上海市金山中学2019_2020学年高二数学下学期期中试题(扫描版)

合集下载

2019-2020学年高二下学期期中考试数学试题(解析版)

2019-2020学年高二下学期期中考试数学试题(解析版)

2019-2020学年高二第二学期期中数学试卷一、选择题(共10小题).1.(x +1)n 的展开式共有11项,则n 等于( ) A .9B .10C .11D .82.已知函数f (x )=sin x ,其导函数为f '(x ),则f '(π3)=( )A .−12B .32C .12D .−323.从0,1,2,3这四个数中任取两个不同的数组成一个两位数,则这个两位数是偶数的概率为( ) A .13B .49C .12D .594.在(x +2)5的展开式中,二项式系数的最大值为( ) A .5B .15C .10D .205.已知正态密度曲线的函数关系式是f (x )=2πσe (x−μ)22σ2,设有一正态总体,它的概率密度曲线是函数f (x )的图象,且f (x )=18πe (x−10)28(x ∈R ),则这个正态总体的平均数μ与标准差σ分别是( ) A .10与8 B .10与2C .8与10D .2与106.设n ∈N*,则Cn01n 80+Cn11n ﹣181+C n21n ﹣282+C n31n ﹣383+……+C nn−1118n ﹣1+Cnn 108n 除以9的余数为( )A .0B .8C .7D .27.在比赛中,如果运动员甲胜运动员乙的概率是23,那么在五次比赛中,运动员甲恰有三次获胜的概率是( )A.40243B.80243C.110243D.202438.设(1+x)n=a0+a1x+a2x2+a3x3+……+a n x n,若a0+a1+a2+a3+……+a n=64,则展开式中系数最大的项是()A.15x2B.21x3C.20x3D.30x39.某旅游公司为了推出新的旅游产品项目,派出五名工作人员前往重庆的三个网红景点一“洪崖洞夜景、轻轨穿楼、长江索道”进行团队游的可行性调研.若每名工作人员只去一个景点,每个景点至少有一名工作人员前往,其中工作员甲、乙需要到同一景点调研,则不同的人员分配方案种数为()A.18 B.36 C.54 D.7210.设函数f(x)=ax+xx−1(x>1),若a是从1,2,3三数中任取一个,b是从2,3,4,5四数中任取一个,那么f(x)>b恒成立的概率为()A.16B.14C.34D.56二、多项选择题(本大题共2小题,每小题5分,共10分.全部选对得5分,部分选对得3分,有选错得0分)11.若随机变量X服从两点分布,其中P(X=0)=13,E(X)、D(X)分别为随机变量X均值与方差,则下列结论正确的是()A.P(X=1)=E(X)B.E(3X+2)=4C.D(3X+2)=4 D.D(X)=4912.已知函数f(x)=xlnx,若0<x1<x2,则下列结论正确的是()A.x2f(x1)<x1f(x2)B.x1+f(x1)<x2+f(x2)C .f(x 1)−f(x 2)x 1−x 2<0D .当lnx >﹣1时,x 1f (x 1)+x 2f (x 2)>2x 2f (x 1) 三、填空题(本大题共4小题,每小题5分,共20分) 13.函数在f (x )=﹣x +1x在[1,2]上的最大值是 .14.随机变量ξ服从正态分布N (1,σ2),已知P (ξ<0)=0.3,则P (ξ<2)= .15.设(1+ax )2020=a 0+a 1x +a 2x 2+……+a 2019x 2019+a 2020x 2020,若a 1+2a 2+3a 3+…+2019a 2019+2020a 2020=2020a ,则实数a = .16.在《爸爸去哪儿》第二季第四期中,村长给6位“萌娃”布置一项搜寻空投食物的任务.已知:①食物投掷地点有远、近两处;②由于Grace 年纪尚小,所以要么不参与该项任务,但此时另需一位小孩在大本营陪同,要么参与搜寻近处投掷点的食物;③所有参与搜寻任务的小孩须被均分成两组,一组去远处,一组去近处,那么不同的搜寻方案有 种.(以数字作答)四、解答题(本大题共6小题,共计70分) 17.有4名学生和2位老师站成一排合影. (1)若2位老师相邻,则排法种数为多少? (2)若2位老师不相邻,则排法种数为多少?18.甲、乙、丙三位学生各自独立地解同一道题,已知甲、乙做对该题的概率都为13,丙做对该题的概率为14,且三位学生能否做对相互独立,设随机变量X 表示这三位学生中做对该题的人数,其分布列为:X0123P13a b136(1)求a,b的值;(2)求X的数学期望.19.在(x+2)10的展开式中,求:(1)含x8项的系数;(2)如果第3r项和第r+2项的二项式系数相等,求r的值,20.在一次购物抽奖活动中,假设10张奖券中有一等奖奖券1张,可获价值50元的奖品,有二等奖奖券3张,每张可获价值10元的奖品,其余6张没有奖品.(1)顾客甲从10张奖券中任意抽取1张,求中奖次数X的概率分布.(2)顾客乙从10张奖券中任意抽取2张,①求顾客乙中奖的概率;②设顾客乙获得的奖品总价值Y元,求Y的概率分布及期望.21.2018年10月28日,重庆公交车坠江事件震惊全国,也引发了广大群众的思考﹣﹣如何做一个文明的乘客.全国各地大部分社区组织居民学习了文明乘车规范.A社区委员会针对居民的学习结果进行了相关的问卷调查,并将得到的分数整理成如图所示的统计图.(Ⅰ)求得分在[70,80)上的频率;(Ⅱ)求A社区居民问卷调査的平均得分的估计值;(同一组中的数据以这组数据所在区间中点的值作代表)(Ⅲ)由于部分居民认为此项学习不具有必要性,A社区委员会对社区居民的学习态度作调查,所得结果统计如下:(表中数据单位:人)认为此项学习十分必要认为此项学习不必要50岁以上400600 50岁及50岁以下800200根据上述数据,计算是否有99.9%的把握认为居民的学习态度与年龄相关.附:K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.P(K2≥k0)0.1000.0500.0100.001 k0 2.706 3.841 6.63510.82822.已知函数f(x)=(ax2+x+a)e﹣x(a∈R).(Ⅰ)当a=0时,求f(x)在点(0,f(0))处的切线方程;(Ⅱ)若a≥0,求函数f(x)的单调区间;(Ⅲ)若对任意的a≤0,f(x)≤bln(x+1)在x∈[0,+∞)上恒成立,求实数b的取值范围.参考答案一、单项选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(x+1)n的展开式共有11项,则n等于()A.9 B.10 C.11 D.8【分析】直接利用二项式定理的性质写出结果即可.解:因为(x+1)n的展开式共有11项,则n+1=11⇒n=10;故选:B.【点评】本题考查二项式定理的简单性质的应用,基本知识的考查.2.已知函数f(x)=sin x,其导函数为f'(x),则f'(π3)=()A.−12B.32C.12D.−32【分析】可以求出导函数f′(x)=cos x,从而可得出f′(π3)的值.解:∵f(x)=sin x,∴f′(x)=cos x,∴f′(π3)=cosπ3=12.故选:C.【点评】本题考查了基本初等函数的求导公式,已知函数求值的方法,考查了计算能力,属于基础题.3.从0,1,2,3这四个数中任取两个不同的数组成一个两位数,则这个两位数是偶数的概率为()A.13B.49C.12D.59【分析】基本事件总数n=3×3=9,这个两位数是偶数包含的基本事件个数m=1×3+1×2=5.由此能求出这个两位数是偶数的概率.解:从0,1,2,3这四个数中任取两个不同的数组成一个两位数,基本事件总数n=3×3=9,这个两位数是偶数包含的基本事件个数m=1×3+1×2=5.∴这个两位数是偶数的概率为p=mn=59.故选:D.【点评】本题主要考查概率的求法,考查古典概型计算公式等知识,意在考查学生的转化能力和计算求解能力.4.在(x+2)5的展开式中,二项式系数的最大值为()A.5 B.15 C.10 D.20【分析】展开式中共有6项,根据展开式中间两项的二项式系数最大,故第3,4项的二项式系数最大,问题得以解决.解:展开式中共有6项,根据展开式中间两项的二项式系数最大故第3,4项的二项式系数最大,故C52=C53=10,故选:C.【点评】本题主要考查二项式系数的性质及二项展开式的通项公式是解决二项展开式的特定项问题的工具,属于基础题. 5.已知正态密度曲线的函数关系式是f (x )=2πσe (x−μ)22σ2,设有一正态总体,它的概率密度曲线是函数f (x )的图象,且f (x )=8πe (x−10)28(x ∈R ),则这个正态总体的平均数μ与标准差σ分别是( ) A .10与8B .10与2C .8与10D .2与10【分析】把已知函数解析式转化为正态密度曲线的函数关系式求解.解:∵f (x )=18πe (x−10)28=22π(x−10)22×22,∴平均数μ=10,标准差σ=2. 故选:B .【点评】本题考查正态密度曲线的函数,是基础题. 6.设n ∈N*,则Cn 01n 80+C n 11n ﹣181+C n 21n ﹣282+C n 31n ﹣383+……+C nn−1118n ﹣1+Cnn 108n 除以9的余数为( )A .0B .8C .7D .2【分析】直接利用二项式定理把条件转化即可求解结论. 解:因为Cn 01n 80+C n 11n ﹣181+C n 21n ﹣282+C n 31n ﹣383+……+C nn−1118n ﹣1+Cnn 108n =(1+8)n =9n ; 故除以9的余数为0; 故选:A .【点评】本题考查余数的求法,是中档题,解题时要认真审题,注意组合数性质及二项式定理的合理运用.7.在比赛中,如果运动员甲胜运动员乙的概率是23,那么在五次比赛中,运动员甲恰有三次获胜的概率是( ) A .40243B .80243C .110243D .20243【分析】由条件利用n 次独立重复实验中恰好发生k 次的概率计算公式,计算求得结果. 解:根据每次比赛中,甲胜运动员乙的概率是23,故在五次比赛中,运动员甲恰有三次获胜的概率是C 53•(23)3•(1−23)2=80243, 故选:B .【点评】本题主要考查n 次独立重复实验中恰好发生k 次的概率计算公式,属于基础题. 8.设(1+x )n =a 0+a 1x +a 2x 2+a 3x 3+……+a n x n ,若a 0+a 1+a 2+a 3+……+a n =64,则展开式中系数最大的项是( ) A .15x 2B .21x 3C .20x 3D .30x 3【分析】由题意可得 a 0+a 1+a 2+…+a n =(1+1)n =64,得 n =6,由此求得展开式中系数最大的项.解:因为 a 0+a 1+a 2+…+a n =(1+1)n =64,得 n =6, 故展开式中系数最大的项是第四项;即∁63x 3=20x 3;故选:C .【点评】本题主要考查二项式定理的应用,二项式系数的性质,属于中档题. 9.某旅游公司为了推出新的旅游产品项目,派出五名工作人员前往重庆的三个网红景点一“洪崖洞夜景、轻轨穿楼、长江索道”进行团队游的可行性调研.若每名工作人员只去一个景点,每个景点至少有一名工作人员前往,其中工作员甲、乙需要到同一景点调研,则不同的人员分配方案种数为( ) A .18B .36C .54D .72【分析】根据分步计数原理,把2元素组合一个复合元素,再进行组合和分配,问题得以解决.解:由于工作员甲、乙需要到同一景点调研,把A,B看作一个复合元素,则本题等价于4个元素分配到3个位置,每一个位置至少一个,故有C42A33=36种,故选:B.【点评】本题考查了排列组合混合问题,先选后排是最基本的思想.10.设函数f(x)=ax+xx−1(x>1),若a是从1,2,3三数中任取一个,b是从2,3,4,5四数中任取一个,那么f(x)>b恒成立的概率为()A.16B.14C.34D.56【分析】先把f(x)的解析式变形,用分离常数法,然后用均值不等式求出最小值,本题是一个古典概型,试验发生包含的所有事件是12个,满足条件的事件是10个,列举出结果.解:x>1,a>0,f(x)=ax+x−1+1x−1=ax+1x−1+1=a(x﹣1)+1x−1+1+a≥2√a+1+a=(√a+1)2,当且仅当x=√1a+1>1时,取“=”,∴f(x)min=(√a+1)2,于是f(x)>b恒成立就转化为(√a+1)2>b成立.设事件A:“f(x)>b恒成立”,则基本事件总数为12个,即(1,2),(1,3),(1,4),(1,5);(2,2),(2,3),(2,4),(2,5);(3,2),(3,3),(3,4),(3,5);事件A包含事件:(1,2),(1,3);(2,2),(2,3),(2,4),(2,5);(3,2),(3,3),(3,4),(3,5)共10个由古典概型得P(A)=1012=56,故选:D.【点评】在使用古典概型的概率公式时,应该注意:(1)要判断该概率模型是不是古典概型;(2)要找出随机事件A包含的基本事件的个数和试验中基本事件的总数;当解析式中含有分式,且分子分母是齐次的,注意运用分离常数法来进行式子的变形,在使用均值不等式应注意一定,二正,三相等.二、多项选择题(本大题共2小题,每小题5分,共10分.全部选对得5分,部分选对得3分,有选错得0分)11.若随机变量X服从两点分布,其中P(X=0)=13,E(X)、D(X)分别为随机变量X均值与方差,则下列结论正确的是()A.P(X=1)=E(X)B.E(3X+2)=4C.D(3X+2)=4 D.D(X)=49【分析】推丑陋同P(X=1)=23从而E(X)=0×13+1×23=23,D(X)=(0−23)2×13+(1−23)2×23=29,由此能过河卒子同结果.解:随机变量X服从两点分布,其中P(X=0)=13,∴P(X=1)=23,E (X )=0×13+1×23=23,D (X )=(0−23)2×13+(1−23)2×23=29,在A 中,P (X =1)=E (X ),故A 正确;在B 中,E (3X +2)=3E (X )+2=3×23+2=4,故B 正确;在C 中,D (3X +2)=9D (X )=9×29=2,故C 错误; 在D 中,D (X )=29,故D 错误. 故选:AB .【点评】本题考查命题真假的判断,考查离散型随机变量的分布列、数学期望、方差等基础知识,考查运算求解能力,是中档题.12.已知函数f (x )=xlnx ,若0<x 1<x 2,则下列结论正确的是( ) A .x 2f (x 1)<x 1f (x 2)B .x 1+f (x 1)<x 2+f (x 2)C .f(x 1)−f(x 2)x 1−x 2<0D .当lnx >﹣1时,x 1f (x 1)+x 2f (x 2)>2x 2f (x 1)【分析】根据条件分别构造不同的函数,求函数的导数,利用函数单调性和导数之间的关系进行判断即可. 解:A .正确;因为令g (x )=f(x)x=lnx ,在(0,+∞)上是增函数,∴当 0<x 1<x 2 时,g (x 1)<g (x 2),∴f(x 1)x 1<f(x 2)x 2即x 2f (x 1)<x 1f (x 2).B .错误;因为令g (x )=f (x )+x =xlnx +x ∴g ′(x )=lnx +2,∴x ∈(e ﹣2,+∞)时,g ′(x )>0,g (x )单调递增,x ∈(0,e ﹣2)时,g ′(x )<0,g (x )单调递减.∴x 1+f (x 1)与x 2+f (x 2)无法比较大小.C .错误;因为令g (x )=f (x )﹣x =xlnx ﹣x ,g ′(x )=lnx ,∴x ∈(0,1)时,g ′(x )<0,g (x )在(0,1)单调递减,x ∈(1,+∞)时,g ′(x )>0,g (x )在(1,+∞)单调递增,∴当0<x 1<x 2<1时,g (x 1)>g (x 2), ∴f (x 1)﹣x 1>f (x 2)﹣x 2, ∴f (x 1)﹣f (x 2)>x 1﹣x 2, ∴f(x 1)−f(x 2)x 1−x 2<0.当1<x 1<x 2 时,g (x 1)<g (x 2) ∴f (x 1)﹣x 1<f (x 2)﹣x 2, ∴f (x 1)﹣f (x 2)<x 1﹣x 2, ∴f(x 1)−f(x 2)x 1−x 2>0.D.正确;因为lnx>﹣1时,f(x)单调递增,又∵A正确,∴x1•f(x1)+x2•f(x2)﹣2x2f(x1)>x1[f(x1)﹣f(x2)]+x2[f(x2)﹣f(x1)]=(x1﹣x2)[f(x1)﹣f(x2)]>0.故选:AD.【点评】本题主要考查命题的真假判断,在求解中用到了利用导数判断函数的单调性,并用到了函数单调性的定义.需要学习掌握的是构造函数的办法,综合性较强,有一定的难度.三、填空题(本大题共4小题,每小题5分,共20分)在[1,2]上的最大值是0 .13.函数在f(x)=﹣x+1x【分析】先求导数,得单调性,进而得出最大值.<0,解:因为f′(x)=﹣1−1x2所以f(x)在[1,2]上单调递减,f(x)max=f(1)=﹣1+1=0,故答案为:0.【点评】本题考查利用导数求单调性进而得出最大值.14.随机变量ξ服从正态分布N(1,σ2),已知P(ξ<0)=0.3,则P(ξ<2)=0.7 .【分析】随机变量ξ服从正态分布N(1,σ2),得到曲线关于x=1对称,根据曲线的对称性得到小于0的和大于2的概率是相等的,从而做出大于2的数据的概率,根据概率的性质得到结果.解:随机变量ξ服从正态分布N(1,σ2),∴曲线关于x=1对称,∴P(ξ<0)=P(ξ>2)=0.3,∴P(ξ<2)=1﹣0.3=0.7,故答案为:0.7【点评】本题考查正态分布曲线的特点及曲线所表示的意义,考查概率的性质,是一个基础题,这种题目可以出现在选择或填空中,是一个送分题目.15.设(1+ax)2020=a0+a1x+a2x2+……+a2019x2019+a2020x2020,若a1+2a2+3a3+…+2019a2019+2020a2020=2020a,则实数a=0 .【分析】结合所求式子与已知的式子特点,可以对原函数求导数,然后利用赋值法求解即可.解:对已知的式子两边同时求导数可得:2020a(1+ax)2019=a1+2a2x+3a3x2+⋯+2020a2020x2019,令x=1则:2020a(1+ax)2019=a1+2a2+3a3+…+2020a2020,又因为:a1+2a2+3a3+…+2019a2019+2020a2020=2020a,所以(1+a)2019=1,所以a=0.故答案为:0.【点评】本题考查二项式定理的系数的性质、赋值法的应用.同时考查了学生的运算能力,属于基础题.16.在《爸爸去哪儿》第二季第四期中,村长给6位“萌娃”布置一项搜寻空投食物的任务.已知:①食物投掷地点有远、近两处;②由于Grace年纪尚小,所以要么不参与该项任务,但此时另需一位小孩在大本营陪同,要么参与搜寻近处投掷点的食物;③所有参与搜寻任务的小孩须被均分成两组,一组去远处,一组去近处,那么不同的搜寻方案有 40 种.(以数字作答)【分析】根据题意,分2种情况讨论:①、Grace 不参与该项任务,需一位小孩在大本营陪同,则其余4人被均分成两组,一组去远处,一组去近处;②、Grace 参与该项任务,则从其余5人中选2人去近处,剩余3人搜寻远处,分别求出每种情况的方案数目;由分类计数原理计算可得答案. 解:根据题意,分2种情况讨论: ①、Grace 不参与该项任务,在其余5人中,任选1人在大本营陪同,有C 51=5种情况, 剩余4人,平均分成2组,有C 42C 22A 22=3种分组方法,在将2组对应2个地点,有A 22=2种情况,此时一共有5×3×2=30种方案; ②、Grace 参与该项任务,在其余5人中,任选2人与Grace 一起搜寻近处投掷点的食物,有C 52=10种情况, 而剩余3人搜寻远处投掷点的食物,有1种情况, 则此时一共有10×1=10种方案;则一共有30+10=40种符合题意的分配方案; 故答案为:40.【点评】本题考查排列、组合的运用,要先认真分析题意,注意2种方案参与的人数不同.四、解答题(本大题共6小题,共计70分) 17.有4名学生和2位老师站成一排合影.(1)若2位老师相邻,则排法种数为多少?(2)若2位老师不相邻,则排法种数为多少?【分析】(1)2位老师站在一起,可以采取绑定法计数,先绑定2位老师,再将2者看作一人与4名学生进行全排列;(2)2位老师互不相邻,可先排4名学生,然后把2位老师插空,最后用乘法原理计数.解:(1)先把2位老师“捆绑”看做1元素,与其余4个元素进行排列,再对2位老师进行排列,共有A22A55=240种,(2)先让4名学生站好,有A44种排法,这时有5个“空隙”可供2位老师选取,共有A44A52=480种.【点评】本题考查排列、组合及简单计数问题,解题的关键是熟练掌握计数原理及排列组合的公式,掌握一些特殊的计数技巧,如本题中绑定法,插空法.要注意每种方法与相应问题的对应.18.甲、乙、丙三位学生各自独立地解同一道题,已知甲、乙做对该题的概率都为13,丙做对该题的概率为14,且三位学生能否做对相互独立,设随机变量X表示这三位学生中做对该题的人数,其分布列为:X0123P13a b136(1)求a,b的值;(2)求X的数学期望.【分析】(1)利用相互独立事件概率乘法公式和互斥事件概率加法公式能求出a,利用对立事件概率计算公式能求出b.(2)由离散型随机变量的分布列能求出数学期望E(X).解:(1)∵甲、乙做对该题的概率都为13,丙做对该题的概率为14,且三位学生能否做对相互独立, ∴a =13×(1−13)×(1−14)+(1−13)×13×(1−14)+(1−13)×(1−13)×14=49, b =1﹣P (X =0)﹣P (X =1)﹣P (X =3)=1−13−49−136=736.(2)E (X )=0×13+1×49+2×736+3×136=1112. 【点评】本题考查概率的求法,考查离离散型随机变量的数学期望的求法,考查相互独立事件概率乘法公式、互斥事件概率加法公式、对立事件概率计算公式等基础知识,考查运算求解能力,是中档题. 19.在(x +2)10的展开式中,求: (1)含x 8项的系数;(2)如果第3r 项和第r +2项的二项式系数相等,求r 的值, 【分析】先求出展开式的通项.(1)令通项中x 的指数为8,求出k 的值即可; (2)写出该两项的二项式系数,令其相等,求出r 的值. 解:(1)二项式展开式的通项如下:T r+1=C 10r 2r x 10−r ,由已知令10﹣r =8, 所以r =2.所以含x 8项的系数为C 10222=180.(2)第3r 项与第r +2项的二项式系数相等, 则C 103r−1=C 10r+1,即3r ﹣1=r +1或3r ﹣1+r +1=10. 解得r =1或r =52(舍).故r 的值为1.【点评】本题考查二项式展开式系数的性质,利用通项法研究特定项的问题,同时考查学生的化简运算能力.属于基础题.20.在一次购物抽奖活动中,假设10张奖券中有一等奖奖券1张,可获价值50元的奖品,有二等奖奖券3张,每张可获价值10元的奖品,其余6张没有奖品. (1)顾客甲从10张奖券中任意抽取1张,求中奖次数X 的概率分布. (2)顾客乙从10张奖券中任意抽取2张, ①求顾客乙中奖的概率;②设顾客乙获得的奖品总价值Y 元,求Y 的概率分布及期望.【分析】(1)抽奖一次,只有中奖和不中奖两种情况,1表示中奖,0表示不中奖,则X 的取值只有0,1两种,分别求出相应的概率,由此能求出X 的分布列.(2)①顾客乙中奖可分为互斥的两类:所抽取的2张奖券有1张中奖和2张都中奖,由此利用互斥事件概率加法公式能求出顾客乙中奖的概率.②顾客乙所抽取的2张奖券中有0张中奖,1张中奖(1张1等奖或1张2等奖)或2张都中奖(2张二等奖或2张1等奖或1张2等奖1张2等奖),Y 的可能取值为0,10,20,50,60,分别求出相应的概率,由此能求出随机变量Y 的概率分布列和数学期望.解:(1)抽奖一次,只有中奖和不中奖两种情况, 1表示中奖,0表示不中奖,则X 的取值只有0,1两种,P (X =0)=C 61C 101=35,P (X =1)=C 41C 101=25,∴X 的分布列为:X1P3525(2)①顾客乙中奖可分为互斥的两类:所抽取的2张奖券有1张中奖和2张都中奖, ∴顾客乙中奖的概率为:P =C 41C 61+C 42C 102=23.②顾客乙所抽取的2张奖券中有0张中奖,1张中奖(1张1等奖或1张2等奖)或2张都中奖(2张二等奖或2张1等奖或1张2等奖1张2等奖), ∴Y 的可能取值为0,10,20,50,60,P (Y =0)=C 62C 102=13, P (Y =10)=C 41C 61C 102=25,P (Y =20)=C 32C 102=115, P (Y =50)=C 11C 61C 102=215, P (Y =60)=C 11C 31C 102=115,∴随机变量Y 的概率分布列为:Y 010205060P1325115215115EY =0×13+10×25+20×115+50×215+60×115=16(元).【点评】本题考查概率的求法,考查离离散型随机变量的数学期望的求法,考查互斥事件概率加法公式、古典概型等基础知识,考查运算求解能力,是中档题.21.2018年10月28日,重庆公交车坠江事件震惊全国,也引发了广大群众的思考﹣﹣如何做一个文明的乘客.全国各地大部分社区组织居民学习了文明乘车规范.A 社区委员会针对居民的学习结果进行了相关的问卷调查,并将得到的分数整理成如图所示的统计图.(Ⅰ)求得分在[70,80)上的频率;(Ⅱ)求A社区居民问卷调査的平均得分的估计值;(同一组中的数据以这组数据所在区间中点的值作代表)(Ⅲ)由于部分居民认为此项学习不具有必要性,A社区委员会对社区居民的学习态度作调查,所得结果统计如下:(表中数据单位:人)认为此项学习十分必要认为此项学习不必要50岁以上400600 50岁及50岁以下800200根据上述数据,计算是否有99.9%的把握认为居民的学习态度与年龄相关.附:K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.P(K2≥k0)0.1000.0500.0100.001 k0 2.706 3.841 6.63510.828【分析】(Ⅰ)由频率分布直方图计算所求的频率值;(Ⅱ)利用各组的中间值与对应的频率乘积的和,计算平均分;(Ⅲ)根据2×2列联表计算观测值,对照临界值得出结论.解:(Ⅰ)由频率分布直方图,计算得分在[70,80)上的频率为1﹣0.1﹣0.15﹣0.2﹣0.15﹣0.1=0.3;(Ⅱ)由(Ⅰ)知各组的中间值与对应的频率如下表,中间值455565758595频率0.10.150.20.30.150.1计算问卷调査的平均得分为45×0.1+55×0.15+65×0.2+75×0.3+85×0.15+95×0.1=70.5;(Ⅲ)根据2×2列联表,认为此项学习十分必要认为此项学习不必要合计50岁以上400600100050岁及50岁以下8002001000总计12008002000计算K2=2000×(400×200−600×800)21000×1000×1200×800≈333.333>10.828,所以有99.9%的把握认为居民的学习态度与年龄相关.【点评】本题考查了频率分布直方图和样本数字特征的应用问题,也考查了独立性检验的应用问题,是基础题.22.已知函数f(x)=(ax2+x+a)e﹣x(a∈一、选择题).(Ⅰ)当a=0时,求f(x)在点(0,f(0))处的切线方程;(Ⅱ)若a≥0,求函数f(x)的单调区间;(Ⅲ)若对任意的a≤0,f(x)≤bln(x+1)在x∈[0,+∞)上恒成立,求实数b的取值范围.【分析】(Ⅰ)当a=0时,f(x)=x•e﹣x,f′(x)=e﹣x﹣x•e﹣x=e﹣x(1﹣x),可得f′(0)=1,f(0)=0,即可得出切线方程.(Ⅱ)由题意,f'(x)=(2ax+1)e﹣x﹣(ax2+x+a)e﹣x=﹣e﹣x[ax2+(1﹣2a)x+a ﹣1]=﹣e﹣x(x﹣1)(ax+1﹣a).对a分类讨论:a=0,a>0,即可得出.(Ⅲ)令g(a)=e﹣x(x2+1)a+xe﹣x,a∈(﹣∞,0],当x∈[0,+∞)时,e﹣x(x2+1)≥0,g(a)单调递增,则g(a)max=g(0)=xe−x.可得g(a)≤bln(x+1)对∀a ∈(﹣∞,0]恒成立等价于bln(x+1)≥g(a)max=g(0),即xe﹣x≤bln(x+1),对x∈[0,+∞)恒成立,对b分类讨论,利用单调性即可得出.解:(Ⅰ)当a=0时,f(x)=x•e﹣x,∴f′(x)=e﹣x﹣x•e﹣x=e﹣x(1﹣x)……(1分)∴f′(0)=1,f(0)=0,∴函数f(x)在点(0,f(0))处的切线方程为y=x.……(Ⅱ)由题意,f'(x)=(2ax+1)e﹣x﹣(ax2+x+a)e﹣x=﹣e﹣x[ax2+(1﹣2a)x+a ﹣1]=﹣e﹣x(x﹣1)(ax+1﹣a).……(ⅰ)当a=0时,f'(x)=﹣e﹣x(x﹣1),令f'(x)>0,得x<1;f'(x)<0,得x>1,所以f(x)在(﹣∞,1)单调递增,(1,+∞)单调递减;……(ⅱ)当a>0时,1−1a<1,令f'(x)>0,得1−1a <x<1;f'(x)<0,得x<1−1a或x>1,……所以f(x)在(1−1a ,1)单调递增,在(−∞,1−1a),(1,+∞)单调递减,………(Ⅲ)令g(a)=e﹣x(x2+1)a+xe﹣x,a∈(﹣∞,0],当x∈[0,+∞)时,e﹣x(x2+1)≥0,g(a)单调递增,则g(a)max=g(0)=xe−x,………………则g(a)≤bln(x+1)对∀a∈(﹣∞,0]恒成立等价于bln(x+1)≥g(a)max=g (0),即xe﹣x≤bln(x+1),对x∈[0,+∞)恒成立.………(ⅰ)当b≤0时,∀x∈(0,+∞),bln(x+1)<0,xe﹣x>0,此时xe﹣x>bln(x+1),不合题意,舍去.…………(ⅱ)当b>0时,令h(x)=bln(x+1)﹣xe﹣x,x∈[0,+∞),则h′(x)=bx+1−(e−x−xe−x)=bex+x2−1(x+1)e x,……其中(x+1)e x>0,∀x∈[0,+∞),令p(x)=be x+x2﹣1,x∈[0,+∞),则p(x)在区间[0,+∞)上单调递增,……①当b≥1时,p(x)≥p(0)=b﹣1≥0,所以对∀x∈[0,+∞),h'(x)≥0,则h(x)在[0,+∞)上单调递增,故对任意x∈[0,+∞),h(x)≥h(0)=0,即不等式bln(x+1)≥xe﹣x在[0,+∞)上恒成立,满足题意.…………②当0<b<1时,由p(0)=b﹣1<0,p(1)=be>0及p(x)在区间[0,+∞)上单调递增,所以存在唯一的x0∈(0,1)使得p(x0)=0,且x∈(0,x0)时,p(x)<0.即h'(x)<0,所以h(x)在区间(0,x0)上单调递减,则x∈(0,x0)时,h(x)<h(0)=0,即bln(x+1)<xe﹣x,不符合题意.……综上所述,b≥1.…………【点评】本题考查了利用利用导数研究函数的单调性极值与最值、方程与不等式的解法、分类讨论方法、等价转化方法,考查学生的运算推理能力,属于难题.。

上海市金山中学2019-2020学年高二下学期期中考试数学试题 Word版含答案

上海市金山中学2019-2020学年高二下学期期中考试数学试题 Word版含答案

金山中学2019学年度第二学期高二年级数学学科期中考试卷(考试时间:120分钟 满分:150分 命题人: 审核人:)一、填空题:(第1-6题,每题4分;第7-12题,每题5分)1.半径为32的球的表面积为__________. 2.若将两个半径为1的铁球熔化后铸成一个球,则该球的半径为___________.3.有一山坡倾斜角为30°,若在斜坡平面内沿着一条与斜坡线成45°角的直路前进了100米,则升高了________米.4.正四棱锥底面边长为4,侧棱长为3,则其体积为_________.5.某几何体的三视图如图所示,则该几何体的体积为_________.6.从6人中选4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有_________.7.某校高三年级举行一次演讲赛共有10位同学参赛,其中一班有3位,二班有2位,其它班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为__________.8.某批种子,如果每粒种子的发芽概率是89,则播下5粒种子恰有3粒发芽的概率为_________. 9.从总体中随机抽取的样本为1-1,3,1-,1,1,3,2,2,0,0,则该总体的标准差的点估计值是______.10.圆锥的轴截面SAB 是边长为2的等边三角形,O 为底面中心,M 为SO 中点,动点P 在圆锥底面内(包括圆周).若AM MP ⊥,则点P 形成的轨迹长度为________.11.边长为1的正方体1111ABCD A B C D -中,P 在线段1BC 上,Q 在线段BC 上,则1D P PQ +的最小值为________.12.在棱长为1的正方体1111ABCD A B C D -中,M 为线段1A B 上的动点,则(1)三棱锥1M DCC -的体积为定值;(2)11DC D M ⊥;(3)1AMD ∠的最大值为90°;(4)1AM MD +的最小值为2.其中正确的序号是_________.二、选择题:(每题5分)13.设α、β为两个不同平面,若直线l 在平面α内则αβ⊥是l β⊥的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件14.用M 表示平面,a 表示一条直线,则M 内至少有一直线与a ( )A .平行B .相交C .异面D .垂直15.若a ,b 是异面直线,则下列命题中的假命题为( )A .过直线a 可以作一个平面并且只可以作一个平面a 与直线b 平行;B .过直线a 至多可以作一个平面α与直线b 垂直;C .唯一存在一个平面α与直线a ,b 等距;D .可能存在平面α与直线a ,b 都垂直.16.已知m ,n 是两条不同直线,,αβ是两个不同平面,给出下列四个命题:①若,αβ垂直于同一平面,则α与β平行;②若m ,n 平行于同一平面,则m 与n 平行;③若,αβ不平行,则在α内不存在与β平行的直线;④若m ,n 不平行,则m 与n 不可能垂直于同一平面其中真命题的个数为( )A .4B .3C .2D .1二、简答题:17.(本题共14分,每小题7分) 将圆心角为43π,半径为1cm 的扇形,卷成圆锥形容器,求 (1)这个容器的侧面积.(2)这个容器的容积.18.(本题14分)已知地球半径约为6371千米,北京的位置约为东经116°,北纬40°,西班牙马德里的位置约为西经3°,北纬40°,试求北京和马德里之间的球面距离.(结果精确到1千米)19.(本题满分14分,共有2小题,第1小题满分7分,第2小题满分7分)在直三棱柱111ABC A B C -中,12AA BC AB ===,AB BC ⊥,求:(1)直线1A C 与平面11A ABB 所成的角;(2)二面角111B AC C --的大小. 20.(本题满分16分,共有3小题,第1小题满分4分,第2小题满分4分.第3小题满分8分)已知数列{}n a 是等比数列,11a =,公比是4214x x ⎛⎫+ ⎪⎝⎭的展开式的第二项(按x 的降幂排列), (1)求数列{}n a 的通项n a ;(2)求数列{}n a 前n 项和n S ;(3)若2112n n n n n n A C S C S C S =++⋅⋅⋅+,求n A . 21.(本题满分18分,共有3小题,第1小题满分4分,第2小题满分6分,第3小题满分8分)如图,几何体EF ABCD -中,CDEF 为边长为2的正方形,ABCD 为直角梯形,//AB CD ,AD DC ⊥,2AD =,4AB =,90ADF ︒∠=.(1)求异面直线BE 和CD 所成角的大小;(2)求几何体EF ABCD -的体积;(3)若平面ABCD 内有一经过点B 的曲线Γ,该曲线上的任一动点Q 都满足EQ 与CD 所成角的大小恰等于BE 与CD 所成角.试判断曲线Γ的形状并说明理由.。

(整理版)金山高二下学期期中考试数学试题

(整理版)金山高二下学期期中考试数学试题

金山- 高二下学期期中考试数学试题一、填空题:〔每题4分,共56分〕1.复数(13)z i i =-.〔i 为虚数单位〕的虚部是___________。

2.计算:201311⎪⎭⎫ ⎝⎛-+i i =___________。

3.Z 是复数,且满足2Z+|Z|i 2-=0,那么Z=________________。

4.设抛物线的顶点在原点,准线方程为2x =-,那么抛物线的标准方程是______________。

5.双曲线22221(0,0)x y a b a b-=>> 与抛物线28y x =有一个公共的焦点,且双曲线上的点到坐标原点的最短距离为1,那么该双曲线的标准方程是___________。

6.正方体1111D C B A ABCD -的棱长为2,那么异面直线1BD 与AC 之间的距离为_________。

7.正方体1111D C B A ABCD -的棱长为2,那么C B 1与平面BD A 1间的距离为__________。

8.用与球心距离为1的平面去截球,所得的截面面积为π,那么球的休积为_____________。

9.一个正方体的顶点都在球面上,它的棱长为2cm ,那么球的外表积为_____________2cm 。

10. 一个圆柱的轴截面为正方形,那么与它同底等高的圆锥的侧面积与该圆柱的侧面积的比为_____。

11. 在正三棱柱111C B A ABC -中,AB=3,高为2,那么它的外接球上A 、B 两点的球面距离为_______。

12.假设正三棱锥底面边长为1,侧棱与底面所成的角为4π,那么其体积为____________。

13.有一山坡倾斜角为300,假设在斜坡平面内沿着一条与斜坡线成450角的直路前进了100米,那么升高了_________米。

14.设地球的半径为R ,北纬600 圈上有经度差为900的A 、B 两地,那么A 、B 两地的球面距离为______。

上海市金山中学高二数学下学期期中试题

上海市金山中学高二数学下学期期中试题

上海市金山中学高二数学下学期期中试题(考试时间:120分钟 满分:150分)一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.双曲线1322=-y x 的两条渐近线的方程为0x ±= . 2.若点()8,2-M 在抛物线px y 22=的准线上,则实数p 的值为 4 .3.在棱长为2的正方体1111D C B A ABCD -中,异面直线AB 和1CC 的距离为 2 . 4.过点(3,4)P 的圆2225x y +=的切线方程为 34250x y +-= .5.椭圆221259x y +=上的点M 到左焦点1F 的距离为2,N 是1MF 中点,则||ON = 4 . 6.已知三棱锥ABC P -满足PC PB PA ==,则点P 在平面ABC 上的射影是三角形ABC 的 外 心.7.如图,已知一个凸多面体共有9个面,所有棱长均为1,其平面展开图如下图所示,则该凸多面体的体积V =1+. 8.在北纬60圈上有,A B 两地,他们在纬度圈上的弧长等于2R π(R 是地球的半径),则,A B 两地的球面距离是 3Rπ . 9.将一个半径为210.已知抛物线x y 342=的准线过椭圆22221(0,0)x y a b a b +=>>的一个焦点,椭圆的长轴长是短轴长的2倍, 则该椭圆的方程为 1422=+y x . 11.已知长方体1111ABCD A B C D -中,12,1,1AB AD AA ===,点E 在棱AB 上移动,当AE =1D E 与平面11AA D D 所成角为45.12.空间四边形,8,ABCD AB CD M N P ==、、分别为BD AC BC 、、的中点,若异面直线AB 和CD 成60的角,则MN = 4或13.如图,在正方体1111D C B A ABCD -中,1=AB ,1DD 中点为Q ,过A 、Q 、1B 三点的截面面积为 98.第7题A1A 1第13题14.面积为S 的平面凸四边形的第i 条边的边长记为()4,3,2,1=i a i ,此四边形内任一点P 到第i 条边的距离为()4,3,2,1=i h i ,若k a a a a ====43214321,则12342234Sh h h h k+++=;根据以上性质,体积为V 的三棱锥的第i 个面的面积为()4321,,,i S i =,此三棱锥内任一点Q 到i 个面的距离为()1,2,3,4i H i =,若k SS S S ====43214321,则=+++4321432H H H H3Vk. 二.选择题(本大题满分20分)本大题共有4题,每题有且仅有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.“方程22121x y m m-=++表示双曲线”的一个充要条件是 ( C )A .21m -<<-B . 0m <C .2m <-或1m >-D .0m > 16.已知A ,B ,C ,D 是空间四点.命题甲:A ,B ,C ,D 四点不共面,命题乙:直线AC和BD 不相交,则甲是乙成立的 ( A )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件17.如图,一个封闭的长方体,它的六个表面各标出A B C D E F 、、、、、这六个字母,现放成下面三种不同的位置,所看见的表面上的字母已表明,则字母A B C 、、对面的字母依次分别为 ( C )第18题C第17题AEB D BCCA三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(本题满分12分,第(1)小题4分,第(2)小题8分)如图,在体积为16的正四棱柱1111ABCD A B C D -中,点M是1DD 的中点,12DD AD=. (1)求棱BC 的长;(2)求异面直线1AD 与1C M 所成角的大小.解:(1)2BC = …………………………4分 (2)连1BC ,则11//BC AD1MC B ∴∠或其补角为直线1AD 与1C M 所成的角 …………6分在1MC B ∆中,11MC BC MB ===1cos MC B ∴∠=直线1AD 与1C M 所成角的大小为…………12分20.(本题满分14分,第(1)小题6分,第(2)小题8分)如图,已知PA ⊥平面ABCD ,112PA ABAD CD ====,90BAD ADC ∠=∠=.(1)求直线PD 与平面PAB 所成角的大小; (2)求点B 到平面PCD 的距离. 解:(1)PA ⊥平面ABCD ,PA AD ∴⊥,又090BAD ∠=AD ∴⊥平面PABDPA ∴∠是直线PD 与平面PAB 所成的角 …………3分C A 1 第19题PBCDA第20题4DPA π∠=,所以直线PD 与平面PAB 所成的角为4π…………6分 (2) B PCD P BCD V V --= ………………8分而111211323P BCD V -=⋅⋅⋅⋅= ………………………10分PD =PCD S ∆, ………………………12分13B PCD PCD V S d -∆=⋅,所以2d =,即点B 到平面PCD的距离为2 ……14分21.(本题满分14分,第(1)小题6分,第(2)小题8分)如图,在四棱锥CD P AB -中,底面CD AB 为矩形,PA ⊥平面CD AB ,点E 在线段C P 上,C P ⊥平面D B E . (1)求证:D B ⊥平面C PA ;(2)若1PA =,2D A =,求二面角C B P A --的大小. 解:(1) 证明:∵PA ABCD ⊥平面,BD ABCD ⊂平面 ∴PA BD ⊥.同理由PC BDE ⊥平面,可证得PC BD ⊥. 又PAPC P =,∴BD PAC ⊥平面. …………………………………6分(2)解法一:设,AC BD 的交点为O ,过点O 作OF PC ⊥于点F ,连BF易证BFO ∠为二面角C B P A --的平面角 …………………………………9分 由(1)知BO AC ABCD ⊥∴为正方形2AB ∴=,在Rt BFO ∆中,tan 3BO OF BFO ==∴∠=, ∴二面角B PC A --的大小为arctan3…………………………………14分解法二:分别以射线AB ,AD ,AP 为x 轴,y 轴,z 轴的正半轴建立空间直角坐标系A xyz -. 由(1)知BD PAC ⊥平面,又AC PAC ⊂平面, ∴BD AC ⊥. 故矩形ABCD 为正方形,∴2AB BC CD AD ====. ∴00020022()()00(20001)()()A B C D P ,,,,,,,,,,,,,,. ∴ ()()()2,0,1,0,2,0,2,2,0PB BC BD ===-.ADCP第21题BE设平面PBC 的一个法向量为(,,)n x y z =,则0n PB n BC ⎧⋅=⎪⎨⋅=⎪⎩,即2000200x y z x y z +⋅-=⎧⎨⋅++⋅=⎩,∴20z xy =⎧⎨=⎩,取1x =,得(1,0,2)n =. ∵BD PAC ⊥平面,∴(2,2,0)BD =-为平面PAC 的一个法向量. 所以10cos ,10n BD n BD n BD⋅<>==-. 设二面角B PC A --的平面角为α,由图知02πα<<,则10cos cos ,D 10n α=B=∴二面角B PC A --的大小为 …………………………………14分22.(本题满分16分,第(1)小题7分,第(2)小题9分)如图,在两块钢板上打孔,用钉帽呈半球形、钉身为圆柱形的铆钉(图1)穿在一起,在没有帽的一端锤打出一个帽,使得与钉帽的大小相等. 铆合的两块钢板,成为某种钢结构的配件,其截面图如图2.(单位:mm ,加工中不计损失).(1)若钉身长度是钉帽高度的2倍,求铆钉的表面积;(2)若每块钢板的厚度为12mm ,求钉身的长度(结果精确到1mm ).第22题图2解:设钉身的高为h ,钉身的底面半径为r ,钉帽的底面半径为R ,由题意可知:……1分 (1) 圆柱的高382==R h ………………………………………2分圆柱的侧面积==rh S π21π760……………………………………………3分 半球的表面积πππ1083421222=+⨯=R R S ……………………………5分 所以铆钉的表面积21S S S +=πππ184********=+=(2mm )……7分(2)πππ240024100121=⨯⨯=⋅=h r V …………………………9分 31371819323421332πππ=⨯⨯=⨯⨯⨯=R V …………………11分 设钉身长度为l ,则l r V ⋅=23πl π100= …………………12分由于213V V V +=,所以l πππ1003137182400=+, …………………14分 解得70≈l mm ………………15分答:钉身的表面积为21843mm π,钉身的长度约为mm 70. ………16分23 .(本题满分18分,第(1)小题4分,第(2)小题6分,第(3)小题8分)如图所示的“8”字形曲线是由两个关于x 轴对称的半圆和一个双曲线的一部分组成的图形,其中上半个圆所在圆方程是22440x y y +--=,双曲线的左、右顶点A 、B 是该圆与x 轴的交点,双曲线与半圆相交于与x 轴平行的直径的两端点. (1)试求双曲线的标准方程;(2)记双曲线的左、右焦点为1F 、2F ,试在“8”字形 曲线上求点P ,使得12F PF ∠是直角.(3)过点A 作直线l 分别交“8”字形曲线中上、下两个半圆于点M N 、,求||MN 的最大长度.解:(1)设双曲线的方程为()222210,0x y a b a b -=>>,在已知圆的方程中,令0y =,得240x -=,即2x =±,则双曲线的左、右顶点为()2,0A -、()2,0B ,于是2a =第23题令2y =,可得280x -=,解得x =±,即双曲线过点()2±,则228412b-=所以2b =, 所以所求双曲线方程为22144x y -= ……………………4分 (2)由(1)得双曲线的两个焦点()1F -,()2F …………………… 5分当1290F PF ︒∠=时,设点(),P x y ,①若点P 在双曲线上,得224x y -=,由120F P F P ⋅=,得(222080x x y x y +-+=⇒-+=由2222480x y x y ⎧-=⎨-+=⎩,解得x y ⎧=⎪⎨=⎪⎩((1234,,,P P P P …… 8分 ②若点P 在上半圆上,则()224402x y y y +--=≥,由120F P F P ⋅=,得(20x x y +-+=,由222244080x y y x y ⎧+--=⎨+-=⎩无解…………………… 11分 综上,满足条件的点有4个,分别为((1234,,,P P P P …………………… 12分(3)设点M N 、的横坐标分别为M N x x 、,①当直线l 斜率不存在时,可求得||8MN = …………………… 14分 ②当直线l 斜率存在时,设直线:(2)l y k x =+,则:222222(2)(1)(44)4840440y k x k x k k x k k x y y =+⎧⇒++-+--=⎨+--=⎩, 以上方程有一根为2-且两根之和21224841k k x x k --=+,所以222421M k k x k -++=+, 由两半圆关于x 轴对称可求得222421N k k x k --+=+,2|8|||||81M N k MN x x k ∴=-==<+,所以||MN 的最大长度为8. …………………… 18分。

上海市金山区2019~2020学年第二学期期中高三数学质量监控(二模)试卷答案解析

上海市金山区2019~2020学年第二学期期中高三数学质量监控(二模)试卷答案解析

x y
= =
1 2
,故
a
=
2

5. 已知函数 f(x) = 2x 1 ,则 f −1(0) = _____. 11
【答案】 0 【解析】由 f(x) = 2x 1 = 2x −1 = 0 ,解得 x = 0 ,则 f−1(0) = 0 .
11
·1·
6.
已知双曲线 x2 a2
− y2
= 1(a 0) 的一条渐近线方程为 2x − y = 0 ,则实数 a = _____.
+
y2 n −1
= 2.
x2 n −1
+
y2 n −1
2xn2−1 + 2yn2−1
2
n
=
π 4
, bn
=
n2 4

不等式化为:
n
2 +
1
+
n
2 +
2
+
+
2 2n
> loga
(1 −
2a )
对任意正整数 n
恒成立.

Tn
=
2 n +1
+
n
2 +
2
+
2. 2n

Tn +1
− Tn
=
2 2n +1
+
2
2(n +1)
组建一支志愿者队伍,则他们的单位与职业都不相同的概率是_____(结果用最简分数表示).
【答案】 1 14
【解析】先在甲中3人任取一人有 C31 种,再乙中取一人不同甲中的职业有 C12 种,则丙中取一人不同职业有

上海市金山中学高二数学下学期期中试题(1)

上海市金山中学高二数学下学期期中试题(1)

上海市金山中学2016-2017学年高二数学下学期期中试题一.填空题(1--6每小题4分,7--12每小题5分,共54分)1、在空间中,若直线a 与b 无公共点,则直线a 、b 的位置关系是 ▲ 。

2、直线1:330l x y -+=与2:10l x y -+=的夹角的大小为 ▲ 。

(结果用反三角函数表示)3、已知m 为实数,i 为虚数单位,若()240m m i +->,则2222m i i +⎛⎫⎪-⎝⎭= ▲ 。

4、复数z 满足=1z i -(i 为虚数单位),则+2z i +的最大值为 ▲ 。

5、在正四棱锥P ABCD -中,所有棱长都为2,则侧面与底面所成的二面角的大小为 ▲ 。

(结果用反三角函数表示)6、已知抛物线E :24x y =,直线l :1y x =+,则直线l 被抛物线E 截得的弦长为 ▲ 。

7、已知复数z 满足33z i =(其中i 为虚数单位),则对应点位于第三象限的z 的值为 ▲ 。

8、在水平放置的平面α上画一个边长为2的正三角形,在“斜二测”画法中线段AB 的长度为 ▲ 。

9、如图,已知圆锥的底面半径为10r =,点Q 为半圆弧AB 的中点,点P 为母线SA 的中点.若PQ 与SO 所成角为4π,则此圆锥的侧面积为 ▲ 。

10、过定点()2,3的直线与双曲线224x y -=的右半支只有一个交点,则该直线的倾斜角的取值范围是 ▲ 。

11、在棱长为1的正方体1111ABCD A B C D -中,M 为线段1A B 上的动点,写出所有正确结论的代号 ▲ 。

①三棱锥M ﹣DCC 1的体积为定值;②DC 1⊥D 1M ;③∠AMD 1的最大值为90°;④AM+MD 1的最小值为2。

12、《九章算术》是我国古代的数学巨著,其卷五“商功”有如下的问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈.问积几何?”意思为:今有底面为矩形的屋脊形状的多面体(左右、前后对称如图),下底面宽3AD =丈,长4AB =丈,上棱2EF=丈,EF ∥平面ABCD ,EF 与平面ABCD 的距离为1丈,则它的体积是 ▲ (立方丈)。

上海市金山中学2020-2021学年高二下学期期中数学试题

上海市金山中学2020-2021学年高二下学期期中数学试题
故答案为: .
【点睛】
本题主要考查实系数一元二次方程的虚根的求解,以及复数的模的计算公式的应用,属于基础题.
7.
【分析】
根据扇形的弧长为 、半径为 求解出圆锥的母线和底面圆的半径,由此即可计算出圆锥的高,利用圆锥的体积计算公式即可求解出圆锥的体积.
【详解】
设圆锥的底面半径为 ,高为 ,母线长为 ,
因为扇形的弧长为 、半径为 ,
(2)用作图方法找出下面给定椭圆的中心;
(3)我们把由半椭圆 与半椭圆 合成的曲线称作“果圆”,其中 , , .如图,设点 , , 是相应椭圆的焦点, , 和 , 是“果圆”与 , 轴的交点.连结“果圆”上任意两点的线段称为“果圆”的弦.试研究:是否存在实数 ,使斜率为 的“果圆”平行弦的中点轨迹总是落在某个椭圆上?若存在,求出所有可能的 值,若不存在,说明理由.
二、单选题
15.给出下列命题,其中正确的命题是()
A.若 ,且 ,那么 一定是纯虚数B.若 、 且 ,则
C.若 ,则 不成立D.若 ,则方程 只有一个根
16.一个水平放置的三角形的斜二测直观图是有一条边水平的等边三角形,则这个三角形一定是()
A.锐角三角形B.直角三角形C.钝角三角形D.以上都有可能
【详解】
可化为: ,所以 ,由于 ,结合函数 在 上的图象,可知 .
故答案为: .
【点睛】
本题主要考查斜率与倾斜角的关系的应用,以及直线的一般式化斜截式,属于基础题.
6.
【分析】
先利用公式求出 ,再根据复数的模的计算公式列式即可求解.
【详解】
因为 是方程 的两个虚根,所以设 ,
.由 可得, ,解得 .
A.2B.3C.4D.5
三、解答题

上海市金山中学高二数学下学期期中试题

上海市金山中学高二数学下学期期中试题

金山中学2016学年度第二学期高二年级数学学科期中考试卷(考试时间:120分钟 满分:150分)一.填空题(1--6每小题4分,7--12每小题5分,共54分)1、在空间中,若直线a 与b 无公共点,则直线a 、b 的位置关系是 ▲ 。

2、直线1:330l x y -+=与2:10l x y -+=的夹角的大小为 ▲ 。

(结果用反三角函数表示)3、已知m 为实数,i 为虚数单位,若()240m m i +->,则2222m i i +⎛⎫⎪-⎝⎭= ▲ 。

4、复数z 满足=1z i -(i 为虚数单位),则+2z i +的最大值为 ▲ 。

5、在正四棱锥P ABCD -中,所有棱长都为2,则侧面与底面所成的二面角的大小为 ▲ 。

(结果用反三角函数表示)6、已知抛物线E :24x y =,直线l :1y x =+,则直线l 被抛物线E 截得的弦长为 ▲ 。

7、已知复数z 满足33z i =(其中i 为虚数单位),则对应点位于第三象限的z 的值为 ▲ 。

8、在水平放置的平面α上画一个边长为2的正三角形,在“斜二测”画法中线段AB 的长度为 ▲ 。

9、如图,已知圆锥的底面半径为10r =,点Q 为半圆弧AB 的中点,点P 为母线SA 的中点.若PQ 与SO 所成角为4π,则此圆锥的侧面积为 ▲ 。

10、过定点()2,3的直线与双曲线224x y -=的右半支只有一个交点,则该直线的倾斜角的取值范围是 ▲ 。

11、在棱长为1的正方体1111ABCD A B C D -中,M 为线段1A B 上的动点,写出所有正确结论的代号 ▲ 。

①三棱锥M ﹣DCC 1的体积为定值;②DC 1⊥D 1M ;③∠AMD 1的最大值为90°;④AM+MD 1的最小值为2。

12、《九章算术》是我国古代的数学巨著,其卷五“商功”有如下的问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈.问积几何?”意思为:今有底面为矩形的屋脊形状的多面体(左右、前后对称如图),下底面宽3AD =丈,长4AB =丈,上棱2EF=丈,EF ∥平面ABCD ,EF 与平面ABCD 的距离为1丈,则它的体积是 ▲ (立方丈)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档