24米预应力计算书

合集下载

预应力混凝土柱支架及模板计算书

预应力混凝土柱支架及模板计算书

预应力混凝土柱支架及模板计算书1. 引言本文档旨在为预应力混凝土柱支架及模板设计提供计算依据。

该设计旨在满足预应力混凝土柱的承载能力和稳定性要求。

计算书分为以下几个部分:设计条件、柱支架计算、模板计算。

2. 设计条件2.1 荷载条件预应力混凝土柱支架及模板的设计荷载条件如下:- 永久荷载:包括结构自重、围护墙重量等。

- 变动荷载:包括使用荷载、温度荷载等。

2.2 材料参数采用以下材料参数进行计算:- 预应力混凝土强度等级:XXX级。

- 钢筋强度等级:XXX级。

- 钢束强度等级:XXX级。

2.3 设计要求本设计应满足以下要求:- 支架稳定性要求:满足国家标准的支架稳定性设计要求。

- 柱承载能力要求:满足柱的承载能力要求。

3. 柱支架计算3.1 柱支架形式采用XXX形式的柱支架。

3.2 计算方法柱支架的计算应满足以下要求:- 考虑支架的水平稳定性和垂直稳定性。

- 采用弹性线性分析方法进行计算。

- 考虑荷载组合的作用。

3.3 计算结果根据计算,柱支架的尺寸应满足以下要求:- 柱支架的宽度:XXX mm。

- 柱支架的高度:XXX mm。

4. 模板计算4.1 模板形式采用XXX形式的模板。

4.2 计算方法模板的计算应满足以下要求:- 考虑模板的水平稳定性和垂直稳定性。

- 采用弹性线性分析方法进行计算。

- 考虑荷载组合的作用。

4.3 计算结果根据计算,模板的尺寸应满足以下要求:- 模板的宽度:XXX mm。

- 模板的长度:XXX mm。

5. 结论根据预应力混凝土柱支架及模板计算,柱支架的尺寸应满足柱的承载能力和稳定性要求,模板的尺寸应满足模板的稳定性要求。

设计者应根据本计算书的结果进行合理设计和调整。

6. 参考文献- 相关设计规范和国家标准。

以上为预应力混凝土柱支架及模板计算书的内容。

预应力梁计算书

预应力梁计算书

YKL-1一、计算条件1、材料1)、预应力钢筋采用高强低松弛钢绞线Φs15.2,其强度为f ptk=1860N/mm22)、张拉控制应力为σcon(N/mm2)= 13023)、孔道成型采用预埋金属波纹管,直径(mm)为70.00 4)、锚具种类:夹片锚5)、非预应力钢筋采用HRB400级钢筋,箍筋采用HRB335级钢筋6)、混凝土强度等级为C40 fc(N/mm2)= 19.1 ftk(N/mm2)=2.517)、施加预应力时的混凝土强度为2、内力计算1)、跨中截面跨中设计弯矩M(KN.m):2287 恒荷载力作用下的弯矩标准值Mk(KN.m):891 活荷载力作用下的弯矩标准值Mk(KN.m):303 2)、支座截面支座设计弯矩M(KN.m):947 恒荷载力作用下的弯矩标准值Mk(KN.m):939 活荷载力作用下的弯矩标准值Mk(KN.m):285 3、结构信息1)、裂缝控制等级:三级2)、配筋情况:下部:2×6Φs15.2+9φ25上部:2×6Φs15.2+8φ254、张拉方式:一端张拉5、跨度L(mm)12.6二、截面验算2.1 截面设计参数梁截面宽度 b(mm) 400 梁截面高度 h(mm) 1000 上翼缘高度 h f(mm) 150 上翼缘宽度b f(mm) 2200 下翼缘高度h f'(mm) 0 下翼缘宽度b f'(mm) 400 支座截面加掖高度h a(mm) 0跨中截面面积A1(mm2) 6.700E+05支座截面面积A2(mm2) 6.700E+05跨中截面形心距上翼缘边缘的距离y11(mm) 329 跨中截面形心距下翼缘边缘的距离y12(mm) 671 支座截面形心距上翼缘边缘的距离y21(mm) 329 支座截面形心距下翼缘边缘的距离y22(mm) 671跨中截面惯性矩I1(mm4) 6.296E+10支座截面惯性矩I2(mm4) 6.296E+102.2 截面抗裂及承载力计算验算(三级)1、跨中截面1—1受拉区普通钢筋根数n1 9 受拉区普通钢筋直径d1(mm) 25 拉区预应力钢筋根数n2 12 弯矩标准值Mk(kN-m) 1194 次弯矩M2(kN-m) 469预应力损失计算预应力钢筋与孔道壁之间的摩擦系数引起的预应力损失σl2(N/mm2)147张拉端锚具变形和钢筋内缩引起的预应力损失σl1(N/mm2)0预应力钢筋的应力松弛引起的应力损失σl4(N/mm2)33由于砼的收缩徐变引起的预应力损失σl5(N/mm2)33裂缝宽度验算受拉区纵向钢筋的公称直径d eq(mm) 26.56按有效受拉混凝土截面面积计算的纵向受拉钢筋配筋率ρte0.03轴向压力作用点至纵向受拉钢筋合力点的距离e(mm)1003.03纵向受拉钢筋合力点至截面受压区全力点的距离z(mm)788.03等效应力σsk(N/mm2)74.06裂缝间纵向受拉钢筋应变不均匀系数ψ(0.2<ψ<1.0)0.38裂缝宽度ωmax(mm)0.03 <0.2,满足要求承载力计算跨中计算弯矩包络值+1.2次弯矩M(KN.M)2287实际承载力Mu(KN.M)3313 >M,满足要求2、支座截面2—2受拉区普通钢筋根数n1 8受拉区普通钢筋直径d1(mm) 25拉区预应力钢筋根数n2 12弯矩标准值M k(kN-m) 647次弯矩M2(kN-m) -462预应力损失计算预应力钢筋与孔道壁之间的摩擦系数引起的预应力损失σl2(N/mm2)277张拉端锚具变形和钢筋内缩引起的预应力损失σl1(N/mm2)0预应力钢筋的应力松弛引起的应力损失σl4(N/mm2)33由于砼的收缩徐变引起的预应力损失σl5(N/mm2)33 裂缝验算受拉区纵向钢筋的公称直径d eq(mm) 26.69按有效受拉混凝土截面面积计算的纵向受拉钢筋配筋率ρte0.01轴向压力作用点至纵向受拉钢筋合力点的距离e(mm)111.88纵向受拉钢筋合力点至截面受压区全力点的距离z(mm)-7144.2等效应力σsk(N/mm2)-299.90裂缝间纵向受拉钢筋应变不均匀系数ψ(0.2<ψ<1.0) 1.00裂缝宽度ωmax(mm)0.03 <0.2mm,满足要求抗震验算梁端的配筋强度比λ0.61 <0.75,满足要求截面换算配筋率ρ(%) 2.41 <2.5%,满足要求受压区高度比x/h0 0.23 <0.35,满足要求梁端底面与顶面普通钢筋面积比A s’/As 1.13 >0.3/(1-λ),满足要求梁底面普通钢筋配筋率0.66 >0.2%,满足要求承载力计算支座计算弯矩包络值+次弯矩M(KN.M)947(1.2恒荷弯矩+1.4活荷弯矩)*调幅系数+次弯矩M1(KN.M)263实际承载力Mu(KN.M)2710 >M1,满足要求支座计算配筋包络值A s(mm2) 5018支座换算实际配筋面积A s实(mm2) 9065 >As,满足要求支座抗剪设计值V(KN)977抗剪承载力V实(KN)1645 >V,满足条件施工阶段验算支座验算施工阶段上翼缘边缘砼法向压应力ócc(N/mm2) 2.61 <0.6fck,满足要求施工阶段下翼缘边缘砼法向拉应力ótp(N/mm2)-2.68 <0.95ftk,满足要求跨中验算施工阶段下翼缘边缘砼法向压应力ócc(N/mm2) 1.59 <0.6fck,满足要求施工阶段上翼缘边缘砼法向拉应力ócc(N/mm3)-3.14 <0.95ftk,满足要求施工阶段预应力伸长计算值(mm) 76施工阶段反拱验算0.06 0.05751219荷载长期作用下梁挠度验算9.25 满足要求<1/300一、计算条件1、材料1)、预应力钢筋采用高强低松弛钢绞线Φs15.2,其强度为f ptk=1860N/mm22)、张拉控制应力为σcon(N/mm2)= 13023)、孔道成型采用预埋金属波纹管,直径(mm)为80.004)、锚具种类:夹片锚5)、非预应力钢筋采用HRB400级钢筋,箍筋采用HRB335级钢筋6)、混凝土强度等级为C40 fc(N/mm2)= 19.1ftk(N/mm2)=2.517)、施加预应力时的混凝土强度为2、内力计算1)、跨中截面跨中设计弯矩M(KN.m):2364 恒荷载力作用下的弯矩标准值Mk(KN.m):788 活荷载力作用下的弯矩标准值Mk(KN.m):224 2)、支座截面支座设计弯矩M(KN.m):1474 恒荷载力作用下的弯矩标准值Mk(KN.m):1108 活荷载力作用下的弯矩标准值Mk(KN.m):274 3、结构信息1)、裂缝控制等级:三级2)、配筋情况:下部:2×8Φs15.2+9φ25上部:2×8Φs15.2+8φ254、张拉方式:一端张拉5、跨度L(mm)15.5二、截面验算2.1 截面设计参数梁截面宽度 b(mm) 400 梁截面高度 h(mm) 1200 上翼缘高度 h f(mm) 150 上翼缘宽度b f(mm) 2200 下翼缘高度h f'(mm) 0 下翼缘宽度b f'(mm) 400 支座截面加掖高度h a(mm) 0跨中截面面积A1(mm2) 7.500E+05支座截面面积A2(mm2) 7.500E+05跨中截面形心距上翼缘边缘的距离y11(mm) 411 跨中截面形心距下翼缘边缘的距离y12(mm) 789 支座截面形心距上翼缘边缘的距离y21(mm) 411 支座截面形心距下翼缘边缘的距离y22(mm) 789跨中截面惯性矩I1(mm4) 1.057E+11支座截面惯性矩I2(mm4) 1.057E+112.2 截面抗裂及承载力计算验算(三级)1、跨中截面1—1受拉区普通钢筋根数n1 9 受拉区普通钢筋直径d1(mm) 25 拉区预应力钢筋根数n2 16 弯矩标准值Mk(kN-m) 1012 次弯矩M2(kN-m) 692预应力损失计算预应力钢筋与孔道壁之间的摩擦系数引起的预应力损失σl2(N/mm2)156张拉端锚具变形和钢筋内缩引起的预应力损失σl1(N/mm2)0预应力钢筋的应力松弛引起的应力损失σl4(N/mm2)33由于砼的收缩徐变引起的预应力损失σl5(N/mm2)44裂缝宽度验算受拉区纵向钢筋的公称直径d eq(mm) 26.89按有效受拉混凝土截面面积计算的纵向受拉钢筋配筋率ρte0.03轴向压力作用点至纵向受拉钢筋合力点的距离e(mm)777.51纵向受拉钢筋合力点至截面受压区全力点的距离z(mm)868.11等效应力σsk(N/mm2)-34.20裂缝间纵向受拉钢筋应变不均匀系数ψ(0.2<ψ<1.0) 1.00裂缝宽度ωmax(mm)0.04 <0.2,满足要求承载力计算跨中计算弯矩包络值+1.2次弯矩M(KN.M)2364实际承载力Mu(KN.M)4809 >M,满足要求2、支座截面2—2受拉区普通钢筋根数n1 8受拉区普通钢筋直径d1(mm) 25拉区预应力钢筋根数n2 16弯矩标准值M k(kN-m) 888次弯矩M2(kN-m) -680预应力损失计算预应力钢筋与孔道壁之间的摩擦系数引起的预应力损失σl2(N/mm2)292张拉端锚具变形和钢筋内缩引起的预应力损失σl1(N/mm2)0预应力钢筋的应力松弛引起的应力损失σl4(N/mm2)33由于砼的收缩徐变引起的预应力损失σl5(N/mm2)44 裂缝验算受拉区纵向钢筋的公称直径d eq(mm) 27.04按有效受拉混凝土截面面积计算的纵向受拉钢筋配筋率ρte0.01轴向压力作用点至纵向受拉钢筋合力点的距离e(mm)95.45纵向受拉钢筋合力点至截面受压区全力点的距离z(mm)-18520.95等效应力σsk(N/mm2)-355.74裂缝间纵向受拉钢筋应变不均匀系数ψ(0.2<ψ<1.0) 1.00裂缝宽度ωmax(mm)0.03 <0.2mm,满足要求抗震验算梁端的配筋强度比λ0.68 <0.75,满足要求截面换算配筋率ρ(%) 2.41 <2.5%,满足要求受压区高度比x/h0 0.27 <0.35,满足要求梁端底面与顶面普通钢筋面积比A s’/As 1.13 >0.3/(1-λ),满足要求梁底面普通钢筋配筋率0.59 >0.2%,满足要求承载力计算支座计算弯矩包络值+次弯矩M(KN.M)1474(1.2恒荷弯矩+1.4活荷弯矩)*调幅系数+次弯矩M1(KN.M)310实际承载力Mu(KN.M)3902 >M1,满足要求支座计算配筋包络值A s(mm2) 5989支座换算实际配筋面积A s实(mm2) 11007 >As,满足要求支座抗剪设计值V(KN)895抗剪承载力V实(KN)1996 >V,满足条件施工阶段验算支座验算施工阶段上翼缘边缘砼法向压应力ócc(N/mm2) 4.51 <0.6fck,满足要求施工阶段下翼缘边缘砼法向拉应力ótp(N/mm2)-0.49 <0.95ftk,满足要求跨中验算施工阶段下翼缘边缘砼法向压应力ócc(N/mm2) 5.89 <0.6fck,满足要求施工阶段上翼缘边缘砼法向拉应力ócc(N/mm3)-1.69 <0.95ftk,满足要求施工阶段预应力伸长计算值(mm) 92施工阶段反拱验算 1.36 1.36165642荷载长期作用下梁挠度验算 6.72 满足要求<1/300一、计算条件1、材料1)、预应力钢筋采用高强低松弛钢绞线Φs15.2,其强度为f ptk=1860N/mm22)、张拉控制应力为σcon(N/mm2)= 13023)、孔道成型采用预埋金属波纹管,直径(mm)为55.004)、锚具种类:夹片锚5)、非预应力钢筋采用HRB400级钢筋,箍筋采用HRB335级钢筋6)、混凝土强度等级为C40 fc(N/mm2)= 19.1ftk(N/mm2)=2.517)、施加预应力时的混凝土强度为2、内力计算1)、跨中截面跨中设计弯矩M(KN.m):2058 恒荷载力作用下的弯矩标准值Mk(KN.m):788 活荷载力作用下的弯矩标准值Mk(KN.m):224 2)、支座截面支座设计弯矩M(KN.m):1729 恒荷载力作用下的弯矩标准值Mk(KN.m):1108 活荷载力作用下的弯矩标准值Mk(KN.m):274 3、结构信息1)、裂缝控制等级:三级2)、配筋情况:下部:2×5Φs15.2+7φ25上部:2×5Φs15.2+5φ254、张拉方式:一端张拉5、跨度L(mm)15.5二、截面验算2.1 截面设计参数梁截面宽度 b(mm) 400 梁截面高度 h(mm) 1200 上翼缘高度 h f(mm) 150 上翼缘宽度b f(mm) 2200 下翼缘高度h f'(mm) 0 下翼缘宽度b f'(mm) 400 支座截面加掖高度h a(mm) 0跨中截面面积A1(mm2) 7.500E+05支座截面面积A2(mm2) 7.500E+05跨中截面形心距上翼缘边缘的距离y11(mm) 411 跨中截面形心距下翼缘边缘的距离y12(mm) 789 支座截面形心距上翼缘边缘的距离y21(mm) 411 支座截面形心距下翼缘边缘的距离y22(mm) 789跨中截面惯性矩I1(mm4) 1.057E+11支座截面惯性矩I2(mm4) 1.057E+112.2 截面抗裂及承载力计算验算(三级)1、跨中截面1—1受拉区普通钢筋根数n1 7 受拉区普通钢筋直径d1(mm) 25 拉区预应力钢筋根数n2 10 弯矩标准值Mk(kN-m) 1012 次弯矩M2(kN-m) 433预应力损失计算预应力钢筋与孔道壁之间的摩擦系数引起的预应力损失σl2(N/mm2)156张拉端锚具变形和钢筋内缩引起的预应力损失σl1(N/mm2)0预应力钢筋的应力松弛引起的应力损失σl4(N/mm2)33由于砼的收缩徐变引起的预应力损失σl5(N/mm2)44裂缝宽度验算受拉区纵向钢筋的公称直径d eq(mm) 26.64按有效受拉混凝土截面面积计算的纵向受拉钢筋配筋率ρte0.02轴向压力作用点至纵向受拉钢筋合力点的距离e(mm)1056.53纵向受拉钢筋合力点至截面受压区全力点的距离z(mm)924.81等效应力σsk(N/mm2)40.15裂缝间纵向受拉钢筋应变不均匀系数ψ(0.2<ψ<1.0)0.20裂缝宽度ωmax(mm)0.01 <0.2,满足要求承载力计算跨中计算弯矩包络值+1.2次弯矩M(KN.M)2058实际承载力Mu(KN.M)3320 >M,满足要求2、支座截面2—2受拉区普通钢筋根数n1 5受拉区普通钢筋直径d1(mm) 25拉区预应力钢筋根数n2 10弯矩标准值M k(kN-m) 888次弯矩M2(kN-m) -425预应力损失计算预应力钢筋与孔道壁之间的摩擦系数引起的预应力损失σl2(N/mm2)292张拉端锚具变形和钢筋内缩引起的预应力损失σl1(N/mm2)0预应力钢筋的应力松弛引起的应力损失σl4(N/mm2)33由于砼的收缩徐变引起的预应力损失σl5(N/mm2)44 裂缝验算受拉区纵向钢筋的公称直径d eq(mm) 27.04按有效受拉混凝土截面面积计算的纵向受拉钢筋配筋率ρte0.01轴向压力作用点至纵向受拉钢筋合力点的距离e(mm)340.21纵向受拉钢筋合力点至截面受压区全力点的距离z(mm)-544.20等效应力σsk(N/mm2)-575.16裂缝间纵向受拉钢筋应变不均匀系数ψ(0.2<ψ<1.0) 1.00裂缝宽度ωmax(mm)0.05 <0.2mm,满足要求抗震验算梁端的配筋强度比λ0.68 <0.75,满足要求截面换算配筋率ρ(%) 1.51 <2.5%,满足要求受压区高度比x/h0 0.14 <0.35,满足要求梁端底面与顶面普通钢筋面积比A s’/As 1.40 >0.3/(1-λ),满足要求梁底面普通钢筋配筋率0.46 >0.2%,满足要求承载力计算支座计算弯矩包络值+次弯矩M(KN.M)1729(1.2恒荷弯矩+1.4活荷弯矩)*调幅系数+次弯矩M1(KN.M)565实际承载力Mu(KN.M)2622 >M1,满足要求支座计算配筋包络值A s(mm2) 5989支座换算实际配筋面积A s实(mm2) 6879 >As,满足要求支座抗剪设计值V(KN)895抗剪承载力V实(KN)1996 >V,满足条件施工阶段验算支座验算施工阶段上翼缘边缘砼法向压应力ócc(N/mm2) 1.65 <0.6fck,满足要求施工阶段下翼缘边缘砼法向拉应力ótp(N/mm2)-2.54 <0.95ftk,满足要求跨中验算施工阶段下翼缘边缘砼法向压应力ócc(N/mm2) 2.09 <0.6fck,满足要求施工阶段上翼缘边缘砼法向拉应力ócc(N/mm3)-1.88 <0.95ftk,满足要求施工阶段预应力伸长计算值(mm) 92施工阶段反拱验算0.11 0.10540212荷载长期作用下梁挠度验算9.24 满足要求<1/300YKL-4一、计算条件1、材料1)、预应力钢筋采用高强低松弛钢绞线Φs15.2,其强度为f ptk=1860N/mm22)、张拉控制应力为σcon(N/mm2)= 13023)、孔道成型采用预埋金属波纹管,直径(mm)为55.004)、锚具种类:夹片锚5)、非预应力钢筋采用HRB400级钢筋,箍筋采用HRB335级钢筋6)、混凝土强度等级为C40 fc(N/mm2)= 19.1ftk(N/mm2)=2.517)、施加预应力时的混凝土强度为2、内力计算1)、跨中截面跨中设计弯矩M(KN.m):1591 恒荷载力作用下的弯矩标准值Mk(KN.m):665 活荷载力作用下的弯矩标准值Mk(KN.m):15 2)、支座截面支座设计弯矩M(KN.m):518 恒荷载力作用下的弯矩标准值Mk(KN.m):773 活荷载力作用下的弯矩标准值Mk(KN.m):55 3、结构信息1)、裂缝控制等级:三级2)、配筋情况:下部:2×5Φs15.2+7φ25上部:2×5Φs15.2+5φ254、张拉方式:一端张拉5、跨度L(mm)15.5二、截面验算2.1 截面设计参数梁截面宽度 b(mm) 400 梁截面高度 h(mm) 1100上翼缘高度 h f(mm) 150 上翼缘宽度b f(mm) 2200 下翼缘高度h f'(mm) 0 下翼缘宽度b f'(mm) 400 支座截面加掖高度h a(mm) 0跨中截面面积A1(mm2) 7.100E+05支座截面面积A2(mm2) 7.100E+05跨中截面形心距上翼缘边缘的距离y11(mm) 369 跨中截面形心距下翼缘边缘的距离y12(mm) 731 支座截面形心距上翼缘边缘的距离y21(mm) 369 支座截面形心距下翼缘边缘的距离y22(mm) 731跨中截面惯性矩I1(mm4) 8.263E+10支座截面惯性矩I2(mm4) 8.263E+102.2 截面抗裂及承载力计算验算(三级)1、跨中截面1—1受拉区普通钢筋根数n1 7 受拉区普通钢筋直径d1(mm) 25 拉区预应力钢筋根数n2 10 弯矩标准值Mk(kN-m) 680 次弯矩M2(kN-m) 422预应力损失计算预应力钢筋与孔道壁之间的摩擦系数引起的预应力损失σl2(N/mm2)141张拉端锚具变形和钢筋内缩引起的预应力损失σl1(N/mm2)0预应力钢筋的应力松弛引起的应力损失σl4(N/mm2)33由于砼的收缩徐变引起的预应力损失σl5(N/mm2)34裂缝宽度验算受拉区纵向钢筋的公称直径d eq(mm) 26.64按有效受拉混凝土截面面积计算的纵向受拉钢筋配筋率ρte0.02轴向压力作用点至纵向受拉钢筋合力点的距离e(mm)783.06纵向受拉钢筋合力点至截面受压区全力点的距离z(mm)824.19等效应力σsk(N/mm2)-14.48裂缝间纵向受拉钢筋应变不均匀系数ψ(0.2<ψ<1.0) 1.00裂缝宽度ωmax(mm)0.02 <0.2,满足要求承载力计算跨中计算弯矩包络值+1.2次弯矩M(KN.M)1591实际承载力Mu(KN.M)3013 >M,满足要求2、支座截面2—2受拉区普通钢筋根数n1 5受拉区普通钢筋直径d1(mm) 25拉区预应力钢筋根数n2 10弯矩标准值M k(kN-m) 561次弯矩M2(kN-m) -416预应力损失计算预应力钢筋与孔道壁之间的摩擦系数引起的预应力损失σl2(N/mm2)265张拉端锚具变形和钢筋内缩引起的预应力损失σl1(N/mm2)0预应力钢筋的应力松弛引起的应力损失σl4(N/mm2)33由于砼的收缩徐变引起的预应力损失σl5(N/mm2)34 裂缝验算受拉区纵向钢筋的公称直径d eq(mm) 27.04按有效受拉混凝土截面面积计算的纵向受拉钢筋配筋率ρte0.01轴向压力作用点至纵向受拉钢筋合力点的距离e(mm)103.56纵向受拉钢筋合力点至截面受压区全力点的距离z(mm)-11681.32等效应力σsk(N/mm2)-367.44裂缝间纵向受拉钢筋应变不均匀系数ψ(0.2<ψ<1.0) 1.00裂缝宽度ωmax(mm)0.06 <0.2mm,满足要求抗震验算梁端的配筋强度比λ0.68 <0.75,满足要求截面换算配筋率ρ(%) 1.64 <2.5%,满足要求受压区高度比x/h0 0.15 <0.35,满足要求梁端底面与顶面普通钢筋面积比A s’/As 1.40 >0.3/(1-λ),满足要求梁底面普通钢筋配筋率0.48 >0.2%,满足要求承载力计算支座计算弯矩包络值+次弯矩M(KN.M)518(1.2恒荷弯矩+1.4活荷弯矩)*调幅系数+次弯矩M1(KN.M)197实际承载力Mu(KN.M)2356 >M1,满足要求支座计算配筋包络值A s(mm2) 2986支座换算实际配筋面积A s实(mm2) 6815 >As,满足要求支座抗剪设计值V(KN)495抗剪承载力V实(KN)1821 >V,满足条件施工阶段验算支座验算施工阶段上翼缘边缘砼法向压应力ócc(N/mm2) 2.54 <0.6fck,满足要求施工阶段下翼缘边缘砼法向拉应力ótp(N/mm2)-1.24 <0.95ftk,满足要求跨中验算施工阶段下翼缘边缘砼法向压应力ócc(N/mm2) 2.51 <0.6fck,满足要求施工阶段上翼缘边缘砼法向拉应力ócc(N/mm3)-1.90 <0.95ftk,满足要求施工阶段预应力伸长计算值(mm) 94施工阶段反拱验算0.52 0.51765696荷载长期作用下梁挠度验算8.91 满足要求<1/300一、计算条件1、材料1)、预应力钢筋采用高强低松弛钢绞线Φs15.2,其强度为f ptk=1860N/mm22)、张拉控制应力为σcon(N/mm2)= 13023)、孔道成型采用预埋金属波纹管,直径(mm)为55.004)、锚具种类:夹片锚5)、非预应力钢筋采用HRB400级钢筋,箍筋采用HRB335级钢筋6)、混凝土强度等级为C40 fc(N/mm2)=19.1ftk(N/mm2)=2.397)、施加预应力时的混凝土强度为2、内力计算支座截面支座设计弯矩M(KN.m):562 恒荷载力作用下的弯矩标准值Mk(KN.m):400 活荷载力作用下的弯矩标准值Mk(KN.m):213、结构信息1)、裂缝控制等级:三级2)、配筋情况:上部:2×5Φs15.2+7φ254、张拉方式:一端张拉5、跨度L(mm) 5二、截面验算2.1 截面设计参数梁截面宽度 b(mm) 500 梁截面高度 h(mm) 700 上翼缘高度 h f(mm) 150 上翼缘宽度b f(mm) 2300 下翼缘高度h f'(mm) 0 下翼缘宽度b f'(mm) 500 支座截面加掖高度h a(mm) 0支座截面面积A2(mm2) 6.200E+05支座截面形心距上翼缘边缘的距离y21(mm) 230 支座截面形心距下翼缘边缘的距离y22(mm) 470支座截面惯性矩I2(mm4) 2.632E+102.2 截面抗裂及承载力计算验算(三级)支座截面受拉区普通钢筋根数n1 7 受拉区普通钢筋直径d1(mm) 25 拉区预应力钢筋根数n2 10 弯矩标准值M k(kN-m) 421预应力损失计算张拉端锚具变形和钢筋内缩引起的预应力损失σl1(N/mm2)234预应力钢筋的应力松弛引起的应力损失σl4(N/mm2)33由于砼的收缩徐变引起的预应力损失σl5(N/mm2)43 裂缝验算受拉区纵向钢筋的公称直径d eq(mm) 26.64按有效受拉混凝土截面面积计算的纵向受拉钢筋配筋率ρte0.03轴向压力作用点至纵向受拉钢筋合力点的距离e(mm)305.08纵向受拉钢筋合力点至截面受压区全力点的距离z(mm)218.83等效应力σsk(N/mm2)112.75裂缝间纵向受拉钢筋应变不均匀系数ψ(0.2<ψ<1.0)0.60裂缝宽度ωmax(mm)0.07 <0.2mm,满足要求抗震验算梁端的配筋强度比λ0.60 <0.75,满足要求截面换算配筋率ρ(%) 2.44 <2.5%,满足要求受压区高度比x/h0 0.26 <0.35,满足要求承载力计算支座计算弯矩包络值M(KN.M)5621.2恒荷弯矩+1.4活荷弯矩M1(KN.M)509实际承载力Mu(KN.M)1568 >M1,满足要求支座计算配筋包络值A s(mm2) 2700支座换算实际配筋面积A s实(mm2) 7814 >As,满足要求支座抗剪设计值V(KN)180抗剪承载力V实(KN)1468 >V,满足条件挠度验算挠度f(mm) 10.31 满足要求。

预应力管桩计算书

预应力管桩计算书

预应力管桩计算书一、计算依据1、《预应力混凝土管桩基础技术规程》 (DBJ/T15-27-2018)2、《建筑结构荷载规范》 (GB-2012)3、《建筑桩基技术规范》 (JGJ94-2008)二、基本参数1、桩型:预应力管桩2、桩径:D=400mm3、桩长:L=15m4、桩端持力层:强风化岩层5、单桩承载力设计值:R=1200kN三、管桩结构计算1、截面面积A = π(D/2)² = π(400/2)² = 4000π mm²2、惯性矩I = π(D/2)³ = π(400/2)³ = π mm⁴3、桩身抗弯强度设计值fpy = 1.4 × 140 N/mm² = 1.4 × 140 ×1000 N/cm²4、桩身配箍率n = A × fpy / (πD²) = 4000π× 140 / (π×400²) = 1/75≈0.01335、约束箍筋布置:在桩身高度范围内每隔1m设置一道直径为16mm 的约束箍筋,约束箍筋的间距宜不大于350mm。

6、配箍率计算:n = (π×D²×Z×fy/4)/(Z×fy/2+π×D²×n×fy/4) = (π×400²×1×140/4)/(1×140/2+π×400²×16×140/4) =0.9667≈1/757、单桩竖向承载力设计值Q = n × A × fpy = 1/75 × 4000π×140 × 1000 N = N8、单桩竖向承载力特征值qpa = Q / (πD²) = / (π×400²) N/cm ² = 17 N/cm²9、根据地质勘察报告提供的资料,强风化岩层的承载力特征值fa=350kPa,则单桩竖向承载力特征值qpa= fa=350kPa。

预应力张拉计算书(范本)

预应力张拉计算书(范本)

预应力张拉计算书(范本)预应力张拉计算书(范本)1. 引言本文档旨在对预应力张拉计算进行详细说明,以确保计算准确性和安全性。

2. 术语定义在本文档中,以下术语被定义如下:- 预应力张拉:通过施加预应力力量,使混凝土构件产生预压应力,以增强其承载能力和抗裂性能的过程。

- 预应力力量:通过张拉预应力筋或压制预应力筋所施加的力量。

- 预应力筋:用于施加预应力力量的钢筋。

- 预应力锚固端:将预应力筋锚固在混凝土中的部位。

- 拉伸长度:预应力筋在锚固端至张拉端的拉伸长度。

- 张拉端:预应力筋的一端,用于施加预应力力量。

- 引伸载荷:施加在预应力筋上的力量。

3. 设计要求在进行预应力张拉计算前,需要满足以下设计要求:- 构件尺寸和几何形状符合设计规范。

- 张拉力计算符合设计规范。

- 预应力筋的保护层和锚固长度符合设计规范。

- 构件的预应力张拉布置符合设计规范。

4. 计算输入参数进行预应力张拉计算时,需要输入以下参数:- 构件的尺寸和几何形状。

- 预应力筋的数量、直径和强度等级。

- 构件的材料参数,如混凝土强度等。

5. 张拉力计算通过施加预应力力量,预应力筋将被拉伸,产生一定的张拉力。

张拉力的计算公式如下:张拉力 = 引伸载荷 / 预应力筋的截面积6. 锚固长度计算预应力筋需要足够的锚固长度,以保证其在锚固段不滑动并能传递预应力力量。

锚固长度的计算需要考虑预应力筋的直径和混凝土的强度等因素。

7. 考虑其他因素在进行预应力张拉计算时,还需考虑以下因素:- 混凝土的抗裂性能。

- 预应力筋的损失。

- 预应力力量的施加方式和顺序。

8. 结论通过对预应力张拉计算的详细说明,我们可以确保计算的准确性和安全性。

附件:(在此处添加相关附件)法律名词及注释:1. 预应力:指在施工或制造过程中,施加力量于构件以减小约束应力并增加预先应变的作用。

2. 混凝土强度:指混凝土材料所能承受的最大压缩力。

3. 抗裂性能:指混凝土构件在受力后能够有效防止或减轻裂缝的产生和扩展的能力。

24m钢屋架设计计算书

24m钢屋架设计计算书

目录1 设计资料 (1)2 屋架形式与结构布置 (2)2.1 屋架形式 (2)2.2 结构布置 (3)3 荷载计算 (4)3.1 恒活荷载计算 (4)3.2 荷载组合 (5)4 内力计算 (6)5 杆件截面设计 (9)5.1 上弦杆截面计算 (9)5.2 下弦杆截面计算 (10)5.3 腹杆截面计算 (10)5.4 其他腹杆及填板设置 (12)6 节点设计 (15)6.1 腹杆与节点板连接焊缝计算 (15)6.2 上弦“B”节点 (16)6.3 下弦“c”节点 (18)6.4 屋脊“I”节点 (19)6.5 下弦拼接节点“i” (20)6.6 支座节点“a” (22)1 设计资料题目为:某车间钢屋架(无吊车,无天窗,无振动)。

1、车间柱网布置图如下图。

2、屋架支承(铰支)于钢筋混凝土柱顶,砼强度等级C25。

3、屋面采用1.5×6m的预应力钢筋大型混凝土屋面板。

(屋面板不作支撑用)4、不考虑地震设防。

5、可供应的钢材为普通碳素结构钢,型钢的最大长度为15m,各种规格齐全,可选用各种类型的焊条及螺栓。

6、钢屋架采用工厂制作,运往工地安装,最大运输长度为16m,运输高度为3.65m,工地具有足够的起重和安装条件。

7、屋面做法及荷载自重屋架自重=(0.12+0.011L) KN/㎡ L—屋架跨度。

屋面做法永久荷载:SBS 改性沥青防水卷材4mm 厚找平层1:3 水泥砂浆20 厚保温层65 厚(聚苯乙烯泡沫塑料板20kg / m3 )找平层 1:3 水泥砂浆(掺聚丙烯) 20 厚0.94 KN/m²预应力大型屋面板及灌缝可变荷载:屋面活荷载雪载屋面积灰荷载1.4 KN/m²0.8 KN/m²0.6 KN/m²0.75 KN/m²2 屋架形式与结构布置2. 1 屋架形式屋架采用梯形钢屋架 ,无檩体系 ,屋面坡度为 i=1/10 ,屋架计算跨度 l 0 l 300 24000 300 23700mm 。

预应力管桩计算书

预应力管桩计算书

预应力管桩基础:根据5.3.8-1进行估算单桩承载力计算:±0.000相当于绝对标高12.250 采用预应力管桩桩径500,壁厚100。

以孔点15为例桩长24米庄周分布土层如下:第3层土侧阻 32kPa, 厚度 3.80米第4层土侧阻 47kPa, 厚度 1.60米第5层土侧阻 37kPa, 厚度 4.70米第6层土侧阻 42kPa, 厚度 5.10米第7-1层土侧阻 52kPa, 厚度 5.16米第8层土侧阻 47kPa, 厚度3米λp=0.8 Aj=0.1256 Ap1=0.07065Quk = Qsk + Qpk= u * ∑qsik*li + qpk * (Aj+λpApi)=1.5708 ( 32*3.8 + 47*1.6 + 37*4.7 + 42*5.1 + 52*5.16+47*3 ) +2000 * ( 0.1256+0.8*0.07065) = 1545.7 + 364= 1909NRa = 1/k * Quk = 1/2 * 1909 = 954 kNRa实际取用值:950kN根据5.3.8-1进行估算单桩承载力计算:±0.000相当于绝对标高12.250 采用预应力管桩桩径500,壁厚100。

以孔点15为例桩长24米庄周分布土层如下:第3层土侧阻 32kPa, 厚度 3.80米第4层土侧阻 47kPa, 厚度 1.60米第5层土侧阻 37kPa, 厚度 4.70米第6层土侧阻 42kPa, 厚度 5.10米第7-1层土侧阻 52kPa, 厚度 5.16米第8层土侧阻 47kPa, 厚度3米λp=0.8 Aj=0.1256 Ap1=0.07065Quk = Qsk + Qpk= u * ∑qsik*li + qpk * (Aj+λpApi)=1.5708 ( 32*3.8 + 47*1.6 + 37*4.7 + 42*5.1 + 52*5.16+47*3 ) +2000 * ( 0.1256+0.8*0.07065) = 1545.7 + 364= 1909NRa = 1/k * Quk = 1/2 * 1909 = 954 kNRa实际取用值:950kN桩身承载力计算(5.8.2-1) 配筋14根预应力钢筋10N ≦Ψc * fc * Aps +0.9fyAs 砼标号C601.35 * 950000 ≦ 0.9 * 27.5 * 3.1415926 * (5002-3002)/4+0.9*400*10991282500 ≦12836346满足设计要求试桩(配筋同其余桩,也可以提高)的标号:试桩按Quk进行,则 (依据《建筑基桩检测技术规范》(JGJ106-2003)4.1.4条)2.0Ra ≦Ψc * fc * Aps +0.9fyAs 砼标号C602*950000 ≦ 0.9 * 27.5 * 3.1415926 * (5002-3002)/4+0.9*400*10991900000≦ 12440706+395640=12836346锚桩(抗拔桩)(标号同其余桩)的配筋:每根锚桩的钢筋抗拉合力不小于Quk/4((JGJ106-2003)5.1.3条)2*950000/4≦1000*As As>475 则实配14根三级钢20 实配面积As=1099满足设计要求。

预应力张拉计算书(例范本)

预应力张拉计算书(例范本)

预应力张拉计算书(例范本)本合同段采用国标φs15.24(GB/T5224-2003)的预应力钢绞线,标准强度为Rby=1860MPa,低松驰。

跨度为30m的T梁和25m的箱梁均采用Φs15.24mm钢绞线。

预应力筋张拉采用千斤顶油压标示张拉力和伸长值双控施工。

预应力钢绞线的张拉在预制梁的预应力损失参数方面,纵向预应力钢绞线波纹管摩阻系数为0.26,孔道偏差系数为0.003,钢束松弛预应力损失根据张拉预应力为1302MPa取为△=0.025,锚具变形与钢束回缩值(一端)为6mm;横向预应力钢绞线波纹管摩阻系数为0.26,孔道偏差系数为0.003,钢束松弛预应力损失为△=0.025,锚具变形与钢束回缩值(一端)为6mm;竖向预应力钢绞线波纹管摩阻系数为0.35,孔道偏差系数为0.003,钢束松弛预应力损失为△=0.05,锚具变形与钢束回缩值(一端)为1mm。

预应力材料方面,纵横向预应力束采用公称直径为Φ=15.24(7Φ5),抗拉标准强度f=1860MPa的高强度低松弛钢绞线;柔性吊杆采用27根Φ15.2环氧喷涂钢绞线组成,fpk=1860MPa;竖向预应力采用Φ25高强精扎螺纹粗钢筋。

锚具方面,纵向预应力采用OVM15-9型锚具锚固,横向预应力束采用OVMBM15-3(BM15-3P)、OVMBM15-4(BM15-4P)型锚具,竖向预应力采用JLM-25型锚具锚固;吊杆采用GJ15-27型锚具。

在设计伸长量方面,预应力平均张拉力的计算公式为Pp=(p1-e)/(kx+μθ),其中Pp为预应力筋平均张拉力,p为预应力筋张拉端的张拉力,x为从张拉端至计算截面的孔道长度,θ为从张拉端至计算截面的曲线孔道部分切线的夹角之和,k为孔道每米局部偏差对摩檫的影响系数,取0.002,μ为预应力筋与孔道壁的摩檫系数,取0.14.预应力筋的理论伸长值计算公式为Δl=ppl/(AEp),其中Δl为预应力筋的理论伸长值,l为预应力筋的长度,A为预应力筋的截面积,Ep为预应力筋的弹性模量。

预应力梁计算书

预应力梁计算书

预应力梁计算书工程概况华师附中新建教学楼部分框架梁由于跨度大,故采用部分有粘结预应力砼。

预应力筋采用高强低松弛钢绞线,强度等级为1860Mpa,规格为Φs15.2,有粘结钢绞线k(预应力筋考虑每米长度局部偏差的摩擦系数)值取0.0015,μ(预应力筋与孔道壁之间的摩擦系数)值取0.25,锚具采用夹片式锚具,张拉控制应力为1395KN/m2。

二、预应力结构设计的基本考虑预应力抗裂控制:梁按二级抗裂控制。

即:荷载标准效应组合进行计算时,梁关键截面受拉边缘砼产生的拉应力不超过αcts f tk, αcts取不大于1.0; 按荷载准永久效应组合进行计算时,梁关键截面受拉边缘砼产生的拉应力不超过αctl f tk, αctl取不大于0.5。

三、预应力框架梁设计过程本工程结构设计参照《混凝土结构设计规程》、《建筑结构荷载规范》、《建筑抗震设计规范》、《后张预应力砼设计手册》陶学康编著等规范及文献。

采用《预应力砼建筑结构设计系列软件》PRCS5.0程序进行计算。

(一)、计算简图及荷载预应力设计根据总体计算的剪力图、弯矩图,现行预应力设计规程进行。

(二)、梁截面尺寸梁编号计算简图编号梁截面预应力筋根数混凝土强度等级YKL1 YKL1 500×12008 C35YL1 YL1 500×120012 C35(三)、结构内力计算及分析根据总体计算内力图,由预应力平面框架程序\PRCS\计算,标准组合工况、承载力组合工况的弯矩见附图所示。

(四)预应力筋布置及预应力损失计算在梁中布置预应力筋,其曲线形状根据其弯矩包络图确定。

经多次试算,框架梁配筋见(二),钢绞线强度等级为1860Mpa,张拉控制应力σcon=75% f ptk.=1395Mpa。

预应力损失计算:(1). 预应力总损失值最小取80Mpa。

(2). 各种损失(张拉端锚具变形及钢筋内缩引起的预应力损失σl1、预应力筋与管壁之间的摩擦引起的预应力损失σl2、预应力筋的应力松弛引起的预应力损失σl4、砼收缩与徐变引起的预应力损失σl5)按照规范与规程条款由程序自行计算,计算过程略。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

为所有纵筋的重心至梁截面较近边缘的距离;aa为预应力筋的重心至梁截面较近边缘的距离;p为非预应力筋的重心至梁截面较近边缘的距离;asl0为预应力筋端部为直线段时初始长度;l1为预应力筋端部至曲线反弯点的长度;l2为预应力筋曲线反弯点至跨中截面的长度;MH1为支座处恒载产生的弯矩;MH2为跨中处恒载产生的弯矩;ML1为支座处活载产生的弯矩;ML2为跨中处活载产生的弯矩;ψq为准永久值系数(用于进一步开发的计算)qs为短期荷载效应组合线荷载(用于进一步开发的挠度计算此处可不用输入);ql为长期荷载效应组合线荷载(用于进一步开发的挠度计算此处可不用输入);几何数据:b=500mm, b0=900mm, h=1200mm, a0=120mm, as=60mm,ap=135mm,h1=150mm l1=3600mm,l2=8400mm,l0=0mmy1=(b*h^2+2b0*h1^2)/2(b*h+2b0*h1)=437mm形心轴y0=h-y1=763mmI=1/3(b*y0^3+(b+2b0)y1^3-2b0(y1-h1)^3=123829530000mm^4A=bh+2b0*h1=870000mm^2l=2(l1+l2)=24000f1=(h-2*ap)*l1/(l/2-l0)=279mmf2=h-2ap-f1=651mmrc1=(f1^2+l1^2)/(2*f1)=23365.3mmrc2=(f2^2+l2^2)/(2*f2)=54519.0mmθ=l2/rc2=0.154荷载数据:短期荷载效应组合下线荷载qs=41.0KN/m,长期荷载效应组合下线荷载ql=38.0KN/m 准永久值系数ψ=0.5支座处:恒载产生的弯矩MH1=0.0KN·m,活载产生的弯矩MLl=0.0KN·m短期荷载效应组合下弯矩Ms1=2.0KN·m,长期荷载效应组合下弯矩Ml1=1.5KN·m 弯矩设计值M1=2.6KN·m跨中处:恒载产生的弯矩MH2=2121.2KN·m,活载产生的弯矩ML2=831.0KN·m短期荷载效应组合下弯矩Ms2=2952.2KN·m,长期荷载效应组合下弯矩Ml2=2536.7KN·m弯矩设计值M2=3708.8KN·m材料强度:混凝土强度等级C35:fcm=16.7MPa,fc=16.7MPa,ft=2.20MPa,ftk=1.57MPa,fcu'=35.0MPa,Ec=31500MPa钢筋强度:fptk=1860MPa,fpy=1220MPa,Ap1=181mm^2,Es=19500MPa,fy=360MPa计算参数选择:预应力损失折减系数:η=0.75跨中截面塑性抵抗矩系数:γ=1.75×(0.7+120/1200)=1.40支座截面塑性抵抗矩系数:γ'=1.50×(0.7+120/1200)=1.20抗裂系数γcr=0.7控制应力允许值σcon=0.7×1860MPa张拉端锚具变形和钢筋内缩值a=5摩擦系数k=0.0015,μ=0.25============预应力筋及非预应力筋选择:跨中截面荷载的短期效应组合下抗裂验算边缘的混凝土法向应力σsc:σsc=Ms2*y0/I=2952.2KN/m×763mm/123829530000mm4=18.2N/mm2预应力度λ:λ=γcr-γftk/σsc=0.7-1.40×1.57/18.2=0.58跨中所需预应力筋面积Ap:Ap=λσsc/(ησcon(1/A+ep0y0/I))=0.58×18.2/(0.75×0.70×1860×(1/870000+628×763/12382953000 0))=2150mm^2支座截面荷载的短期效应组合下抗裂验算边缘的混凝土法向应力σsc:σsc1=Ms1*y1/I=2.00KN/m×437mm/123829530000.00mm4=0.0N/mm2预应力度λ:λ=γcr-γftk/σsc=0.70-1.20×1.57/0.01=-266.23支座所需预应力筋面积Ap1:Ap'=λσsc1/(ησcon(1/A+ep1y1/I))=-266.23×0.01/(0.75×0.70×1860×(1/870000+302×437/1238295 30000))=-869mm^2选定跨中预应力筋Ap=1946mm^2选定支座预应力筋Ap'=0mm^2计算跨中所需非预应力筋:fcm*(2*b0+b)*h1*(h0-h1/2)≥M2*1e6,受压区在翼缘范围内x=h0-sqrt(h0*h0-2*M2*1e6/(fcm*(2*b0+b)))且x≥2as,x=120.0mmzs=h-as-x/2=1080.0mmzp=h-as-x/2=1005.0mmAs≥(M2*1e6-Ap*fpy*zp)/(fy*zs)且As≥0.002bh-ApAs≥(3708.8×1e6-1946×1220×1005.0)/(360×1080.0)且As≥0.002×500×1200-1946得As=3402mm^2计算支座所需非预应力筋面积x=h0-sqrt(h0*h0-2*(M1*1e6-2*Fcm*b0*h1*(h0-h1/2))/(fcm*(2*b0+b)))且x≥2as,x=552.7mmzs=h-as-x/2=863.7mmzp=h-as-x/2=788.7mmAs'≥(M1*1e6-Ap*fpy*zp)/(fy*zs)且As'≥0.002bh-Ap'As'≥(2.6×1e6-0×1220×788.7)/(360×863.7)且As'≥0.002×500×1200-0得As=1200mm^2选定跨中非预应力筋面积As=3920mm^2选定支座非预应力筋面积As'=1960mm^2计算配筋率:下部纵筋ρ=(Ap+As)/A=(1946+3920)/870000=0.006743上部纵筋ρ=(Ap'+As')/A=(0+1960)/870000=0.002253============预应力损失计算:计算孔道摩擦损失σl2:AB段终点应力σB=σcon×exp(-(kl1+μθ))=0.7×1860×exp(-(0.0015×3600/1000+0.25×0.154))=1246.1MPaBC段终点应力σc=σB×exp(-(Kl2+μθ))=1246.1×exp(-(0.0015×8400/1000+0.25×0.154))=1184.0MPaCB'段终点应力σB'=σc×exp(-(Kl2+μθ))=1184.0×exp(-(0.0015×8400/1000+0.25×0.154))=1125.0MPaB'A'段终点应力σA'=σB'×exp(-(Kl1+μθ))=1125.0×exp(-(0.0015×3600/1000+0.25×0.154))=1076.6MPa计算锚具变形及钢筋内缩损失σl1:第一段圆弧形曲线无粘结预应力筋中近似直线变化的斜率i1=σA×(k+u/rc1)=0.7×1860.0/1000×(0.0015+0.25×1000/23365.3)=0.0159N/mm2/mm第一段圆弧形曲线无粘结预应力筋中近似直线变化的斜率i2=σB×(k+u/rc2)=1246.1/1000×(0.0015+0.25×1000/54519.0)=0.0076N/mm2/mm反响摩擦影响长度lf=sqrt(a×Es/i2-i1×(l1*l1-l0*l0)/i2+l1*l1)=sqrt(5×19500.0/0.0076-0.0159×(3600×3600-0×0)/0.0076+3600×3600)=-1.$mm两端张拉计算支座第一批预应力损失σlI'=σl1'=σl1=2*i1*(l1-l0)+2*i2*(Lf-l1)=2×0.0159×(3600-0)+2×0.0076×(-1.$-3600)=-1.$MPa计算跨中:l/2<lf,锚具变形及钢筋内缩损失σl1=2*i2*(lf-l/2)=2×0.0076×(0--524288/2)=24000.0MPa计算预应力钢筋的应力松弛σl4:低松弛:钢筋应力松弛损失σl4=0.125*(σcon/fptk-0.5)*σcon=0.125×(0.70-0.5)×0.7×1860=32.5MPa计算混凝土收缩徐变引起的损失σl5(考虑自重影响,近似取恒载的全部)支座处Np'=(σcon-QlI')*Ap'=(0.7×1860--1.$)×0=-1.$N支座处σpc'=Np'/A+(Np'*(y1-a0)-Mh1)*(y1-a0)/I=-1.$/870000+(-1.$×(437-135)-0.0×1e6)×(437-135)/123829530000=-1.#JMPa跨中处Np=(σcon-QlI)*Ap=(0.7×1860--1.$)×1946=-1.$N跨中处σpc=Np/A+(Np*(y0-a0)-Mh2)*(y0-a0)/I=-1.$/870000+(-1.$×(763-135)-2121.2×1e6)×(763-135)/123829530000=-1.#JMPa支座处σl5'=(25+220*σpc'/fcu')/(1+15*ρ)=(25+220×-1.$/35)/(1+15×0.002253)=-1.$MPa跨中处σl5=(25+220*σpc/fcu')/(1+15*ρ)=(25+220×-1.$/35)/(1+15×0.006743)=-1.$MPa跨中总损失σl=σlI+σl4+σl5=-1.$+32.5+-1.$=-1.$MPa支座总损失σl'=σlI'+σl4+σl5'=-1.$+32.5+-1.$=-1.$MPa支座处Np'=(σcon-σl')*Ap'-σl5'*As'=(0.7×1860.0--1.$)×0.0--1.$×1960.0=-1.$N跨中处Np=(σcon-σl)*Ap-σl5*As=(0.7×1860.0--1.$)×1946.0--1.$×3920.0=-1.$N预应力引起的次弯矩计算及综合弯矩等效荷载计算:取支座及跨中截面有效应力的平均值作为跨间的预应力值计算等效荷载(为近似计算) Np=(Np+Np1)/2=(-1.$+-1.$)/2=-1.$该结构有如下等效荷载:曲线范围内均布荷载q=8Np*e/L^2:端力矩:端部预应力对截面的偏心矩乘积:端力矩Mp=-1.$KN×302.00mm=-1.$KN·m支座处q1=8×-1.$N×279mm/(2×3600mm)^2=-1.$KN/m支座处q2=8×-1.$N×651mm/(2×8400mm)^2=-1.$KN/m支座主弯矩Mzh1=-1.$N×302mm=-1.$KN·m跨中主弯矩Mzh2=-1.$N×628mm=-1.$KN·m支座综合弯矩Mzo1=1.0KN·m跨中综合弯矩Mzo2=1.0KN·m支座次弯矩Mc1=1.0KN·m--1KN·m=-1.$KN·m跨中次弯矩Mc2=-1.$KN·m-1KN·m=-1.$KN·m支座正截面抗弯验算支座设计弯矩为M1-Mc1=-1.$KN·mx=(fy*As+fpy*Ap)/(fcm*b)且x≥2as,x=453.3mm-1.$KN·m≤16.7×500×453.3×(1080-453.3/2)=3230.1KN·m支座正截面承载力符合要求!跨中正截面抗弯验算跨中设计弯矩为M2+Mc2=-1.$KN·mfcm*(2*b0+b)*h1)≥Fy*As+Fpy*Ap,受压区在翼缘范围内x=(fy*As+fpy*Ap)/(Fcm*(b+2*b0))且x≥2as,x=120.0mm-1.$KN·m≤16.7×(2×900+500)×120.0×(1080-120.0/2)=4701.4KN·m跨中正截面承载力符合要求!使用阶段抗裂验算σpc=Mzo1*y1*1e6/I+NP/A=1.0KN·m×437mm×1e6/123829530000mm^4+-1.$N/870000mm^2= -1.#JMPaσpc'=Mzo2*y0*1e6/I+NP/A=1.0KN·m×763mm×1e6/123829530000mm^4+-1.$N/870000mm^2= -1.#JMPa跨中混凝土拉应力限制系数αct=(σsc-σpc)/γFtk=(18.2--1.$)/(1.40×1.57)=-1.#J支座αct'=(σsc'-σpc')/γ'Ftk=(0.0--1.$)/(1.20×1.57)=-1.#J混凝土拉应力限制系数αct且αct'<3,结果符合要求!。

相关文档
最新文档