分别与AD、AB交与点F、G(如图1),23AF ,求DE的长;(2)如果折痕FG分别与CD、AB交与点F、G(如图2),△AED的外接圆与直线BC相切,求折痕FG的长.9、.(2012•德州)如图所示,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC 于H,折痕为EF,连接BP、BH.(1)求证:∠APB=∠BPH;(2)当点P在边AD上移动时,△PDH的周长是否发生变化?并证明你的结论;(3)设AP为x,四边形EFGP的面积为S,求出S与x的函数关系式,试问S是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.专题二.、旋转1. (2011四川成都,14,4分)如图,在Rt △ABC 中,∠ACB =90°,AC =BC =1,将Rt △ABC 绕A 点逆时针旋转30°后得到R t △ADE ,点B 经过的路径为 BD,则图中阴影部分的面积是___________.2.(2012中考)如图,在△ABC 中,∠ACB =90º,∠B =30º,AC =1,AC 在直线l 上.将△ABC绕点A 顺时针旋转到位置①,可得到点P 1,此时AP 1=2;将位置①的三角形绕点P 1顺时针旋转到位置②,可得到点P 2,此时AP 2=2+3;将位置②的三角形绕点P 2顺时针旋转到位置③,可得到点P 3,此时AP 3=3+3;…,按此规律继续旋转,直到得到点P 2012为止,则AP 2012=【 】A .2011+671 3B .2012+671 3C .2013+671 3D .2014+671 33.(2012•烟台)如图,在Rt △ABC 中,∠C=90°,∠A=30°,AB=2.将△ABC 绕顶点A 顺时针方向旋转至△AB ′C′的位置,B ,A ,C ′三点共线,则线段BC 扫过的区域面积为 .4.(2012•中考)如图,Rt △ABC 的边BC 位于直线l 上,AC=,∠ACB=90°,∠A=30°.若Rt△ABC 由现在的位置向右滑动地旋转,当点A 第3次落在直线l 上时,点A 所经过的路线的长为(结果用含有π的式子表示)B①② ③123… l5.(2012•济宁)如图,在平面直角坐标系中,有一Rt△ABC,且A(﹣1,3),B(﹣3,﹣1),C(﹣3,3),已知△A1AC1是由△ABC旋转得到的.(1)请写出旋转中心的坐标是O(0,0),旋转角是90度;(2)以(1)中的旋转中心为中心,分别画出△A1AC1顺时针旋转90°、180°的三角形;(3)设Rt△ABC两直角边BC=a、AC=b、斜边AB=c,利用变换前后所形成的图案证明勾股定理.6.(2012成都)(本小题满分10分)如图,△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合.将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=a,CQ=9 2 a时,P、Q两点间的距离 (用含a的代数式表示).7、(2011安徽,22,12分)在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为θ(0°<θ<180°),得到△A′B′C.(1)如图(1),当AB∥CB′时,设A′B′与CB相交于点D.证明:△A′CD是等边三角形;(2)如图(2),连接A ′A 、B ′B ,设△ACA ′ 和△BCB ′ 的面积分别为S △ACA ′ 和S △BC B′.求证:S △ACA ′ :S △BC B′ =1:3;(3)如图(3),设AC 中点为E ,A ′B ′中点为P ,AC =a ,连接EP ,当 = °时,EP 长度最大,最大值为 .Aθ A ′B ′BCA ′B ′BCAθ8、 (2011四川凉山州,21,8分)在平面直角坐标系中,已知ABC △三个顶点的坐标分别为()()()1,2,3,4,2,9.A B C ---⑴画出ABC △,并求出AC 所在直线的解析式。

中考数学一轮复习专题过关检测卷—轴对称、平移、旋转(含答案解析)

中考数学一轮复习专题过关检测卷—轴对称、平移、旋转(含答案解析)

中考数学一轮复习专题过关检测卷—轴对称、平移、旋转(含答案解析)(考试时间:90分钟,试卷满分:100分)一、选择题(本题共10小题,每小题3分,共30分)。

1.下列图形中,对称轴最多的图形是()A.B.C.D.【答案】A【解答】解:A.该图有无数条对称轴;B.该图有一条对称轴;C.该图有两条对称轴;D.该图有三条对称轴.所以对称轴最多的图形是选项A.故选:A.2.如图,将△ABC沿直线DE折叠,使点C与点A重合,已知AB=7,BC=6,则△BCD的周长为()A.12B.13C.19D.20【答案】B【解答】解:由折叠可知,AD=CD,∵AB=7,BC=6,∴△BCD的周长=BC+BD+CD=BC+BD+AD=BC+AB=7+6=13.故选:B.3.在平面直角坐标系中,点(3,2)关于x轴对称的点是()A.(﹣3,2)B.(3,﹣2)C.(﹣3,﹣2)D.(﹣2,3)【答案】B【解答】解在平面直角坐标系中,点(3,2)关于x轴对称的点是(3,﹣2).故选:B.4.在平面直角坐标系中,将点A(﹣3,﹣2)向右平移5个单位长度得到的点坐标为()A.(2,2)B.(﹣2,2)C.(﹣2,﹣2)D.(2,﹣2)【答案】D【解答】解:将点A(﹣3,﹣2)向右平移5个单位长度得到的点坐标为(﹣3+5,﹣2),即(2,﹣2),故选:D.5.“方胜”是中国古代妇女的一种发饰,其图案由两个全等正方形相叠组成,寓意是同心吉祥.如图,将边长为2cm的正方形ABCD沿对角线BD方向平移1cm得到正方形A′B′C′D′,形成一个“方胜”图案,则重叠部分的小正方形边长为()A.1cm B.2cm C.D.【答案】C【解答】解:∵四边形ABCD是正方形,∵AB=AD=2cm,∠A=90°,∴BD=AB=2(cm),由平移变换的性质可知BB′=1cm,∴DB′=BD﹣BB﹣1)cm,∴小正方形的边长=DB′=×(2﹣1)=(2﹣)cm,故选:C.6.如图,把三角形ABC沿BC方向平移1个单位长度得到三角形DEF,若四边形ABFD的周长为10,则三角形ABC的周长为()A.8B.10C.12D.14【答案】A【解答】解:∵把三角形ABC沿BC方向平移1个单位长度得到三角形DEF,∴AD=BE=1,△ABC≌△DEF,∵四边形ABFD的周长为10,∴AD+BF+AB+DF=10,∵BF=BE+EF=1+EF,∴1+1+EF+AB+DF=10,即EF+AB+DF=8,又∵DF=AC,EF=BC,∴AB+AC+BC=8,∴三角形ABC的周长为:8.故选:A.7.如图,将△ABC绕点C逆时针旋转一定的角度得到△A′B′C′,此点A在边B′C上,若BC=5,AC =3,则AB′的长为()A.5B.4C.3D.2【答案】D【解答】解:∵△ABC绕点C逆时针旋转一定的角度得到△A′B′C′,点A在边B′C上,∴CB′=CB=5,∴AB′=CB′﹣CA=5﹣3=2.故选:D.8.已知点A(a,1)与点B(﹣4,b)关于原点对称,则a﹣b的值为()A.﹣5B.5C.3D.﹣3【答案】B【解答】解:∵点A(a,1)与点B(﹣4,b)关于原点对称,∴a=4,b=﹣1.∴a﹣b=4﹣(﹣1)=5.故选:B.9.如图,在方格纸上建立的平面直角坐标系中,将△ABO绕点O按顺时针方向旋转90°,得△A′B′O′,则点A′的坐标为()A.(3,1)B.(3,2)C.(2,3)D.(1,3)【答案】D【解答】解:如图,点A′的坐标为(1,3).故选D.10.如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为()A.6B.8C.10D.12【答案】C【解答】解:连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,=BC•AD=×4×AD=16,解得AD=8,∴S△ABC∵EF是线段AC的垂直平分线,∴点C关于直线EF的对称点为点A,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=CM+MD+CD=AD+BC=8+×4=8+2=10.故选:C.二、填空题(本题共6题,每小题2分,共12分)。

2024成都中考数学一轮复习专题 图形的平移翻折对称 (含解析)

2024成都中考数学一轮复习专题 图形的平移翻折对称 (含解析)

2024成都中考数学一轮复习专题图形的平移翻折对称一、单选题A.2B.2.(2023·山东·统考中考真题)落在DC边上,点A落在点A.21-B.51-3.(2023·内蒙古赤峰·统考中考真题)如图,在中点,连接CF,把线段CF沿射线BC形成的四边形CFDE的周长和面积分别是A.16,6B.4.(2023·黑龙江·统考中考真题)如图,在平面直角坐标中,矩形形ABCD沿直线OE折叠到如图所示的位置,线段A.()1,2B.(-5.(2023·浙江嘉兴·统考中考真题)如图,已知矩形纸片操作:第一步,如图①将纸片对折,使第二步,再将图②中的纸片沿对角线A.32B.85C.53D.956.(2023·甘肃武威·统考中考真题)如图,将矩形ABCD对折,使边AB与DC,BC与AD 后得到四边形EFGH.若2AB=,4BC=,则四边形EFGH的面积为()A.2B.47.(2023·内蒙古赤峰·统考中考真题)延长线上的点Q重合.DE交BCA .①②③B .②④二、填空题8.(2023·吉林长春·统考中考真题)如图,将正五边形纸片ABCDE 折叠,使点B 与点E 重合,折痕为AM ,展开后,再将纸片折叠,使边AB 落在线段AM 上,点B 的对应点为点B ',折痕为AF ,则AFB '∠的大小为__________度.9.(2023·全国·统考中考真题)如图,在Rt ABC △中,90C BC AC ∠=︒<,.点D ,E 分别在边AB ,BC 上,连接DE ,将BDE 沿DE 折叠,点B 的对应点为点B '.若点B '刚好落在边AC 上,303CB E CE '∠=︒=,,则BC 的长为__________.10.(2023·湖北宜昌·统考中考真题)如图,小宇将一张平行四边形纸片折叠,使点A 落在长边CD 上的点A 处,并得到折痕DE ,小宇测得长边8CD =,则四边形A EBC '的周长为_________.11.(2023·辽宁·统考中考真题)如图,在三角形纸片ABC 中,,20AB AC B =∠=︒,点D 是边BC 上的动点,将三角形纸片沿AD 对折,使点B 落在点B '处,当B D BC '⊥时,BAD ∠的度数为___________.12.(2023·江苏徐州·统考中考真题)如图,在Rt ABC △中,90,3C CA CB ︒∠===,点D 在边BC 上.将ACD沿AD 折叠,使点C 落在点C '处,连接BC ',则BC '的最小值为_______.13.(2023·黑龙江齐齐哈尔·统考中考真题)矩形纸片ABCD 中,3AB =,5BC =,点M 在AD 边所在的直线上,且1DM =,将矩形纸片ABCD 折叠,使点B 与点M 重合,折痕与AD ,BC 分别交于点E ,F ,则线段EF 的长度为______.14.(2023·四川凉山·统考中考真题)如图,在Rt ABC △纸片中,90ACB ∠=︒,CD 是AB 边上的中线,将ACD沿CD 折叠,当点A 落在点A '处时,恰好CA AB '⊥,若2BC =,则CA '=_________.15.(2023·新疆·统考中考真题)如图,在ABCD Y 中,6AB =,8BC =,120ABC ∠=︒,点E 是AD 上一动点,将ABE 沿BE 折叠得到A BE ' ,当点A '恰好落在EC 上时,DE 的长为______.16.(2023·江苏扬州·统考中考真题)如图,已知正方形ABCD 的边长为1,点E.F 分别在边AD BC 、上,将17.(2023·湖北随州·端点),将ADM△沿直线面积为___________;18.(2023·湖南·统考中考真题)如图,在矩形→→→运动.当点B C D A运动过程中,线段CB'的最小值为19.(2023·湖北武汉·统考中考真题)如图,DF EF相交于,G H两点.若与,20.(2023·广东深圳·统考中考真题)如图,在21.(2023·黑龙江·统考中考真题)矩形点B落在点E处,若ADEV是直角三角形,则点22.(2023·四川成都·统考中考真题)如图,在23.(2023·四川南充·统考中考真题)沿MNBC上,将ABC+'为定值;论:①CN NB24.(2023·浙江杭州DE EF上,连接,(结果用含k的代数式表示)三、解答题25.(2023·安徽·统考中考真题)如图,在由边长为1个单位长度的小正方形组成的网格中,点,,,A B C D 均为格点(网格线的交点).(1)画出线段AB 关于直线CD 对称的线段11A B ;(2)将线段AB 向左平移2个单位长度,再向上平移1个单位长度,得到线段22A B ,画出线段22A B ;(3)描出线段AB 上的点M 及直线CD 上的点N ,使得直线MN 垂直平分AB .26.(2023·四川广安·统考中考真题)将边长为2的正方形剪成四个全等的直角三角形,用这四个直角三角形拼成符合要求的四边形,请在下列网格中画出你拼成的四边形(注:①网格中每个小正方形的边长为1;②所拼的图形不得与原图形相同;③四边形的各顶点都在格点上).27.(2023·内蒙古通辽·统考中考真题)综合与实践课上,老师让同学们以“正方形的折叠”为主题开展数学活动,有一位同学操作过程如下:操作一:对折正方形纸片ABCD ,使AD 与BC 重合,得到折痕EF ,把纸片展平;操作二:在AD 上选一点P ,沿BP 折叠,使点A 落在正方形内部点M 处,把纸片展平,连接PM 、BM ,延长PM 交CD 于点Q ,连接BQ .(1)如图1,当点M 在EF 上时,EMB ∠=___________度;(2)改变点P 在AD 上的位置(点P 不与点A ,D 重合)如图2,判断MBQ ∠与CBQ ∠的数量关系,并说明理由.28.(2023·湖北·统考中考真题)如图,将边长为3的正方形ABCD 沿直线EF 折叠,使点B 的对应点M 落在边AD 上(点M 不与点,A D 重合),点C 落在点N 处,MN 与CD 交于点P ,折痕分别与边AB ,CD 交于点,E F ,连接BM .(1)求证:AMB BMP ∠=∠;(2)若1DP =,求MD 的长.29.(2023·江苏无锡·统考中考真题)如图,四边形ABCD 是边长为4的菱形,60A ∠=︒,点Q 为CD 的中点,P 为线段AB 上的动点,现将四边形PBCQ 沿PQ 翻折得到四边形PB C Q ''.(1)当45QPB ∠=︒时,求四边形BB C C ''的面积;(2)当点P 在线段AB 上移动时,设BP x =,四边形BB C C ''的面积为S ,求S 关于x 的函数表达式.(1)求证:AA CA '⊥';(2)以点O 为圆心,OE 为半径作圆.①如图2,O 与CD 相切,求证:3AA CA '=';②如图3,O 与CA '相切,1AD =,求O 的面积.参考答案一、单选题【点拨】本题考查了矩形的判定和性质,相似三角形的判定和性质,折叠的性质以及勾股定理的应用等知识,通过证明三角形相似,利用相似三角形的性质求出5.【答案】D 【分析】根据折叠的性质得出即可求解.∵折叠,∴EB EH EC==∴,,B C H 在以E 为圆心,∴90BHC ∠=︒,二、填空题②当B '在BC 上方时,如图,∵90ADB ADB '∠+∠=︒,∠的度数为25︒或115综上,BAD故答案为:25︒或115︒.【点拨】本题考查了折叠的性质,三角形内角和,注意分类讨论.12.【答案】323-=【分析】由折叠性质可知AC AC∵3AB =,5BC =,1DM =,∴Rt ABM 中,2BM AM AB =+则13522OM BM ==,EO AB 31则1522OM BM ==,∵tan EO AB EMO OM AM ∠==∴3EO OM =∵CA AB '⊥,∴90CEA ∠=︒,∵CEA ACD ∠+∠∴30A ∠=︒,BC∵在ABCD Y 中,6AB =,BC ∴120,ADC ABC HDC ∠=∠=︒∠∴1cos 2DH DC HDC DC =⨯∠=∵正方形ABCD 的边长为∴33=1=88ABFE S ⨯四边形,设CF x =,则DH x =∴(1=2ABFE AE BF S +四边形13由题意可得:AD ND =,∴90NDC DCN ∠+∠=︒,∴NDC MCB∠=∠∵AD BC =,∵2AB AB '==∴B '在A 为圆心,2为半径的弧上运动,当,,A B C '三点共线时,CB 此时11CB AC AB ''=-=-此时112CB '>-当P 在AD 上时,如图所示,此时综上所述,CB'的最小值为故答案为:112-.【点拨】本题考查了矩形与折叠问题,圆外一点到圆上的距离的最值问题,熟练掌握折叠的性质是解题的关键.∵AM BD⊥于点M,当过点D 的直线与圆相切与点E 时,V ①如图,过点E 作EH BC ⊥交BC 于点∵四边形ABCD 是矩形,∴EG AD ⊥,∴四边形ABHG 是矩形,3GH AB ==∵3AE AB ==,AE DE ⊥,9AD =,∵四边形ABCD 是矩形,∴NM AD ⊥,∴四边形ABNM 是矩形,3MN AB ==∵3AE AB ==,AE DE ⊥,9AD =,∵CD 平分ACB ∠交AB ∴12∠=∠,23∠∠=∴13∠=∠CD BC ⊥ ,90BCD ∴∠=︒,由折叠的性质得:B C BC '=AC B C '∴=,ACB BCD '∠=∠(11802AB C CAB ''∴∠=∠=⨯2,30AC ACB '=∠=︒ ,cos303B C AC '∴=⋅︒=三、解答题A B即为所求;(2)解:如图所示,线段22(3)解:如图所示,点,M N 即为所求如图所示,∵221310AM BM ==+=,1MN =∴AM MN =,又1,3NP MQ MP AQ ====,【点拨】本题考查轴对称图形和中心对称图形的概念及作图,轴对称图形:把一个图形沿着某条直线折叠,能够与另一个图形重合;中心对称图形:把一个图形绕着某个点旋转180︒能够和原图形重合.27.【答案】(1)30(2)MBQ CBQ ∠=∠,理由见解析【分析】(1)由正方形的性质结合折叠的性质可得出2BM AB BE ==,90BEF ∠=︒,进而可求出1sin 2EMB ∠=,即得出30EMB ∠=°;(2)由正方形的性质结合折叠的性质可证()Rt Rt HL BCQ BMQ ≅ ,即得出MBQ CBQ ∠=∠【详解】(1)解:∵对折正方形纸片ABCD ,使AD 与BC 重合,得到折痕EF ,∴2AB BC CD AD BE ====,90BEF ∠=︒.【点拨】本题主要考查了正方形与折叠问题,相似三角形的性质与判定,等腰三角形的性质与判定,勾股定理等等,正确作出辅助线构造相似三角形是解题的关键.∴90AA C AEO ∠'=∠=︒,∴AA CA '⊥'(2)①过点O 作OF AB ⊥于点F ,延长FO 交CD 于点G ,则90OFA ∠=︒,∵四边形ABCD 是矩形,∴AB CD ,AO BO CO DO ===,∴OCG OAF ∠=∠,90OGC OFA ∠=∠=︒.∵OCG OAF ∠=∠,90OGC OFA ∠=∠=︒,AO CO =,∴()AAS OCG OAF ≌,∴OG OF =.∵O 与CD 相切,OE 为半径,90OGC ∠=︒,∴OG OE =,∴OE OF=又∵90AEO ∠=︒即OE AE ⊥,OF AB ⊥,∴AO 是EAF ∠的角平分线,即OAE OAF ∠=∠,设OAE OAF x ∠=∠=,则OCG OAF x ∠=∠=,又∵CO DO=∴OCG ODG x∠=∠=∴2AOE OCG ODG x∠=∠+∠=又∵90AEO ∠=︒,即AEO △是直角三角形,∴90AOE OAE ∠+∠=︒,即290x x +=︒解得:30x =︒,∴30OAE ∠=︒,即30A AC '∠=︒,在Rt A AC '△中,30A AC '∠=︒,90AA C '∠=︒,∴2AC CA '=,∵O 与CA '相切,∴OE OH =,90A HO '∠=∵AA C AEO A EO '∠'=∠=∠∴四边形A EOH '是矩形,。

人教版初中数学图形的平移,对称与旋转的技巧及练习题附答案

人教版初中数学图形的平移,对称与旋转的技巧及练习题附答案

人教版初中数学图形的平移,对称与旋转的技巧及练习题附答案一、选择题1.如图在平面直角坐标系中,等边三角形OAB的边长为4,点A在第二象限内,将OAB沿射线AO平移,平移后点A的横坐标为4百,则点B的坐标为()A. ( 60,2)B. (673, 273)C. (6, 2)D. (643, 2)【答案】D【解析】【分析】先根据已知条件求出点A、B的坐标,再求出直线OA的解析式,继而得出点A的纵坐标,找出点A平移至点A 的规律,即可求出点B的坐标.【详解】解:.「三角形OAB是等边三角形,且边长为4••• A( 2,3, 2), B(0,4)设直线OA的解析式为y kx,将点A坐标代入,解得:k3即直线OA的解析式为:y X3x3将点A的横坐标为4 J3代入解析式可得:y 4即点A的坐标为(4 73, 4)•・•点A向右平移6而个单位,向下平移6个单位得到点AB 的坐标为(0 6 J3,4 6) (6 J3, 2).故选:D.【点睛】本题考查的知识点是坐标与图形变化-平移,熟练掌握坐标平面图形平移的规律是解决本题的关键.2.如图,周长为16的菱形ABCD中,点E, F分别在边AB, AD上,AE= 1, AF= 3, P为BD上一动点,则线段EP+ FP的长最短为()A. 3B. 4C. 5D. 6【答案】B【解析】试题分析:在DC上截取DG=FD=AD- AF=4- 3=1,连接EG,则EG与BD的交点就是P. EG 的长就是EP+FP 的最小值,据此即可求解.解:在DC上截取DG=FD=AD- AF=4- 3=1,连接EG,贝U EG与BD的交点就是P.•. AE=DG,且AE// DG,••・四边形ADGE是平行四边形,EG=AD=4.故选B.3.如图,。

是AC的中点,将面积为16cm2的菱形ABCD沿AC方向平移AO长度得到菱形OB C D ,则图中阴影部分的面积是()B B2 2 2 2A. 8cmB. 6cmC. 4cmD. 2cm【答案】C【解析】【分析】根据题意得,?ABCg?OECF且AO=OC」AC ,故四边形OECF勺面积是? ABCD面积的214【详解】解:如图,…一, 一_一 一 1故四边形 OECF 的面积是?ABCD 面积—4 即图中阴影部分的面积为 4cm 2.故选:C【点睛】此题主要考查了相似多边形的性质以及菱形的性质和平移性质的综合运用.关键是应用相似多边形的性质解答问题. 4.如图,在平面直角坐标系中, AOB 的顶点B 在第一象限,点 A 在y 轴的正半轴上,AO AB 2, OAB 120°,将 AOB 绕点。

(专题精选)初中数学图形的平移,对称与旋转的全集汇编含答案解析

(专题精选)初中数学图形的平移,对称与旋转的全集汇编含答案解析

(专题精选)初中数学图形的平移,对称与旋转的全集汇编含答案解析一、选择题1.直角坐标系内,点P(-2,3)关于原点的对称点Q的坐标为()A.(2,-3)B.(2,3)C.(-2,3)D.(-2,-3)【答案】A【解析】试题解析:根据中心对称的性质,得点P(-2,3)关于原点对称点P′的坐标是(2,-3).故选A.点睛:平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y).2.如图,在边长为1522的正方形ABCD中,点E,F是对角线AC的三等分点,点P在正方形的边上,则满足PE+PF=55的点P的个数是()A.0 B.4 C.8 D.16【答案】B【解析】【分析】作点F关于BC的对称点M,连接EM交BC于点P,则PE+PF的最小值为EM,由对称性可得CM=5,∠BCM=45°,根据勾股定理得EM=55【详解】作点F关于BC的对称点M,连接EM交BC于点P,则PE+PF的最小值为EM.∵正方形ABCD 1522,∴15222=15,∵点E,F是对角线AC的三等分点,∴EC=10,FC=AE=5,∵点M与点F关于BC对称,∴CF=CM=5,∠ACB=∠BCM=45°,∴∠ACM=90°,∴222210555EC CM+=+=∴在BC边上,只有一个点P满足PE+PF=55,同理:在AB,AD,CD边上都存在一个点P,满足PE+PF=55,∴满足PE+PF=55的点P的个数是4个.故选B.【点睛】本题主要考查正方形的性质,勾股定理,轴对称的性质,熟练掌握利用轴对称的性质求两线段和的最小值,是解题的关键.3.下列全国各地地铁标志图中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】C【解析】【分析】试题解析:选项A既不是轴对称图形,也不是中心对称图形,故该该选项错误;选项B既不是轴对称图形,也不是中心对称图形,故该选项错误;选项C 既是轴对称图形,也是中心对称图形,故该选项正确;选项D是轴对称图形,但不是中心对称图形,故该选项错误.故选C.【详解】请在此输入详解!4.中国科学技术馆有“圆与非圆”展品,涉及了“等宽曲线”的知识.因为圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”.除了例以外,还有一些几何图形也是“等宽曲线”,如勒洛只角形(图1),它是分别以等边三角形的征个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧.三段圆弧围成的曲边三角形.图2是等宽的勒洛三角形和圆.下列说法中错误的是( )A .勒洛三角形是轴对称图形B .图1中,点A 到¶BC上任意一点的距离都相等 C .图2中,勒洛三角形上任意一点到等边三角形DEF 的中心1O 的距离都相等 D .图2中,勒洛三角形的周长与圆的周长相等【答案】C【解析】【分析】根据轴对称形的定义,可以找到一条直线是的图像左右对着完全重合,则为轴对称图形.鲁列斯曲边三角形有三条对称轴. 鲁列斯曲边三角形可以看成是3个圆心角为60°,半径为DE 的扇形的重叠,根据其特点可以进行判断选项的正误.【详解】鲁列斯曲边三角形有三条对称轴,就是等边三角形的各边中线所在的直线,故正确;点A 到¶BC上任意一点的距离都是DE ,故正确; 勒洛三角形上任意一点到等边三角形DEF 的中心1O 的距离都不相等,1O 到顶点的距离是到边的中点的距离的2倍,故错误;鲁列斯曲边三角形的周长=3×60180DE DE ππ⨯=⨯ ,圆的周长=22DE DE ππ⨯=⨯ ,故说法正确.故选C.【点睛】主要考察轴对称图形,弧长的求法即对于新概念的理解.5.如图,在ABC ∆中,5AB =,3AC =,4BC =,将ABC ∆绕一逆时针方向旋转40︒得到ADE ∆,点B 经过的路径为弧BD ,则图中阴影部分的面积为( )A .1463π-B .33π+C .3338π-D .259π【答案】D【解析】【分析】由旋转的性质可得△ACB≌△AED,∠DAB=40°,可得AD=AB=5,S△ACB=S△AED,根据图形可得S阴影=S△AED+S扇形ADB-S△ACB=S扇形ADB,再根据扇形面积公式可求阴影部分面积.【详解】∵将△ABC绕A逆时针方向旋转40°得到△ADE,∴△ACB≌△AED,∠DAB=40°,∴AD=AB=5,S△ACB=S△AED,∵S阴影=S△AED+S扇形ADB-S△ACB=S扇形ADB,∴S阴影=4025360π⨯=259π,故选D.【点睛】本题考查了旋转的性质,扇形面积公式,熟练掌握旋转的性质:①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角;③旋转前、后的图形全等.6.如图,在Rt△ABC中,∠CAB=90°,AB=AC,点A在y轴上,BC∥x轴,点B(2,32)-.将△ABC绕点A顺时针旋转的△AB′C′,当点B′落在x轴的正半轴上时,点C′的坐标为()A32﹣1)B231)C33)D33﹣1)【答案】D【解析】【分析】作C'D⊥OA于D,设AO交BC于E,由等腰直角三角形的性质得出∠B=45°,AE=12BC=2,BC=22AB,得出AB=2,OA3,由旋转的性质得:AB'=AB=AC=AC'=2,∠C'AB'=∠CAB=90°,由勾股定理得出OB'22'AB OA-1=12AB',证出∠OAB'=30°,得出∠C'AD=∠AB'O=60°,证明△AC'D≌△B'AO得出AD=OB'=1,C'D=AO=3,求出OD=AO﹣AD3﹣1,即可得出答案.【详解】解:作C'D⊥OA于D,设AO交BC于E,如图所示:则∠C'DA=90°,∵∠CAB=90°,AB=AC,∴△ABC是等腰直角三角形,∴∠B=45°,∵BC∥x轴,点B(2,3﹣2),∴AE=12BC=2,BC=22=2AB,∴AB=2,OA=3,由旋转的性质得:AB'=AB=AC=AC'=2,∠C'AB'=∠CAB=90°,∴OB'=22'AB OA-=1=12AB',∴∠OAB'=30°,∴∠C'AD=∠AB'O=60°,在△AC'D和△AB'O中,''''''C DA AOBC AD AB OAC AB∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AC'D≌△B'AO(AAS),∴AD=OB'=1,C'D=AO=3,∴OD=AO﹣AD=3﹣1,∴点C′的坐标为(﹣3,3﹣1);故选:D.【点睛】本题考查了全等三角形的判定与性质、等腰直角三角形的性质、坐标与图形性质、旋转的性质、直角三角形的性质、勾股定理等知识;熟练掌握旋转的性质,证明三角形全等是解题的关键.7.在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是()A.B.C.D.【答案】D【解析】【分析】根据平移只改变图形的位置,不改变图形的形状和大小,逐项进行分析即可得.【详解】A、不能通过平移得到,故不符合题意;B、不能通过平移得到,故不符合题意;C、不能通过平移得到,故不符合题意;D、能够通过平移得到,故符合题意,故选D.【点睛】本题考查了图形的平移,熟知图形的平移只改变图形的位置,而不改变图形的形状和大小是解题的关键.8.如图是一个由7个同样的立方体叠成的几何体,则这一几何体的三视图中,既是轴对称图形又是中心对称图形的是()A.俯视图B.主视图C.俯视图和左视图D.主视图和俯视图【答案】A【解析】画出三视图,由此可知俯视图既是轴对称图形又是中心对称图形,故选A.9.下列四个交通标志图中,是轴对称图形的是()A.B.C.D.【答案】B【解析】【分析】根据轴对称图形的概念对各选项分析判断后利用排除法求解.【详解】A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选B.【点睛】.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重本题考查了轴对称图形的概念合.10.下列图案中既是轴对称又是中心对称图形的是()A.B.C.D.【答案】C【解析】【分析】根据轴对称图形与中心对称图形的概念判断即可.【详解】A、不是轴对称图形,是中心对称图形,故本选项错误;B、不是轴对称图形,也不是中心对称图形,故本选项错误;C、是轴对称图形,是中心对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误;故选C.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.11.等腰三角形、直角三角形、等边三角形、锐角三角形、钝角三角形和等腰直角三角形中,一定是轴对称图形的有()A.3个 B.4个 C.5个 D.2个【答案】A【解析】等腰三角形、等边三角形、等腰直角三角形都是轴对称图形,是轴对称图形的有3个.故选:A.12.如图,在R t△ABC中,∠ACB=90°,∠B=60°,BC=2,∠A′B′C′可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为()A.3B.6 C.3D.3【答案】B【解析】【分析】【详解】试题分析:∵在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,∴∠CAB=30°,故AB=4,∵△A′B′C可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,∴AB=A′B′=4,AC=A′C,∴∠CAA′=∠A′=30°,∴∠ACB′=∠B′AC=30°,∴AB′=B′C=2,∴AA′=2+4=6.故选B.考点:1、旋转的性质;2、直角三角形的性质13.点M(﹣2,1)关于y轴的对称点N的坐标是( )A.(﹣2,﹣1) B.(2,1) C.(2,﹣1) D.(1,﹣2)【答案】B【解析】【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.【详解】点M(-2,1)关于y轴的对称点N的坐标是(2,1).故选B.【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.14.如图,一个长为2、宽为1的长方形以下面的“姿态”从直线l 的左侧水平平移至右侧(下图中的虚线是水平线),其中,平移的距离是( )A .1B .2C .3D .22【答案】C【解析】【分析】 根据平移的性质即可解答.【详解】如图连接AA ',根据平行线的性质得到∠1=∠2,如图,平移的距离AA '=的长度123=+=故选C.【点睛】此题考查平移的性质,解题关键在于利用平移的性质求解.15.如图,已知点P (0,3) ,等腰直角△ABC 中,∠BAC=90°,AB=AC ,BC =2,BC 边在x 轴上滑动时,PA +PB 的最小值是 ( )A 102B 26C .5D .6【答案】B【解析】【分析】过点P 作PD ∥x 轴,做点A 关于直线PD 的对称点A´,延长A´ A 交x 轴于点E ,则当A´、P 、B 三点共线时,PA +PB 的值最小,根据勾股定理求出A B '的长即可.【详解】如图,过点P 作PD ∥x 轴,做点A 关于直线PD 的对称点A´,延长A´A 交x 轴于点E ,则当A´、P 、B 三点共线时,PA +PB 的值最小,∵等腰直角△ABC 中,∠BAC=90°,AB=AC ,BC =2,∴AE=BE=1,∵P (0,3) ,∴A A´=4, ∴A´E=5, ∴22221526A B BE A E ''=+=+=,故选B.【点睛】本题考查了勾股定理,轴对称-最短路线问题的应用,解此题的关键是作出点A 关于直线PD 的对称点,找出PA +PB 的值最小时三角形ABC 的位置.16.如图,在ABC ∆中,90,2,4C AC BC ∠=︒==,将ABC ∆绕点A 逆时针旋转90︒,使点C 落在点E 处,点B 落在点D 处,则B E 、两点间的距离为( )A 10B .2C .3D .25【答案】B【解析】【分析】 延长BE 和CA 交于点F ,根据旋转的性质可知∠CAE=90︒,证明∠BAE=∠ABC ,即可证得AE∥BC,得出2142EF AF AEFB FC BC====,即可求出BE.【详解】延长BE和CA交于点F∵ABC∆绕点A逆时针旋转90︒得到△AED ∴∠CAE=90︒∴∠CAB+∠BAE=90︒又∵∠CAB+∠ABC=90︒∴∠BAE=∠ABC∴AE∥BC∴2142 EF AF AEFB FC BC====∴AF=AC=2,FC=4∴BF=42∴BE=EF=12BF=22故选:B【点睛】本题考查了旋转的性质,平行线的判定和性质.17.下列所给图形是中心对称图形但不是轴对称图形的是()A.B.C.D.【答案】D【解析】A. 此图形不是中心对称图形,不是轴对称图形,故A选项错误;B. 此图形是中心对称图形,也是轴对称图形,故B选项错误;C. 此图形不是中心对称图形,是轴对称图形,故D选项错误.D. 此图形是中心对称图形,不是轴对称图形,故C选项正确;故选D.18.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .【答案】A【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A 、既是轴对称图形,又是中心对称图形,故本选项不符合题意;B 、不是轴对称图形,是中心对称图形,故本选项不符合题意;C 、是轴对称图形,不是中心对称图形,故本选项不符合题意;D 、是轴对称图形,不是中心对称图形,故本选项符合题意.故选:A .【点睛】此题考查中心对称图形与轴对称图形的概念.解题关键在于掌握轴对称图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.19.斐波那契螺旋线也称为“黄金螺旋线”,是根据斐波那契数列画出来的螺旋曲线,自然界中存在许多斐波那契螺旋线图案.下列斐波那契螺旋线图案中属于轴对称图形的是( ) A . B . C . D .【答案】A【解析】【分析】如果一个图形沿着一条直线对折,直线两边的图形能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】根据轴对称图形的定义,只有选项A 是轴对称图形,其他不是.故选:A【点睛】考核知识点:轴对称图形.理解定义是关键.20.如图,将线段AB 绕点O 顺时针旋转90°得到线段''A B 那么()2, 5A -的对应点'A 的坐标是 ( )A .()5,2B .()2,5C .()2,5-D .()5,2-【答案】A【解析】【分析】 根据旋转的性质和点A (-2,5)可以求得点A′的坐标.【详解】作AD ⊥x 轴于点D ,作A′D′⊥x 轴于点D′,则OD=A′D′,AD=OD′,OA=OA′,△OAD ≌△A ′OD ′(SSS ),∵A (-2,5),∴OD=2,AD=5,∴点A′的坐标为(5,2),故选:A .【点睛】此题考查坐标与图形变化-旋转,解题的关键是明确题意,找出所求问题需要的条件.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六单元图形变换第21讲图形的平移、旋转与对称考纲要求命题趋势1.理解轴对称、轴对称图形、中心对称、中心对称图形、平移和图形旋转的概念,并掌握它们的性质.2.能按平移、旋转或对称的要求作出简单的图形.3.探索成轴对称或中心对称的平面图形的性质.4.运用图形的轴对称、旋转、平移进行图案设计.这部分内容重点考查图形的平移、旋转、轴对称的性质,图形三大变换的设计,与图形变换相关的计算和逻辑推理证明等.题型多为选择题、填空题、解答题,有时平移与旋转常与三角形和四边形结合作为中档题或较难试题.知识梳理一、图形的轴对称1.定义(1)轴对称:把________图形沿着某一条直线对折后,如果能与另一个图形________,那么就说这________图形成轴对称,这条直线就是________,两个图形中的对应点叫做__________.(2)轴对称图形:把________图形沿某条直线对折,如果直线两旁的部分能够互相________,那么________叫做轴对称图形.这条直线就是它的对称轴.2.性质(1)对称点的连线被________垂直平分;(2)对应线段相等,对应角相等;(3)成轴对称的两个图形是全等图形.二、图形的中心对称1.定义(1)中心对称:把一个图形绕着一点旋转________后,如果与另一个图形重合,那么这两个图形叫做关于这一点成中心对称,这个点叫做________,旋转前后的点叫做________.(2)中心对称图形:把一个图形绕着某一点旋转180°后,能与原来位置的图形重合,这个图形叫做中心对称图形,这个点叫做对称中心.2.性质(1)关于某点成中心对称的两个图形是__________;(2)关于某点成中心对称的两个图形,对称点的连线都经过对称中心,并且被对称中心______.三、图形折叠问题折叠问题是轴对称变换,折痕所在直线就是轴对称问题中的对称轴;应用时注意折叠所对应的图形,抓住它们之间的不变关系及其性质,寻找相等的量.四、图形的平移1.定义在平面内,将一个图形沿__________移动一定的距离,图形的这种变换,叫做平移变换,简称______.确定一个平移变换的条件是________和________.2.性质(1)平移不改变图形的________与________,即平移前后的两个图形是__________;(2)连接各组对应点的线段平行(或共线)且相等;(3)对应线段平行(或共线)且相等;(4)对应角相等.五、图形的旋转1.定义在平面内,把一个平面图形绕着一个定点沿着________旋转一定的______,图形的这种变换,叫做旋转变换.这个定点叫做旋转中心,这个角度叫做________.图形的旋转由________和________所决定.2.性质(1)图形上的每一点都绕着________沿着相同的方向旋转了________大小的角度;(2)旋转后的图形与原来的图形的形状和大小都没有发生变化,即它们是________的;(3)旋转前后两个图形的对应点到旋转中心的________相等;(4)对应点到旋转中心的连线所成的角相等,并且等于旋转角.六、简单的平移作图与旋转作图1.平移作图的步骤(1)首先找出原图形中的关键点,如多边形的顶点,圆的圆心;(2)根据平移的距离与方向,画出特殊点的对应点;(3)顺次连接各对应点,就得到原图形平移后的图形.2.旋转作图的步骤(1)找出旋转中心与旋转角;(2)找出构成图形的关键点;(3)作出这些关键点旋转后的对应点;(4)顺次连接各对应点.自主测试1.小华将一张如图所示矩形纸片沿对角线剪开,他利用所得的两个直角三角形通过图形变换构成了下列四个图形,这四个图形中不是轴对称图形的是( )A.把△ABC向左平移4个单位,再向下平移2个单位B.把△ABC向右平移4个单位,再向下平移2个单位C.把△ABC向右平移4个单位,再向上平移2个单位D.把△ABC向左平移4个单位,再向上平移2个单位4.如图所示,点A,B,C,D,O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为( )A.30° B.45°C.90° D.135°5.在如图所示的方格纸中,每个小方格都是边长为1个单位的正方形,△ABC的三个顶点都在格点上(每个小方格的顶点叫做格点).画出△ABC绕点O逆时针旋转90°后的△A′B′C′.考点一、轴对称图形与中心对称图形的识别【例1】如图,既是轴对称图形又是中心对称图形的是( )解析:选项A,B都不是轴对称图形,选项C是轴对称图形,但不是中心对称图形,只有选项D既是轴对称图形又是中心对称图形.故应选D.答案:D方法总结识别某图形是轴对称图形还是中心对称图形的关键在于对定义的准确把握,抓住轴对称图形、中心对称图形的特征,看看能否找出其对称轴或对称中心,再去作出判断.触类旁通1 下面的图形中,既是轴对称图形又是中心对称图形的是( )考点二、图形的平移【例2】如图,把图①中的⊙A经过平移得到⊙O(如图②),如果图①中⊙A上一点P的坐标为(m,n),那么平移后在图②中的对应点P′的坐标为( )A.(m+2,n+1) B.(m-2,n-1)C.(m-2,n+1) D.(m+2,n-1)解析:平移时图形上每个点平移的方向和距离都相同,⊙A经过平移到⊙O,点A的横坐标增加2个单位,纵坐标减小1个单位.则点P移到P′,移动的距离与点A相同.所以点P′的横坐标为m+2,纵坐标为n-1.答案:D方法总结在平面直角坐标系中,将点P(x,y)向右(或左)平移a个单位长度后,其对应点的坐标变为(x+a,y)〔或(x-a,y)〕;将点P(x,y)向上(或下)平移b个单位长度后,其对应点的坐标变为(x,y+b)〔或(x,y-b)〕.触类旁通2 如图,将△ABC沿直线AB向右平移后到达△BDE的位置,若∠CAB=50°,∠ABC=100°,则∠CBE的度数为__________.考点三、图形的旋转【例3】如图,在Rt△ABC 中,∠ACB =90°,∠A =30°,BC =2,将△ABC 绕点C 按顺时针方向旋转n 度后,得到△EDC ,此时,点D 在AB 边上,斜边DE 交AC 边于点F ,则n 的大小和图中阴影部分的面积分别为( )A .30,2B .60,2C .60,32D .60, 3 解析:由题意可知BC =CD ,∠B =60°,所以△BCD 是等边三角形,所以旋转角∠BCD =60°.通过题意可得△FCD 是直角三角形,且∠FCD =30°,CD =2,所以DF =1,CF =3,所以△FCD 的面积为12×1×3=32. 答案:C方法总结 图形在旋转过程中,图中的每一个点与旋转中心的连线都绕着旋转中心转动了相同的角度,对应线段相等,对应角相等.触类旁通3 如图,在△ABC 中,AB =BC ,将△ABC 绕点B 顺时针旋转α得到△A 1BC 1,A 1B 交AC 于点E ,A 1C 1分别交AC ,BC 于点D ,F ,有下列结论:①∠CDF =α;②A 1E =CF ;③DF =FC ;④AD =CE ;⑤A 1F =CE .其中正确的是__________(写出正确结论的序号).考点四、平移、旋转作图【例4】如图,在平面直角坐标系中,△ABC 的三个顶点的坐标分别为A (0,1),B (-1,1),C (-1,3).(1)画出△ABC关于x轴对称的△A1B1C1,并写出点C1的坐标;(2)画出△ABC绕原点O顺时针旋转90°后得到的△A2B2C2,并写出点C2的坐标;(3)将△A2B2C2平移得到△A3B3C3,使A2的对应点是A3,点B2的对应点是B3,点C2的对应点是C3(4,-1),在坐标系中画出△A3B3C3,并写出点A3,B3的坐标.解:(1)如图,C1(-1,-3).(2)如图,C2(3,1).(3)如图,A3(2,-2),B3(2,-1).方法总结要画出一个图形的平移、旋转后的图形,关键是先确定一些关键点,根据相应顶点的平移方向、平移距离、旋转方向、旋转角度都不变的性质作出关键点的对应点,这种以“局部代整体”的作图方法是平移、旋转作图中最常用的方法.1.(2012上海)在下列图形中,为中心对称图形的是( )A.等腰梯形 B.平行四边形C.正五边形 D.等腰三角形2.(2012浙江嘉兴)下列图案中,属于轴对称图形的是( )A.把△ABC绕点C逆时针方向旋转90°,再向下平移2格B.把△ABC绕点C顺时针方向旋转90°,再向下平移5格C.把△ABC向下平移4格,再绕点C逆时针方向旋转180°D.把△ABC向下平移5格,再绕点C顺时针方向旋转180°4.(2012浙江丽水)在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形,该小正方形的序号是( )A.① B.②C.③ D.④5.(2012山东德州)在四边形ABCD中,AB=CD,要使四边形ABCD是中心对称图形,只需添加一个条件,这个条件可以是__________.(只要填写一种情况)6.(2012四川乐山)如图,在10×10的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线l对称的△A1B1C1;(要求:A与A1,B与B1,C与C1相对应)(2)在(1)问的结果下,连接BB1,CC1,求四边形BB1C1C的面积.A.等边三角形 B.平行四边形C.梯形 D.矩形2.如图,这是一个正面为黑、反面为白的未拼完的拼木盘,给出如下四块正面为黑、反面为白的拼木,现欲拼满拼木盘使其颜色一致.那么应该选择的拼木是( )3.以ABCD的顶点A为原点,直线AD为x轴建立直角坐标系,已知B,D点的坐标分别为(1,3),(4,0),把平行四边形向上平移2个单位,那么C点平移后相应的点的坐标是( ) A.(3,3) B.(5,3) C.(3,5) D.(5,5)4.如图,矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为( )A.3 B.4 C.5 D.65.如图,AB左边是计算器上的数字“5”,若以直线AB为对称轴,那么它的轴对称图形是数字__________.6.如图,△DEF是由△ABC绕着某点旋转得到的,则这点的坐标是__________.7.如图,E,F分别是正方形ABCD的边BC,CD上的点,BE=CF,连接AE,BF,将△ABE绕正方形的中心按逆时针方向旋转到△BCF,旋转角为α(0°<α<180°),则∠α=__________.8.如图是重叠的两个直角三角形.将其中一个直角三角形沿BC方向平移得到△DEF.如果AB=8 cm,BE=4 cm,DH=3 cm,则图中阴影部分的面积为__________ cm2.9.△ABC在平面直角坐标系中的位置如图所示.(1)作出△ABC 关于y 轴对称的△A 1B 1C 1,并写出△A 1B 1C 1各顶点的坐标;(2)将△ABC 向右平移6个单位,作出平移后的△A 2B 2C 2,并写出△A 2B 2C 2各顶点的坐标; (3)观察△A 1B 1C 1与△A 2B 2C 2,它们是否关于某直线对称?若是,请在图上画出这条对称轴. 参考答案 导学必备知识 自主测试1.A 2.B 3.C 4.C 5.解:如图所示:探究考点方法 触类旁通1.C触类旁通2.30° 由平移知AC ∥BE ,由两直线平行内错角相等得∠CBE =∠C ,由三角形的内角和得∠C =180°-∠CAB -∠ABC =30°. 触类旁通3.①②⑤ 品鉴经典考题 1.B 2.A3.B 因为点C 的对应点F 是向下平移5格,所以A ,C 错误,点A 的对应点D ,是顺时针方向旋转90°,所以D 错误,只有B 是正确的.4.B 因为涂黑②后的阴影部分,绕中间小正方形的中心旋转180°,能与原图形重合. 5.AB ∥CD 或AD =BC ,∠B +∠C =180°,∠A +∠D =180°等(答案不唯一) 因为四边形ABCD 只要是平行四边形,它就是中心对称图形.6.解:(1)如图,△A 1B 1C 1是△ABC 关于直线l 的对称图形.(2)由图得四边形BB 1C 1C 是等腰梯形,BB 1=4,CC 1=2,高是4,∴S 四边形BB 1C 1C =12(BB 1+CC 1)×4=12(4+2)×4=12.研习预测试题1.D 2.B 3.D4.D ∵BE =EF =3,BC =AD =8,∴EC =5.∵∠EFC =90°,∴FC =EC 2-EF 2=4.∵△CFE ∽△CBA ,∴FC BC =EF AB ,48=3AB,∴AB =6. 5.26.(0,1) 连接AD ,BE ,作线段AD ,BE 的垂直平分线,两线的交点即为旋转中心O ′.其坐标是(0,1).7.90°8.26 因为由题意知△ABC ≌△DEF ,则S △ABC =S △DEF .S 阴影=S △DEF -S △HEC =S △ABC -S △HEC =S 四边形ABEH .由题意知,四边形ABEH 为直角梯形,∴S 梯形ABEH =12BE (AB +HE )=26 cm 2, ∴S 阴影=26 cm 2.9.解:(1)△A 1B 1C 1如图,A 1(0,4),B 1(2,2),C 1(1,1);(2)△A 2B 2C 2如图,A 2(6,4),B 2(4,2),C 2(5,1);(3)△A 1B 1C 1与△A 2B 2C 2关于直线x =3对称.如图.。

相关文档
最新文档