空间向量在立体几何中的应用知识点大全经典高考题带解析练习题带答案2

合集下载

专题26 空间向量在立体几何中的运用(2)(纯答案)

专题26 空间向量在立体几何中的运用(2)(纯答案)

专题26 空间向量在立体几何中的运用(2)答案题型一、面面角例1、【2020年高考全国Ⅰ卷理数】如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE AD =.ABC △是底面的内接正三角形,P 为DO 上一点,PO DO =.(1)证明:PA ⊥平面PBC ; (2)求二面角B PC E --的余弦值.【解析】(1)设DO a =,由题设可得,,PO AO AB a ===,2PA PB PC ===. 因此222PA PB AB +=,从而PA PB ⊥. 又222PA PC AC +=,故PA PC ⊥. 所以PA ⊥平面PBC .(2)以O 为坐标原点,OE 的方向为y 轴正方向,||OE 为单位长,建立如图所示的空间直角坐标系O xyz -.由题设可得1(0,1,0),(0,1,0),(,0),(0,0,)222E A C P --. 所以31(,,0),(0,1,)22EC EP =--=-. 设(,,)x y z =m 是平面PCE 的法向量,则00EPEC ⎧⋅=⎪⎨⋅=⎪⎩m m ,即021022y z x y ⎧-+=⎪⎪⎨⎪--=⎪⎩,可取(=m . 由(1)知AP =是平面PCB 的一个法向量,记AP =n , 则cos ,|||5⋅==n m n m n m |. 所以二面角B PC E --的余弦值为5.变式1、【2020年高考全国Ⅱ卷理数】如图,在长方体1111ABCD A B C D -中,点,E F 分别在棱11,DD BB 上,且12DE ED =,12BF FB =.(1)证明:点1C 在平面AEF 内;(2)若2AB =,1AD =,13AA =,求二面角1A EF A --的正弦值.【解析】设AB a =,ADb =,1AAc =,如图,以1C 为坐标原点,11C D 的方向为x 轴正方向,建立空间直角坐标系1C xyz -.(1)连结1C F ,则1(0,0,0)C ,(,,)A a b c ,2(,0,)3E a c ,1(0,,)3F b c ,1(0,,)3EA b c =,11(0,,)3C F b c =,得1EA C F =.因此1EA C F ∥,即1,,,A E F C 四点共面,所以点1C 在平面AEF 内. (2)由已知得(2,1,3)A ,(2,0,2)E ,(0,1,1)F ,1(2,1,0)A ,(0,1,1)AE =--,(2,0,2)AF =--,1(0,1,2)A E =-,1(2,0,1)A F =-.设1(,,)x y z =n 为平面AEF 的法向量,则110,0,AE AF ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,220,y z x z --=⎧⎨--=⎩可取1(1,1,1)=--n . 设2n 为平面1A EF 的法向量,则22110,0,A E A F ⎧⋅=⎪⎨⋅=⎪⎩n n 同理可取21(,2,1)2=n .因为121212cos ,||||⋅〈〉==⋅n n n n n n ,所以二面角1A EF A --.变式2、【2019年高考全国Ⅰ卷理数】如图,直四棱柱ABCD–A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN∥平面C1DE;(2)求二面角A−MA1−N的正弦值.【答案】(1)见解析;(2)5.【解析】(1)连结B1C,ME.因为M,E分别为BB1,BC的中点,所以ME∥B1C,且ME=12B1C.又因为N为A1D的中点,所以ND=12A1D.由题设知A1B1=DC,可得B1C=A1D,故ME=ND,因此四边形MNDE为平行四边形,MN∥ED.又MN⊄平面EDC1,所以MN∥平面C1DE.(2)由已知可得DE⊥DA.以D为坐标原点,DA的方向为x轴正方向,建立如图所示的空间直角坐标系D−xyz,则(2,0,0)A ,A 1(2,0,4),2)M ,(1,0,2)N ,1(0,0,4)A A =-,1(12)A M =--,1(1,0,2)A N =--,(0,MN =.设(,,)x y z =m 为平面A 1MA 的法向量,则1100A M A A ⎧⋅=⎪⎨⋅=⎪⎩m m ,所以2040x z z ⎧-+-=⎪⎨-=⎪⎩,.可取=m .设(,,)p q r =n 为平面A 1MN 的法向量,则100MN A N ⎧⋅=⎪⎨⋅=⎪⎩,.n n所以020p r ⎧=⎪⎨--=⎪⎩,.可取(2,0,1)=-n .于是cos ,||⋅〈〉===‖m n m n m n , 所以二面角1A MA N --变式3、【2019年高考全国Ⅱ卷理数】如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,求二面角B –EC –C 1的正弦值.【答案】(1)证明见解析;(2 【解析】(1)由已知得,11B C ⊥平面11ABB A ,BE ⊂平面11ABB A ,故11B C ⊥BE .又1BE EC ⊥,所以BE ⊥平面11EB C .(2)由(1)知190BEB ∠=︒.由题设知Rt ABE △≌11Rt A B E △,所以45AEB ∠=︒,故AE AB =,12AA AB =.以D 为坐标原点,DA 的方向为x 轴正方向,||DA 为单位长,建立如图所示的空间直角坐标系D –xyz ,则C (0,1,0),B (1,1,0),1C (0,1,2),E (1,0,1),(1,0,0)CB =,(1,1,1)CE =-,1(0,0,2)CC =.设平面EBC 的法向量为n =(x ,y ,x ),则0,0,CB CE ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,0,x x y z =⎧⎨-+=⎩所以可取n =(0,1,1)--.设平面1ECC 的法向量为m =(x ,y ,z ),则10,0,CC CE ⎧⋅=⎪⎨⋅=⎪⎩m m 即20,0.z x y z =⎧⎨-+=⎩ 所以可取m =(1,1,0).于是1cos ,||||2⋅<>==-n m n m n m .所以,二面角1B EC C --. 题型二、探索性问题例2、【2019年高考北京卷理数】如图,在四棱锥P –ABCD 中,PA ⊥平面ABCD ,AD ⊥CD ,AD ∥BC ,PA =AD =CD =2,BC =3.E 为PD 的中点,点F 在PC 上,且13PF PC =. (1)求证:CD ⊥平面PAD ; (2)求二面角F –AE –P 的余弦值; (3)设点G 在PB 上,且23PG PB =.判断直线AG 是否在平面AEF 内,说明理由.【答案】(1)见解析;(2)3;(3)见解析.【解析】(1)因为PA ⊥平面ABCD ,所以PA ⊥CD . 又因为AD ⊥CD ,所以CD ⊥平面PAD . (2)过A 作AD 的垂线交BC 于点M .因为PA ⊥平面ABCD ,所以PA ⊥AM ,PA ⊥AD .如图建立空间直角坐标系A −xyz ,则A (0,0,0),B (2,-1,0),C (2,2,0),D (0,2,0),P (0,0,2).因为E 为PD 的中点,所以E (0,1,1). 所以(0,1,1),(2,2,2),(0,0,2)AE PC AP ==-=.所以1222224,,,,,3333333PF PC AF AP PF ⎛⎫⎛⎫==-=+= ⎪ ⎪⎝⎭⎝⎭.设平面AEF 的法向量为n =(x ,y ,z ),则0,0,AE AF ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,2240.333y z x y z +=⎧⎪⎨++=⎪⎩ 令z =1,则1,1y x =-=-.于是=(1,1,1)--n .又因为平面PAD 的法向量为p =(1,0,0),所以cos ,||⋅〈〉==‖n p n p n p . 由题知,二面角F −AE −P.(3)直线AG 在平面AEF 内. 因为点G 在PB 上,且2,(2,1,2)3PG PB PB ==--, 所以2424422,,,,,3333333PG PB AG AP PG ⎛⎫⎛⎫==--=+=- ⎪ ⎪⎝⎭⎝⎭. 由(2)知,平面AEF 的法向量=(1,1,1)--n .所以4220333AG ⋅=-++=n . 所以直线AG 在平面AEF 内.变式1、(2019南通、泰州、扬州、徐州、淮安、宿迁、连云港二调)如图,在四棱锥PABCD 中,底面ABCD 是矩形,PA ⊥平面ABCD ,AB =1,AP =AD =2.(1) 求直线PB 与平面PCD 所成角的正弦值;(2) 若点M ,N 分别在AB ,PC 上,且MN ⊥平面PCD ,试确定点M ,N 的位置.规范解答 (1)由题意知,AB ,AD ,AP 两两垂直.以{AB →,AD →,AP →}为正交基底,建立如图所示的空间直角坐标系Axyz ,则B(1,0,0),C(1,2,0),D(0,2,0),P(0,0,2). 从而PB →=(1,0,-2),PC →=(1,2,-2),PD →=(0,2,-2). 设平面PCD 的法向量n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·PC →=0,n ·PD →=0,即⎩⎨⎧x +2y -2z =0,2y -2z =0,不妨取y =1,则x =0,z =1.所以平面PCD 的一个法向量为n =(0,1,1).(3分) 设直线PB 与平面PCD 所成角为θ, 所以sin θ=|cos 〈PB →,n 〉|=|PB →·n |PB →|·|n ||=105,即直线PB 与平面PCD 所成角的正弦值为105.(5分) (2)设M (a ,0,0),则MA →=(-a ,0,0).设PN →=λPC →,则PN →=(λ,2λ,-2λ),而AP →=(0,0,2), 所以MN →=MA →+AP →+PN →=(λ-a ,2λ,2-2λ).(8分) 由(1)知,平面PCD 的一个法向量为n =(0,1,1), 因为MN ⊥平面PCD ,所以MN →∥n .所以⎩⎨⎧λ-a =0,2λ=2-2λ,解得λ=12,a =12.所以M 为AB 的中点,N 为PC 的中点.(10分)变式2、(2020届浙江省宁波市余姚中学高考模拟)如图,ABC 为正三角形,且2BC CD ==,CD BC ⊥,将ABC 沿BC 翻折.(1)若点A 的射影在BD 上,求AD 的长;(2)若点A 的射影在BCD 中,且直线AB 与平面ACD AD 的长.【答案】(1)2 (2. 【解析】(1)过A 作AE BD ⊥交BD 于E ,则AE ⊥平面BCD . 取BC 中点O ,连接AO ,OE , ∵AE ⊥平面BCD ,BC ⊂平面BCD , ∴AE BC ⊥,又ABC 是正三角形,∴BC AO ⊥, 又AEAO A =,AE ,AO ⊂平面AOE ,∴BC ⊥平面AOE ,∴BC OE ⊥.又BC CD ⊥,O 为BC 的中点,∴E 为BD 的中点.∵2BC CD ==,∴112OE CD ==,AO =BD =,∴DE =AE ==∴2AD ==;(2)取BC 中点为,O 过点A 作平面BCD 的垂线,垂足为E ,连接AO ,因为,AB AC OE BC =∴⊥.以O 为原点,以BC 为x 轴,以OE 为y 轴,以平面BCD 的过O 的垂线为z 轴建立空间直角坐标系,如图所示:设二面角D BC A --为θ,因为AE ⊥平面BCD ,与(1)同理可证BC ⊥平面AOE ,OE BC ⊥,AOE θ∴∠=,AO =则)A θθ,(1,0,0)B -,(1,0,0)C ,(1,2,0)D .∴(1,)BA θθ=,(0,2,0)CD =,()CA θθ=-,设平面ACD 的法向量为(,,)nx y z =,则200n CD y n CA x y z θθ⎧⋅==⎪⎨⋅=-⋅⋅=⎪⎩, 令1z =,得(3sin ,0,1)n θ=.∴cos ,n BA <>==解得sinθ=∴1(0,,22A ,又(1,2,0)D ,∴AD ==变式3、如图1,在直角梯形ABCP 中,BC ∥AP ,AB ⊥BC ,CD ⊥AP ,AD =DC =PD =2,E 、F 、G 分别是PC 、PD 、BC 的中点,现将△PDC 沿CD 折起,使平面PDC ⊥平面ABCD(如图2).(1) 求二面角GEFD 的大小;(2) 在线段PB 上确定一点Q ,使PC ⊥平面ADQ ,并给出证明过程.图1图2【解析】 (1) 建立如图所示的空间直角坐标系,则EF →=(0,-1,0),EG →=(1,1,-1). 设平面GEF 的一个法向量为n =(x ,y ,z), 则⎩⎪⎨⎪⎧n ·EF →=-y =0,n ·EG →=x +y -z =0,取n =(1,0,1).又平面EFD 的法向量为m =(1,0,0),所以cos 〈m ,n 〉 =m ·n |m |·|n |=22,所以二面角GEFD 的大小为45°.(2) 设PQ →=λPB →(0<λ<1),则AQ →=AP →+PQ →=(-2+2λ,2λ,2-2λ). 因为AQ ⊥PC ,所以AQ →·PC →=0, 即2×2λ-2(2-2λ)=0,解得λ=12.又AD ⊥PC ,AD ∩AQ =A ,AD ,AQ ⊂平面ADQ , 所以PC ⊥平面ADQ , 故Q 是线段PB 的中点.变式4、如图,在四面体ABOC 中,OC ⊥OA, OC ⊥OB ,∠AOB =120°,且OA =OB =OC =1.(1) 设P 为AC 的中点.在AB 上是否存在一点Q ,使PQ ⊥OA ?若存在,计算ABAQ的值;若不存在,请说明理由.(2) 求二面角OACB 的平面角的余弦值.【解析】 (1) 取O 为坐标原点,分别以OA ,OC 所在的直线为x 轴,z 轴,建立如图所示的空间直角坐标系 Oxyz ,则A(1,0,0),C(0,0,1),B(-12,32,0).因为P 为AC 的中点,所以P ⎝ ⎛⎭⎪⎫12,0,12.设AQ →=λAB →,λ∈(0,1). 因为AB →=⎝ ⎛⎭⎪⎫-32,32,0,所以OQ →=OA →+AQ →=(1,0,0)+λ(-32,32,0)=⎝ ⎛⎭⎪⎫1-32λ,32λ,0,所以PQ →=OQ →-OP →=⎝ ⎛⎭⎪⎫12-32λ,32λ,-12.因为PQ ⊥OA ,所以PQ →·OA →=0,即12-32λ=0,解得λ=13,所以存在点Q ⎝ ⎛⎭⎪⎫12,36,0使得PQ ⊥OA ,且AB AQ =3.(2) 记平面ABC 的法向量为n =(x ,y ,z), 则由n ⊥CA →,n ⊥AB →,且CA →=(1,0,-1), 得⎩⎪⎨⎪⎧x -z =0,-32x +32y =0,故可取n =(1,3,1). 又平面OAC 的法向量为c =(0,1,0),所以cos 〈n ,c 〉=(1,3,1)·(0,1,0)5×1=35,故二面角OACB 的平面角是锐角,记为θ,则 cos θ=155.1、【2018年高考全国Ⅲ卷理数】如图,边长为2的正方形ABCD 所在的平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ABC -体积最大时,求面MAB 与面MCD 所成二面角的正弦值.【答案】(1)见解析;(2.【解析】(1)由题设知,平面CMD⊥平面ABCD,交线为CD.因为BC⊥CD,BC⊂平面ABCD,所以BC⊥平面CMD,故BC⊥DM.因为M为CD上异于C,D的点,且DC为直径,所以DM⊥CM.又BC CM=C,所以DM⊥平面BMC.而DM⊂平面AMD,故平面AMD⊥平面BMC.(2)以D为坐标原点,DA的方向为x轴正方向,建立如图所示的空间直角坐标系D−xyz.当三棱锥M−ABC体积最大时,M为CD的中点.D A B C M,由题设得(0,0,0),(2,0,0),(2,2,0),(0,2,0),(0,1,1)=-==(2,1,1),(0,2,0),(2,0,0)AM AB DA设(,,)x y z =n 是平面MAB 的法向量,则0,0.AM AB ⎧⋅=⎪⎨⋅=⎪⎩n n 即20,20.x y z y -++=⎧⎨=⎩ 可取(1,0,2)=n .DA 是平面MCD 的法向量,因此5cos ,5||||DA DA DA ⋅==n n n ,2sin ,5DA =n , 所以面MAB 与面MCD . 2、【2018年高考北京卷理数】如图,在三棱柱ABC −111A B C 中,1CC ⊥平面ABC ,D ,E ,F ,G分别为1AA ,AC ,11A C ,1BB 的中点,AB=BC ,AC =1AA =2.(1)求证:AC ⊥平面BEF ; (2)求二面角B−CD −C 1的余弦值; (3)证明:直线FG 与平面BCD 相交. 【答案】(1)见解析;(2)(3)见解析. 【解析】(1)在三棱柱ABC -A 1B 1C 1中,∵CC 1⊥平面ABC , ∴四边形A 1ACC 1为矩形. 又E ,F 分别为AC ,A 1C 1的中点, ∴AC ⊥EF . ∵AB =BC . ∴AC ⊥BE , ∴AC ⊥平面BEF .(2)由(1)知AC ⊥EF ,AC ⊥BE ,EF ∥CC 1. 又CC 1⊥平面ABC ,∴EF ⊥平面ABC . ∵BE ⊂平面ABC ,∴EF ⊥BE . 如图建立空间直角坐标系E -xyz .由题意得B (0,2,0),C (-1,0,0),D (1,0,1),F (0,0,2),G (0,2,1). ∴=(201)=(120)CD CB ,,,,,, 设平面BCD 的法向量为()a b c =,,n , ∴00CD CB ⎧⋅=⎪⎨⋅=⎪⎩n n ,∴2020a c a b +=⎧⎨+=⎩,令a =2,则b =-1,c =-4,∴平面BCD 的法向量(214)=--,,n , 又∵平面CDC 1的法向量为=(020)EB ,,,∴cos =21||||EB EB EB ⋅<⋅>=-n n n .由图可得二面角B -CD -C 1为钝角,所以二面角B -CD -C 1的余弦值为 (3)由(2)知平面BCD 的法向量为(214)=--,,n , ∵G (0,2,1),F (0,0,2), ∴=(021)GF -,,,∴2GF ⋅=-n ,∴n 与GF 不垂直,∴GF 与平面BCD 不平行且不在平面BCD 内, ∴GF 与平面BCD 相交.3、【2018年高考天津卷理数】如图,AD BC ∥且AD =2BC ,AD CD ⊥,EG AD ∥且EG =AD ,CD FG ∥且CD =2FG ,DG ABCD ⊥平面,DA =DC =DG =2.(1)若M 为CF 的中点,N 为EG 的中点,求证:MN CDE ∥平面; (2)求二面角E BC F --的正弦值;(3)若点P 在线段DG 上,且直线BP 与平面ADGE 所成的角为60°,求线段DP 的长.【答案】(1)见解析;(2;(3)3.【解析】本小题主要考查直线与平面平行、二面角、直线与平面所成的角等基础知识.考查用空间向量解决立体几何问题的方法.考查空间想象能力、运算求解能力和推理论证能力.满分13分.依题意,可以建立以D 为原点,分别以DA ,DC ,DG 的方向为x 轴,y 轴,z 轴的正方向的空间直角坐标系(如图),可得D (0,0,0),A (2,0,0),B (1,2,0),C (0,2,0),E (2,0,2),F (0,1,2),G (0,0,2),M (0,32,1),N (1,0,2).(1)依题意DC =(0,2,0),DE =(2,0,2).设n 0=(x ,y ,z )为平面CDE 的法向量,则0000DC DE ⎧⋅=⎪⎨⋅=⎪⎩,,n n 即20220y x z =⎧⎨+=⎩,, 不妨令z=–1,可得n 0=(1,0,–1).又MN =(1,32-,1),可得00MN ⋅=n ,又因为直线MN ⊄平面CDE ,所以MN ∥平面CDE .(2)依题意,可得BC =(–1,0,0),(122)BE =-,,,CF =(0,–1,2). 设n =(x ,y ,z )为平面BCE 的法向量,则00BC BE ⎧⋅=⎪⎨⋅=⎪⎩,,n n 即0220x x y z -=⎧⎨-+=⎩,, 不妨令z =1,可得n =(0,1,1). 设m =(x ,y ,z )为平面BCF 的法向量,则00BC CF ⎧⋅=⎪⎨⋅=⎪⎩,,m m 即020x y z -=⎧⎨-+=⎩,, 不妨令z =1,可得m =(0,2,1). 因此有cos<m ,n>=||||⋅=m n m n sin<m ,n.所以,二面角E –BC –F. (3)设线段DP 的长为h (h ∈[0,2]),则点P 的坐标为(0,0,h ),可得(12)BP h =--,,. 易知,DC =(0,2,0)为平面ADGE 的一个法向量,故cos BP DCBP DC BPDC h ⋅<⋅>==,解得h ∈[0,2]. 所以线段DP 的长为3. 4、(2020届山东省烟台市高三上期末)如图,在四棱锥S ABCD -中,ABCD 为直角梯形,//AD BC ,BC CD ⊥,平面SCD ⊥平面ABCD ,SCD ∆是以CD 为斜边的等腰直角三角形,224BC AD CD ===,E 为BS 上一点,且2BE ES =.(1)证明:直线//SD 平面ACE ;(2)求二面角S AC E --的余弦值.【答案】(1)证明见解析 (2)13【解析】(1)连接BD 交AC 于点F ,连接EF ,因为//AD BC ,所以AFD ∆与BCF ∆相似,所以2BF BC FD AD==, 又=2BE BF ES FD=,所以//EF SD , 因为EF ⊂平面ACE ,SD ⊄平面ACE ,所以直线//SD 平面ACE(2)由题,因为平面SCD ⊥平面ABCD ,平面SCD平面ABCD CD =,BC ⊂平面ABCD ,BC CD ⊥,所以BC ⊥平面SCD ,以C 为坐标原点,,CD CB 所在的方向分别为y 轴、z 轴的正方向,与,CD CB 均垂直的方向作为x 轴的正方向,建立如图所示的空间直角坐标系C xyz -,因为224BC AD CD ===,2BE ES =,则(0,0,0)C ,(1,1,0)S ,(0,2,2)A ,224(,,)333E , 所以(0,2,2)CA =,(1,1,0)CS =,224(,,)333CE =, 设平面SAC 的一个法向量为(,,)m x y z =,则00m CA m CS ⎧⋅=⎨⋅=⎩,即00y z x y +=⎧⎨+=⎩, 令1z =,得1x =,1y =-,于是(1,1,1)m =-,设平面EAC 的一个法向量为(,,)n x y z =,则00n CA n CE ⎧⋅=⎨⋅=⎩,即020y z x y z +=⎧⎨++=⎩, 令1z =,得1x =-,1y =-,于是(1,1,1)m =--,设二面角S AC E --的平面角的大小为θ,则1cos 3m nm n θ⋅==, 所以二面角S AC E --的余弦值为135、(2020届山东省潍坊市高三上期中)如图,在棱长均为2的三棱柱111ABCA B C -中,平面1ACB ⊥平面11A ABB ,11AB A B =,O 为1AB 与1A B 的交点.(1)求证:1AB CO ⊥;(2)求平面11ACC A 与平面ABC 所成锐二面角的余弦值.【答案】(1)详见解析;(2)13. 【解析】(1)因为四边形11A ABB 为菱形,所以11A B AB ⊥,又平面1ACB ⊥平面11A ABB ,平面1A CB 平面111A ABB A B =,所以1AB ⊥平面1A CB , 因为CO ⊂平面1A CB ,所以1AB CO ⊥.(2)因为11A B AB =,所以菱形11A ABB 为正方形,在Rt COA ∆中,CO ==在COB ∆中,CO OB ==2CB =,222CO OB CB +=, 所以,CO OB ⊥,又1CO AB ⊥,11A B AB O ⋂=,所以,CO ⊥平面11A ABB ;以O 为坐标原点,以OA ,OB ,OC 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系O xyz -.)A,()10,A,(C,()B,设平面11ACC A的一个法向量为()1111,,n x y z=平面ABC的一个法向量为()2222,,n x y z=,则11110,0,⎧=⎪⎨+=⎪⎩令11x=,得()11,1,1=-n,22220,0,⎧+=⎪⎨+=⎪⎩令21x=,得()21,1,1=n,设平面11ACC A与平面ABC所成锐二面角为α,则21121cos33α⋅===n nn n,所以平面11ACC A与平面ABC所成锐二面角的余弦值为13.6、(2020届山东省日照市高三上期末联考)如图,扇形AOB的半径为2,圆心角120AOB∠=,点C为弧AB上一点,PO⊥平面AOB且PO=,点M PB∈且2BM MP=,PA∥平面MOC.(1)求证:平面MOC ⊥平面POB ;(2)求平面POA 和平面MOC 所成二面角的正弦值的大小.【答案】(1)见证明;(2) 4【解析】(1)如图,连接AB 交OC 于点N ,连接MN ,PA ∥平面MOC ,∴PA ∥MN ,2BM MP =,2BN NA ∴=,2OA OB ==,120AOB ∠=,AB ∴=,BN ∴=,又30OBA ∠=,∴在BON △中,根据余弦定理得ON =, 222ON OB BN ∴+=,90BON ∴∠=,ON OB ∴⊥, 又PO ⊥平面AOB ,ON OP ∴⊥,ON ∴⊥平面POB , 又ON ⊂平面MOC ,∴平面MOC ⊥平面POB(2)由(1)得,,OC OB OP OC OP OB ⊥⊥⊥,如图建立空间直角坐标系O xyz -, 5OP =,2OA OB OC ===,∴OP =,(3,1,0)OA =-,(2,0,0)OC =,(0,2,0)OB =,点M PB ∈且2BM MP =,2(0,3OM ∴=, 设平面POA 的法向量为1111(,,)x y z =n ,则1100n OP n OA ⎧⋅=⎪⎨⋅=⎪⎩,即11100y =-=, 令11x =,得1y =10z =,∴1(13,0)=n ,设平面MOC 的法向量为2222(,,)x y z =n ,则2200n OC n OM ⎧⋅=⎪⎨⋅=⎪⎩,即222202033x y z =⎧⎪⎨+=⎪⎩,即22200x y =⎧⎪⎨+=⎪⎩,令21z =,得2y =,20x =,∴2(0,=n ,设平面POA 和平面MOC 所成二面角的大小为θ,则|cos |4θ==,sin 4θ∴=, ∴平面POA 和平面MOC所成二面角的正弦值的大小为4。

空间向量在立体几何中的应用(重点知识+高考真题+模拟精选)

空间向量在立体几何中的应用(重点知识+高考真题+模拟精选)

空间向量在⽴体⼏何中的应⽤(重点知识+⾼考真题+模拟精选)空间向量在⽴体⼏何中的应⽤【重要知识】⼀、求平⾯法向量的⽅法与步骤:1、选向量:求平⾯的法向量时,要选取两个相交的向量,如AC AB ,2、设坐标:设平⾯法向量的坐标为),,(z y x n =3、解⽅程:联⽴⽅程组=?=?0AC n AB n ,并解⽅程组4、定结论:求出的法向量中三个坐标不是具体的数值,⽽是⽐例关系。

设定某个坐标为常数得到其他坐标⼆、利⽤向量求空间⾓: 1、求异⾯直线所成的⾓:设b a ,为异⾯直线,点C A ,为a 上任意两点,点D B ,为b 上任意两点,b a ,所成的⾓为θ,则BDAC BD AC ??=θcos【注】由于异⾯直线所成的⾓θ的范围是:?≤设直线l 的⽅向向量为a ,平⾯α的法向量为n ,直线l 与平⾯α所成的⾓为θ,a 与n所成的⾓为?,则na n a ??==?θcos sin【注】由于直线与平⾯所成的⾓θ的范围是:?≤≤?900θ,因此0sin ≥θ 3、求⼆⾯⾓:设21,n n 分别为平⾯βα,的法向量,⼆⾯⾓βα--l 为θ,则>=<21,n n θ或><-21,n n π,其中212121,cos n n n n n n ??>=<三、利⽤向量求空间距离: 1、求点到平⾯的距离设平⾯α的法向量为n ,,α?A α∈B ,则点A 到平⾯α的距离为nn AB ?2、求两条异⾯直线的距离设21,l l 是两条异⾯直线,n 是公垂线段AB 的⽅向向量,D C ,分别为21,l l 上的任意两点,则21l l 与的距离为nn CD AB ?=【重要题型】1、(2012⼴东,理)如图所⽰,在四棱锥ABCD P -中,底⾯ABCD 为矩形,ABCD PA 平⾯⊥,点E 在线段PC 上,BDE PC 平⾯⊥(1)证明:PAC BD 平⾯⊥(2)若2,1==AD PA ,求⼆⾯⾓A PC B --的正切值2、(2013⼴东,理)如图①,在等腰三⾓形ABC 中,?=∠90A ,6=BC ,E D ,分别是AB AC ,上的点,2==BE CD ,O 为BC 的中点。

高考数学压轴专题最新备战高考《空间向量与立体几何》知识点总复习附答案解析

高考数学压轴专题最新备战高考《空间向量与立体几何》知识点总复习附答案解析

【最新】数学《空间向量与立体几何》专题解析一、选择题1.如图,在正三棱柱111ABC A B C -中,2AB =,123AA =,D ,F 分别是棱AB ,1AA 的中点,E 为棱AC 上的动点,则DEF ∆的周长的最小值为()A .222+B .232+C .62+D .72+【答案】D 【解析】 【分析】根据正三棱柱的特征可知ABC ∆为等边三角形且1AA ⊥平面ABC ,根据1AA AD ⊥可利用勾股定理求得2DF =;把底面ABC 与侧面11ACC A 在同一平面展开,可知当,,D E F 三点共线时,DE EF +取得最小值;在ADF ∆中利用余弦定理可求得最小值,加和得到结果. 【详解】Q 三棱柱111ABC A B C -为正三棱柱 ABC ∆∴为等边三角形且1AA ⊥平面ABCAD ⊂Q 平面ABC 1AA AD ∴⊥ 132DF ∴=+=把底面ABC 与侧面11ACC A 在同一平面展开,如下图所示:当,,D E F 三点共线时,DE EF +取得最小值 又150FAD ∠=o ,3AF =1AD =()22min32cos 42372DE EF AF AD AF AD FAD ⎛⎫∴+=+-⋅∠=-⨯-= ⎪ ⎪⎝⎭DEF ∴∆周长的最小值为:72+本题正确选项:D 【点睛】本题考查立体几何中三角形周长最值的求解问题,关键是能够将问题转化为侧面上两点间最短距离的求解问题,利用侧面展开图可知三点共线时距离最短.2.如图所示是一个组合几何体的三视图,则该几何体的体积为( )A .163π B .643 C .16643π+ D .1664π+ 【答案】C【解析】由三视图可知,该几何体是有一个四棱锥与一个圆锥的四分之一组成,其中四棱锥的底面是边长为4 的正方形,高为4 ,圆锥的底面半径为4 ,高为4,该几何体的体积为, 221116644444333V ππ+=⨯⨯+⨯⨯⨯=, 故选C.3.如图,在底面边长为4,侧棱长为6的正四棱锥P ABCD -中,E 为侧棱PD 的中点,则异面直线PB 与CE 所成角的余弦值是( )A 34B 234C 517D 317【解析】 【分析】首先通过作平行的辅助线确定异面直线PB 与CE 所成角的平面角,在PCD ∆中利用余弦定理求出cos DPC ∠进而求出CE ,再在GFH ∆中利用余弦定理即可得解. 【详解】如图,取PA 的中点F ,AB 的中点G ,BC 的中点H ,连接FG ,FH ,GH ,EF ,则//EF CH ,EF CH =,从而四边形EFHC 是平行四边形,则//EC FH , 且EC FH =.因为F 是PA 的中点,G 是AB 的中点,所以FG 为ABP ∆的中位线,所以//FG PB ,则GFH ∠是异面直线PB 与CE 所成的角.由题意可得3FG =,1222HG AC ==. 在PCD ∆中,由余弦定理可得2223636167cos 22669PD PC CD DPC PD PC +-+-∠===⋅⨯⨯,则2222cos 17CE PC PE PC PE DPC =+-⋅∠=,即17CE =在GFH ∆中,由余弦定理可得222cos 2FG FH GH GFH FG FH +-∠=⋅317172317==⨯⨯. 故选:D 【点睛】本题考查异面直线所成的角,余弦定理解三角形,属于中档题.4.设α、β是两个不同的平面,m 、n 是两条不同的直线,下列说法正确的是( ) A .若α⊥β,α∩β=m ,m ⊥n ,则n ⊥β B .若α⊥β,n ∥α,则n ⊥β C .若m ∥α,m ∥β,则α∥β D .若m ⊥α,m ⊥β,n ⊥α,则n ⊥β 【答案】D 【解析】 【分析】根据直线、平面平行垂直的关系进行判断.由α、β是两个不同的平面,m 、n 是两条不同的直线,知:在A 中,若α⊥β,α∩β=m ,m ⊥n ,则n 与β相交、平行或n ⊂β,故A 错误; 在B 中,若α⊥β,n ∥α,则n 与β相交、平行或n ⊂β,故B 错误; 在C 中,若m ∥α,m ∥β,则α与β相交或平行,故C 错误; 在D 中,若m ⊥α,m ⊥β,则α∥β, ∴若n ⊥α,则n ⊥β,故D 正确. 故选:D. 【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的益关系等基础知识,考查运算求解能力,是中档题.5.已知正方体1111ABCD A B C D -的棱长为2,点P 在线段1CB 上,且12B P PC =,平面α经过点1,,A P C ,则正方体1111ABCD A B C D -被平面α截得的截面面积为( )A .36B .26C .5D .534【答案】B 【解析】 【分析】先根据平面的基本性质确定平面,然后利用面面平行的性质定理,得到截面的形状再求解. 【详解】 如图所示:1,,A P C 确定一个平面α,因为平面11//AA DD 平面11BB CC , 所以1//AQ PC ,同理1//AP QC , 所以四边形1APC Q 是平行四边形. 即正方体被平面截的截面. 因为12B P PC =, 所以112C B PC =, 即1PC PB ==所以11AP PC AC ===由余弦定理得:22211111cos 25AP PC AC APC AP PC +-∠==⨯所以1sin 5APC ∠=所以S 四边形1APQC 1112sin 2AP PC APC =⨯⨯⨯∠=故选:B 【点睛】本题主要考查平面的基本性质,面面平行的性质定理及截面面积的求法,还考查了空间想象和运算求解的能力,属于中档题.6.四面体ABCD 的四个顶点都在球O 的表面上,AB BCD ⊥平面,BCD V 是边长为3的等边三角形,若2AB =,则球O 的表面积为( ) A .16π B .323π C .12π D .32π【答案】A 【解析】 【分析】先求底面外接圆直径,再求球的直径,再利用表面积2S D π=求解即可. 【详解】BCD V外接圆直径sin CD d CBD ===∠ ,故球的直径平方22222216D AB d =+=+=,故外接球表面积216S D ππ== 故选:A 【点睛】本题主要考查侧棱垂直底面的锥体外接球表面积问题,先利用正弦定理求得底面直径d ,再利用锥体高h ,根据球直径D =.属于中等题型.7.已知平面α∩β=l ,m 是α内不同于l 的直线,那么下列命题中错误的是( ) A .若m ∥β,则m ∥l B .若m ∥l ,则m ∥β C .若m ⊥β,则m ⊥l D .若m ⊥l ,则m ⊥β【答案】D 【解析】 【分析】A 由线面平行的性质定理判断.B 根据两个平面相交,一个面中平行于它们交线的直线必平行于另一个平面判断.C 根据线面垂直的定义判断.D 根据线面垂直的判定定理判断. 【详解】A 选项是正确命题,由线面平行的性质定理知,可以证出线线平行;B 选项是正确命题,因为两个平面相交,一个面中平行于它们交线的直线必平行于另一个平面;C 选项是正确命题,因为一个线垂直于一个面,则必垂直于这个面中的直线;D 选项是错误命题,因为一条直线垂直于一个平面中的一条直线,不能推出它垂直于这个平面; 故选:D. 【点睛】本题主要考查线线关系和面面关系,还考查了推理论证的能力,属于中档题.8.在三棱锥P ABC -中,PA ⊥平面ABC ,且ABC ∆为等边三角形,2AP AB ==,则三棱锥P ABC -的外接球的表面积为( ) A .272π B .283π C .263π D .252π 【答案】B 【解析】 【分析】计算出ABC ∆的外接圆半径r,利用公式R =可得出外接球的半径,进而可得出三棱锥P ABC -的外接球的表面积. 【详解】ABC ∆的外接圆半径为32sin3AB r π==,PA ⊥Q 底面ABC ,所以,三棱锥P ABC -的外接球半径为3R ===,因此,三棱锥P ABC -的外接球的表面积为222128443R πππ⎛⎫=⨯= ⎪ ⎪⎝⎭. 故选:B. 【点睛】本题考查三棱锥外接球表面积的计算,解题时要分析几何体的结构,选择合适的公式计算外接球的半径,考查计算能力,属于中等题.9.《九章算术》卷五商功中有如下问题:今有刍甍(音meng ,底面为矩形的屋脊状的几何体),下广三丈,袤四丈,上袤二丈,无广,高一丈,问积几何.已知该刍甍的三视图如图所示,则此刍甍的体积等于( )A .3B .5C .6D .12【答案】B 【解析】 【分析】首先由三视图还原几何体,再将刍甍分为三部分求解体积,最后计算求得刍甍的体积. 【详解】由三视图换元为如图所示的几何体,该几何体分为三部分,中间一部分是直棱柱,两侧是相同的三棱锥,并且三棱锥的体积113113⨯⨯⨯=, 中间棱柱的体积131232V =⨯⨯⨯= , 所以该刍甍的体积是1235⨯+=.【点睛】本题考查组合体的体积,重点考查空间想象能力和计算能力,属于中档题型.10.如图,在棱长为2的正方体1111ABCD A B C D -中,点M 是AD 的中点,动点P 在底面ABCD 内(不包括边界),若1B P P 平面1A BM ,则1C P 的最小值是( )A .305B .2305C .27D .47【答案】B 【解析】 【分析】在11A D 上取中点Q ,在BC 上取中点N ,连接11,,,DN NB B Q QD ,根据面面平行的判定定理可知平面1//B QDN 平面1A BM ,从而可得P 的轨迹是DN (不含,D N 两点);由垂直关系可知当CP DN ⊥时,1C P 取得最小值;利用面积桥和勾股定理可求得最小值. 【详解】如图,在11A D 上取中点Q ,在BC 上取中点N ,连接11,,,DN NB B Q QD//DN BM Q ,1//DQ A M 且DN DQ D =I ,1BM A M M =I∴平面1//B QDN 平面1A BM ,则动点P 的轨迹是DN (不含,D N 两点)又1CC ⊥平面ABCD ,则当CP DN ⊥时,1C P 取得最小值此时,22512CP ==+ 221223025C P ⎛⎫∴≥+= ⎪⎝⎭本题正确选项:B本题考查立体几何中动点轨迹及最值的求解问题,关键是能够通过面面平行关系得到动点的轨迹,从而找到最值取得的点.11.如图,在正方体1111ABCD A B C D -中,M , N 分别为棱111,C D CC 的中点,以下四个结论:①直线DM 与1CC 是相交直线;②直线AM 与NB 是平行直线;③直线BN 与1MB 是异面直线;④直线AM 与1DD 是异面直线.其中正确的个数为( )A .1B .2C .3D .4【答案】C 【解析】 【分析】根据正方体的几何特征,可通过判断每个选项中的两条直线字母表示的点是否共面;如果共面,则可能是相交或者平行;若不共面,则是异面. 【详解】①:1CC 与DM 是共面的,且不平行,所以必定相交,故正确;②:若AM BN 、平行,又AD BC 、平行且,AM AD A BN BC B ⋂=⋂=,所以平面BNC P 平面ADM ,明显不正确,故错误;③:1BN MB 、不共面,所以是异面直线,故正确; ④:1AM DD 、不共面,所以是异面直线,故正确; 故选C. 【点睛】异面直线的判断方法:一条直线上两点与另外一条直线上两点不共面,那么两条直线异面;反之则为共面直线,可能是平行也可能是相交.12.设三棱锥V ﹣ABC 的底面是A 为直角顶点的等腰直角三角形,VA ⊥底面ABC ,M 是线段BC 上的点(端点除外),记VM 与AB 所成角为α,VM 与底面ABC 所成角为β,二面角A ﹣VC ﹣B 为γ,则( ) A .2παββγ+<,> B .2παββγ+<,<C .2παββγ+>,>D .2παββγ+>,<【解析】 【分析】由最小角定理得αβ>,由已知条件得AB ⊥平面VAC ,过A 作AN VC ⊥,连结BN ,得BNA γ=∠,推导出BVA γ>∠,由VA ⊥平面ABC ,得VMA β=∠,推导出MVA γ>∠,从而2πβγ+>,即可得解.【详解】由三棱锥V ABC -的底面是A 为直角顶点的等腰直角三角形,VA ⊥平面ABC ,M 是线段BC 上的点(端点除外),记VM 与AB 所成角为α,VM 与底面ABC 所成角为β,二面角A VC B --为γ,由最小角定理得αβ>,排除A 和B ; 由已知条件得AB ⊥平面VAC ,过A 作AN VC ⊥,连结BN ,得BNA γ=∠, ∴tan tan ABBNA ANγ=∠=, 而tan ABBVA AV∠=,AN AV <,∴tan tan BNA BVA ∠>∠, ∴BVA γ>∠,∵VA ⊥平面ABC ,∴VMA β=∠, ∴2MVA πβ+∠=,∵tan AMMVA AV∠=,AB AM >,∴tan tan BVA MVA ∠>∠, ∴MVA γ>∠,∴2πβγ+>.故选:C .【点睛】本题查了线线角、线面角、二面角的关系与求解,考查了空间思维能力,属于中档题.13.已知四面体P ABC -的外接球的球心O 在AB 上,且PO ⊥平面ABC ,23AC AB =,若四面体P ABC -的体积为32,求球的表面积( ) A .8πB .12πC .83πD .123π 【答案】B【解析】【分析】 依据题意作出图形,设四面体P ABC -的外接球的半径为R ,由题可得:AB 为球的直径,即可求得:2AB R =,3AC R =, BC R =,利用四面体P ABC -的体积为32列方程即可求得3R =,再利用球的面积公式计算得解。

空间向量与立体几何例题和知识点总结

空间向量与立体几何例题和知识点总结

空间向量与立体几何例题和知识点总结在高中数学的学习中,空间向量与立体几何是一个重要且具有一定难度的板块。

通过空间向量的方法,我们能够更加简便地解决立体几何中的许多问题。

接下来,让我们一起通过一些例题来深入理解,并总结相关的知识点。

一、空间向量的基本知识点1、空间向量的概念:空间中具有大小和方向的量称为空间向量。

2、空间向量的表示:可以用有向线段表示,也可以用坐标表示。

3、空间向量的运算:包括加法、减法、数乘以及数量积。

加法和减法满足三角形法则和平行四边形法则。

数乘:λ(a + b) =λa +λb数量积:a·b =|a|·|b|·cosθ(θ为两向量的夹角)二、空间向量在立体几何中的应用1、证明线线平行设直线 l₁和 l₂的方向向量分别为 a 和 b,如果 a =λb(λ 为非零实数),则 l₁∥ l₂。

例 1:在长方体 ABCD A₁B₁C₁D₁中,E,F 分别为棱 AA₁,CC₁的中点,求证:BE ∥ DF 。

解:以 D 为原点,分别以 DA,DC,DD₁所在直线为 x,y,z 轴,建立空间直角坐标系。

设长方体的长、宽、高分别为 a,b,c 。

则 B(a,b,0),E(a,0,c/2),D(0,0,0),F(0,b,c/2)BE =(0,b,c/2),DF =(0,b,c/2)因为 BE = DF ,所以 BE ∥ DF 。

2、证明线线垂直设直线 l₁和 l₂的方向向量分别为 a 和 b,如果 a·b = 0,则 l₁⊥l₂。

例 2:在正方体 ABCD A₁B₁C₁D₁中,M,N 分别为棱 AB,CC₁的中点,求证:DM ⊥ MN 。

解:以 D 为原点,分别以 DA,DC,DD₁所在直线为 x,y,z 轴,建立空间直角坐标系。

设正方体的棱长为 2。

则 D(0,0,0),M(2,1,0),N(0,2,1)DM =(2,1,0),MN =(-2,1,1)DM·MN =-4 + 1 + 0 =-3 ≠ 0 ,所以 DM 与 MN 不垂直。

空间向量在立体几何中的应用知识点大全、经典高考题带解析、练习题带答案[2]演示教学

空间向量在立体几何中的应用知识点大全、经典高考题带解析、练习题带答案[2]演示教学

空间向量在立体几何中的应用【考纲说明】1.能够利用共线向量、共面向量、空间向量基本定理证明共线、共面、平行及垂直问题;2.会利用空间向量的坐标运算、两点间的距离公式、夹角公式等解决平行、垂直、长度、角、距离等问题;3.培养用向量的相关知识思考问题和解决问题的能力;【知识梳理】一、空间向量的运算 1、向量的几何运算 (1)向量的数量积:已知向量 ,则 叫做 的数量积,记作 ,即 空间向量数量积的性质:① ;② ;③.(2)向量共线定理:向量()0a a ≠rr r 与b r 共线,当且仅当有唯一一个实数λ,使b a λ=r r .2、向量的坐标运算 (1)若,,则.一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。

(2)若 , ,则 ,,,;,.(3)夹角公式:(4)两点间的距离公式:若,,则二、空间向量在立体几何中的应用2.利用空间向量证明平行问题对于平行问题,一般是利用共线向量和共面向量定理进行证明.3.利用空间向量证明垂直问题对于垂直问题,一般是利用进行证明;4.利用空间向量求角度(1)线线角的求法:设直线AB、CD对应的方向向量分别为a、b,则直线AB与CD所成的角为(线线角的范围[00,900])(2)线面角的求法:设n是平面的法向量,是直线的方向向量,则直线与平面所成的角为(3)二面角的求法:设n1,n2分别是二面角的两个面,的法向量,则就是二面角的平面角或其补角的大小(如图)5.利用空间向量求距离(1)平面的法向量的求法:设n=(x,y,z),利用n与平面内的两个不共线的向a,b垂直,其数量积为零,列出两个三元一次方程,联立后取其一组解,即得到平面的一个法向量(如图)。

(2)利用法向量求空间距离(a)点A到平面的距离:,其中,是平面的法向量。

(b)直线与平面之间的距离:,其中,是平面的法向量。

(c)两平行平面之间的距离:,其中,是平面的法向量。

【经典例题】【例1】(2010全国卷1理)正方体ABCD-1111A B C D中,B1B与平面AC1D所成角的余弦值为()(A)23(B)33(C)23(D)63【解析】D【例2】(2010全国卷2文)已知三棱锥S ABC-中,底面ABC为边长等于2的等边三角形,SA垂直于底面ABC,SA=3,那么直线AB与平面SBC所成角的正弦值为()(A)3(B)5(C)7(D)34【解析】D【例3】(2012全国卷)三棱柱111ABC A B C-中,底面边长和侧棱长都相等,1160BAA CAA∠=∠=o,则异面直线1AB与1BC所成角的余弦值为____________。

高三数学一轮专题复习空间向量在立体几何中的应用(有详细答案)

高三数学一轮专题复习空间向量在立体几何中的应用(有详细答案)

空间向量在立体几何中的应用1. (选修21P97习题14改编>若向量a=(1,λ,2>,b=(2,-1,2>且a与b的夹角的余弦值为错误!,则λ=________.答案:-2或错误!2. (选修21P89练习3>已知空间四边形OABC,点M、N分别是OA、BC的中点,且错误!=a, 错误!=b, 错误!=c,用a,b,c表示向量错误!=________.b5E2RGbCAP答案:错误!(b+c-a>3. (选修21P101练习2改编>已知l∥α,且l的方向向量为(2,m,1>,平面α的法向量为错误!,则m=________.p1EanqFDPw答案:-84. (选修21P86练习3改编>已知a=(2,-1,3>,b=(-1,4,-2>,c=(7,5,λ>,若a、b、c三个向量共面,则实数λ等于________.DXDiTa9E3d答案:错误!5. (选修21P110例4改编>在正方体ABCDA1B1C1D1中,点E为BB1的中点,则平面A1ED与平面ABCD所成的锐二面角的余弦值为________.RTCrpUDGiT答案:错误!1. 直线的方向向量与平面的法向量(1> 直线l上的向量e以及与e共线的向量叫做直线l的方向向量.(2> 如果表示非零向量n的有向线段所在直线垂直于平面α,那么称向量n垂直于平面α,记作n⊥α.此时把向量n叫做平面α的法向量.5PCzVD7HxA2. 线面关系的判定直线l1的方向向量为e1=(a1,b1,c1>,直线l2的方向向量为e2=(a2,b2,c2>,平面α的法向量为n1=(x1,y1,z1>,平面β的法向量为n2=(x2,y2,z2>.jLBHrnAILg (1> 如果l1∥l2,那么e1∥e2e2=λe1a2=λa1,b2=λb1,c2=λc1.(2> 如果l1⊥l2,那么e1⊥e2e1·e2=0a1a2+b1b2+c1c2=0.(3> 若l1∥α,则e1⊥n1e1·n1=0a1x1+b1y1+c1z1=0.(4> 若l1⊥α,则e1∥n1e1=kn1a1=kx1,b1=ky1,c1=kz1.(5> 若α∥β,则n1∥n2n1=kn2x1=kx2,y1=ky2,z1=kz2.(6> 若α⊥β,则n1⊥n2n1·n2=0x1x2+y1y2+z1z2=0.3. 利用空间向量求空间角(1> 两条异面直线所成的角①范围:两条异面直线所成的角θ的取值范围是错误!.xHAQX74J0X②向量求法:设直线a、b的方向向量为a、b,其夹角为φ,则有cosθ=|cosφ|.(2> 直线与平面所成的角①范围:直线和平面所成的角θ的取值范围是错误!.LDAYtRyKfE②向量求法:设直线l的方向向量为a,平面的法向量为u,直线与平面所成的角为θ,a与u的夹角为φ,则有sinθ=|cosφ|或cosθ=sinφ.Zzz6ZB2Ltk(3> 二面角①二面角的取值范围是[0,π].②二面角的向量求法:(ⅰ> 若AB、CD分别是二面角αlβ的两个面内与棱l垂直的异面直线,则二面角的大小就是向量AB与CD的夹角(如图①>.dvzfvkwMI1(ⅱ> 设n1、n2分别是二面角αlβ的两个面α、β的法向量,则向量n1与n2的夹角(或其补角>的大小就是二面角的平面角的大小(如图②③>.rqyn14ZNXI题型1 空间向量的基本运算例1 如图,在平行六面体ABCDA1B1C1D1中,M为A1C1与B1D1的交点.若错误!=a,错误!=b,错误!=c,则错误!=________.EmxvxOtOco答案:-错误!a+错误!b+c错误!已知空间三点A(-2,0,2>,B(-1,1,2>,C(-3,0,4>.设a=错误!,b=错误!.SixE2yXPq5(1> 求a和b的夹角θ;(2>若向量ka+b与ka-2b互相垂直,求k的值.题型2 空间中的平行与垂直例2 如图所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=错误!,AF=1,M是线段EF的中点.6ewMyirQFL求证:(1> AM∥平面BDE;(2> AM⊥平面BDF.错误!如右图,在棱长为a的正方体ABCDA1B1C1D1中,G为△BC1D的重心,(1> 试证:A1、G、C三点共线;(2> 试证:A1C⊥平面BC1D;题型3 空间的角的计算例3(2018·苏锡常镇二模>如图,圆锥的高PO=4,底面半径OB=2,D为PO的中点,E为母线PB的中点,F为底面圆周上一点,满足EF⊥DE.kavU42VRUs(1> 求异面直线EF与BD所成角的余弦值;(2> 求二面角OOFE的正弦值.错误!(2018·江苏卷>如图所示,在直三棱柱A1B1C1-ABC中,AB⊥AC,AB=AC=2,A1A=4,点D是BC的中点.y6v3ALoS89(1> 求异面直线A1B与C1D所成角的余弦值;(2> 求平面ADC1与平面ABA1所成二面角的正弦值.1. 设A1、A2、A3、A4、A5是空间中给定的5个不同的点,则使错误!+错误!+错误!+错误!+错误!=0成立的点M的个数为________.M2ub6vSTnP答案:1 个2. (2018·连云港模拟>若平面α的一个法向量为n=(4,1,1>,直线l的一个方向向量为a=(-2,-3,3>,则l与α所成角的正弦值为________.0YujCfmUCw答案:错误!3. (2018·新课标全国卷Ⅱ>如图所示,直三棱柱ABCA1B1C1中,D、E分别是AB、BB1的中点,AA1=AC=CB=错误!AB.eUts8ZQVRd(1> 证明:BC1∥平面A1CD;(2> 求二面角DA1CE的正弦值.4. (2018·重庆>如图所示,四棱锥PABCD中,PA⊥底面ABCD,BC=CD=2,AC=4,∠ACB=∠ACD=错误!,F为PC的中点,AF⊥PB.sQsAEJkW5T(1> 求PA的长;(2> 求二面角B-AF-D的正弦值.5. (2018·连云港调研>在三棱锥SABC中,底面是边长为2错误!的正三角形,点S在底面ABC上的射影O恰是AC的中点,侧棱SB和底面成45°角.GMsIasNXkA(1> 若D为侧棱SB上一点,当错误!为何值时,CD⊥AB;(2> 求二面角S-BC-A的余弦值大小.1. 在直四棱柱ABCD错误!-A1B1C1D1中,AA1=2,底面是边长为1的正方形,E、F分别是棱B1B、DA的中点.TIrRGchYzg(1> 求二面角D1错误!-AE-错误!C的大小;7EqZcWLZNX(2> 求证:直线BF∥平面AD1E.2. (2018·苏州调研>三棱柱ABC-A1B1C1在如图所示的空间直角坐标系中,已知AB=2,AC=4,A1A=3.D是BC的中点.lzq7IGf02E(1> 求直线DB1与平面A1C1D所成角的正弦值;(2> 求二面角B1-A1D-C1的正弦值.3. (2018·南通二模>如图,在三棱柱ABCA1B1C1中,A1B⊥平面ABC,AB⊥AC,且AB=AC=A1B=2.zvpgeqJ1hk(1> 求棱AA1与BC所成的角的大小;(2> 在棱B1C1上确定一点P,使二面角P-AB-A1的平面角的余弦值为错误!.NrpoJac3v1 4. (2018广东韶关第二次调研>如图甲,在平面四边形ABCD中,已知∠A=45°,∠C=90°,∠ADC=105°,AB=BD,现将四边形ABCD沿BD折起,使平面ABD⊥平面BDC(如图乙>,设点E、F分别为棱AC、AD的中点.1nowfTG4KI(1> 求证: DC⊥平面ABC;(2> 求BF与平面ABC所成角的正弦值;(3> 求二面角B-EF-A的余弦值.申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。

高中数学 2空间向量与立体几何(带答案)

高中数学 2空间向量与立体几何(带答案)

空间向量与立体几何一.空间向量及其运算1.空间向量及有关概念(1)共线向量定理:如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量。

a 平行于b 记作a ∥b。

推论:如果l 为经过已知点A 且平行于已知非零向量a的直线,那么对任一点O ,点P 在直线l 上的充要条件是存在实数t ,满足等式 A O P O =a t+①其中向量a叫做直线l 的方向向量。

在l 上取a AB =,则①式可化为.)1(OB t OA t OP +-=②当21=t 时,点P 是线段AB 的中点,则 ).(21OB OA OP += ③①或②叫做空间直线的向量参数表示式,③是线段AB 的中点公式。

(2)向量与平面平行:如果表示向量a 的有向线段所在直线与平面α平行或a在α平面内,我们就说向量a 平行于平面α,记作a ∥α。

注意:向量a∥α与直线a ∥α的联系与区别。

共面向量:我们把平行于同一平面的向量叫做共面向量。

共面向量定理:如果两个向量a 、b 不共线,则向量p与向量a 、b 共面的充要条件是存在实数对x 、y ,使.b y a x p+=①推论:空间一点P 位于平面MAB 内的充要条件是存在有序实数对x 、y ,使,MB y MA x MP +=④或对空间任一定点O ,有.MB y MA x OM OP ++=⑤在平面MAB 内,点P 对应的实数对(x, y )是唯一的。

①式叫做平面MAB 的向量表示式。

又∵.,OM OA MA -=.,OM OB MB -=代入⑤,整理得.)1(OB y OA x OM y x OP ++--= ⑥由于对于空间任意一点P ,只要满足等式④、⑤、⑥之一(它们只是形式不同的同一等式),点P 就在平面MAB 内;对于平面MAB 内的任意一点P ,都满足等式④、⑤、⑥,所以等式④、⑤、⑥都是由不共线的两个向量MA 、MB (或不共线三点M 、A 、B )确定的空间平面的向量参数方程,也是M 、A 、B 、P 四点共面的充要条件。

空间向量在立体几何中的应用知识点大全经典高考题带解析练习题带答案2

空间向量在立体几何中的应用知识点大全经典高考题带解析练习题带答案2

空间向量在立体几何中的应用【考纲说明】1.能够利用共线向量、共面向量、空间向量根本定理证明共线、共面、平行及垂直问题;2.会利用空间向量的坐标运算、两点间的距离公式、夹角公式等解决平行、垂直、长度、角、距离等问题;3.培养用向量的相关知识思考问题和解决问题的能力;【知识梳理】一、空间向量的运算1、向量的几何运算〔1〕向量的数量积:向量,那么叫做的数量积,记作,即空间向量数量积的性质:①;②;③.〔2〕向量共线定理:向量()0a a≠与b共线,当且仅当有唯一一个实数λ,使b aλ=.2、向量的坐标运算〔1〕假设,,那么.一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。

〔2〕假设,,那么,,,;,.(3)夹角公式:〔4〕两点间的距离公式:假设,,那么二、空间向量在立体几何中的应用2.利用空间向量证明平行问题对于平行问题,一般是利用共线向量和共面向量定理进展证明.3.利用空间向量证明垂直问题对于垂直问题,一般是利用进展证明;4.利用空间向量求角度〔1〕线线角的求法:设直线、对应的方向向量分别为a、b,那么直线与所成的角为〔线线角的范围[00,900]〕〔2〕线面角的求法:设n是平面的法向量,是直线的方向向量,那么直线与平面所成的角为〔3〕二面角的求法:设n1,n2分别是二面角的两个面,的法向量,那么就是二面角的平面角或其补角的大小〔如图〕5.利用空间向量求距离〔1〕平面的法向量的求法:设(),利用n与平面内的两个不共线的向a,b垂直,其数量积为零,列出两个三元一次方程,联立后取其一组解,即得到平面的一个法向量〔如图〕。

〔2〕利用法向量求空间距离〔a〕点A到平面的距离:,其中,是平面的法向量。

〔b〕直线与平面之间的距离:,其中,是平面的法向量。

〔c〕两平行平面之间的距离:,其中,是平面的法向量。

【经典例题】【例1】〔2021全国卷1理〕正方体1111A B C D 中,B 1B 与平面1D 所成角的余弦值为〔 〕〔A〕3 〔B〕3 〔C 〕23 〔D〕3【解析】D【例2】〔2021全国卷2文〕三棱锥S ABC -中,底面ABC 为边长等于2的等边三角形,SA 垂直于底面ABC ,SA =3,那么直线AB 与平面SBC 所成角的正弦值为〔 〕 〔A 〕4(B) 4(D)34【解析】D【例3】〔2021全国卷〕三棱柱111ABC A B C -中,底面边长和侧棱长都相等,1160BAA CAA ∠=∠=,那么异面直线1AB 与1BC 所成角的余弦值为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空间向量在立体几何中的应用【考纲说明】1.能够利用共线向量、共面向量、空间向量基本定理证明共线、共面、平行及垂直问题;2.会利用空间向量的坐标运算、两点间的距离公式、夹角公式等解决平行、垂直、长度、角、距离等问题;3.培养用向量的相关知识思考问题和解决问题的能力;【知识梳理】一、空间向量的运算 1、向量的几何运算 (1)向量的数量积:已知向量 ,则 叫做 的数量积,记作 ,即空间向量数量积的性质:① ;② ;③.(2)向量共线定理:向量()0a a ≠与b 共线,当且仅当有唯一一个实数λ,使b a λ=. 2、向量的坐标运算 (1)若,,则.一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。

(2)若 , ,则,,,;,.(3)夹角公式:(4)两点间的距离公式:若,,则二、空间向量在立体几何中的应用2.利用空间向量证明平行问题对于平行问题,一般是利用共线向量和共面向量定理进行证明.3.利用空间向量证明垂直问题对于垂直问题,一般是利用进行证明;4.利用空间向量求角度(1)线线角的求法:设直线AB、CD对应的方向向量分别为a、b,则直线AB与CD所成的角为(线线角的范围[00,900])(2)线面角的求法:设n是平面的法向量,是直线的方向向量,则直线与平面所成的角为(3)二面角的求法:设n1,n2分别是二面角的两个面,的法向量,则就是二面角的平面角或其补角的大小(如图)5.利用空间向量求距离(1)平面的法向量的求法:设n=(x,y,z),利用n与平面内的两个不共线的向a,b垂直,其数量积为零,列出两个三元一次方程,联立后取其一组解,即得到平面的一个法向量(如图)。

(2)利用法向量求空间距离 (a ) 点A 到平面的距离: ,其中,是平面的法向量。

(b ) 直线与平面之间的距离: ,其中,是平面的法向量。

(c ) 两平行平面之间的距离: ,其中,是平面的法向量。

【经典例题】【例1】(2010全国卷1理)正方体ABCD-1111A B C D 中,B 1B 与平面AC 1D 所成角的余弦值为( )(A )3 (B(C )23 (D【解析】D【例2】(2010全国卷2文)已知三棱锥S ABC -中,底面ABC 为边长等于2的等边三角形,SA 垂直于底面ABC ,SA =3,那么直线AB 与平面SBC 所成角的正弦值为( )(A )34【解析】D【例3】(2012全国卷)三棱柱111ABC A B C -中,底面边长和侧棱长都相等,1160BAA CAA ∠=∠=,则异面直线1AB 与1BC 所成角的余弦值为____________。

【解析】66ABC SEF【例4】(2012重庆)如图,在直三棱柱ABC-A 1B 1C 1中,AB=4,AC=BC=3,D 为AB 的中点。

(Ⅰ)求异面直线CC 1和AB 的距离;(Ⅱ)若AB 1⊥A 1C ,求二面角A 1—CD —B 1的平面角的余弦值。

【解析】5 31【例5】(2012江苏)如图,在直三棱柱111ABC A B C -中,1111AB AC =,D E ,分别是棱1BC CC ,上的点(点D 不同于点C ),且AD DE F ⊥,为11B C 的中点.1B求证:(1)平面ADE ⊥平面11BCC B ;(2)直线1//A F 平面ADE .【例6】(2012山东)在如图所示的几何体中,四边形ABCD 是等腰梯形,AB ∥CD ,∠DAB=60°,FC ⊥平面ABCD ,AE ⊥BD ,CB=CD=CF .(Ⅰ)求证:BD ⊥平面AED ;(Ⅱ)求二面角F-BD-C 的余弦值. 1【解析】二面角F-BD-C 的余弦值为55.【例7】(2012江西)在三棱柱111ABC A B C -中,已知1AB AC AA ===4BC =,点1A 在底面ABC 的投影是线段BC 的中点O 。

(1)证明在侧棱1AA 上存在一点E ,使得OE ⊥平面11BB C C ,并求出AE 的长; (2)求平面11A B C 与平面11BB C C 夹角的余弦值。

【解析】55,103011A1C F ECD ABPA B C E D 【例8】(2012湖南)四棱锥P-ABCD 中,PA ⊥平面ABCD ,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E 是CD 的中点. (Ⅰ)证明:CD ⊥平面PAE ;(Ⅱ)若直线PB与平面PAE 所成的角和PB 与平面ABCD 所成的角相等,求四棱锥P-ABCD 的体积.【解析】111633515V S PA =⨯⨯=⨯⨯=【例9】(2012广东)如图所示,在四棱锥P ABCD -中,AB ⊥平面PAD ,//,AB CD PD AD =,E 是PB 中点,F 是DC 上的点,且12DF AB =,PH 为PAD ∆中AD 边上的高。

(1)证明:PH ⊥平面ABCD ;(2)若1,2,1PH AD FC ===,求三棱锥E BCF -的体积; (3)证明:EF ⊥平面PAB .【解析】三棱锥E BCF -的体积1111113326212BCF V S h FC AD h ∆=⨯=⨯⨯⨯⨯=⨯=【例10】(2012新课标)如图,直三棱柱ABC -A 1B 1C 1中,AC=BC=21AA 1,D 是棱AA 1的中点,DC 1⊥BD . (1)证明:DC 1⊥BC ;(2)求二面角A 1-BD -C 1的大小.【解析】二面角11C BD A --的大小为30︒【例11】如图所示,在四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD 点E 在线段PC 上,PC ⊥平面BDE .(1)证明:BD ⊥平面PAC ;(2)若1PA =,2AD =,求二面角B PC A --的正切值. 【解析】二面角B PC A --的平面角的正切值为3【例12】(2012天津)如图,在四棱锥P ABCD -中,PA 丄平面ABCD ,AC丄AD ,AB 丄BC ,0=45ABC ∠,A 1==2PA AD ,=1AC .(Ⅰ)证明PC 丄AD ;(Ⅱ)求二面角A PC D --的正弦值;(Ⅲ)设E 为棱PA 上的点,满足异面直线BE 与CD 所成的角为030,求AE 的长. 【解析】630,1010【课堂练习】1、(2012上海)若)1,2(-=是直线l 的一个法向量,则l 的倾斜角的大小为 (用反三角函数值表示)2、(2012四川)如图,在正方体1111ABCD A B C D -中,M 、N 分别是CD 、1CC 的中点,则异面直线1A M 与DN 所成角的大小是____________。

3、(2012全国卷)如图,四棱锥P ABCD -中,底面ABCD 为菱形,PA ⊥底面ABCD,AC =2PA =,E 是PC 上的一点,2PE EC =。

(Ⅰ)证明:PC ⊥平面BED ;(Ⅱ)设二面角A PB C --为90,求PD 与平面PBC 所成角的大小。

4、(2010辽宁理)已知三棱锥P -ABC 中,PA ⊥ABC ,AB ⊥AC ,PA=AC=½AB ,N 为AB 上一点,AB=4AN,M,S 分别为PB,BC 的中点.(Ⅰ)证明:CM ⊥SN ;(Ⅱ)求SN 与平面CMN 所成角的大小.5、(2010辽宁文)如图,棱柱111ABC A B C -的侧面11BCC B 是菱形,11B C A B ⊥NA 1D(Ⅰ)证明:平面1AB C ⊥平面11A BC ;(Ⅱ)设D 是11AC 上的点,且1//A B 平面1B CD ,求11:A D DC 的值.6、(2010全国文)如图,直三棱柱ABC-A 1B 1C 1 中,AC=BC , AA 1=AB ,D 为BB 1的中点,E 为AB 1上的一点,AE=3 EB 1(Ⅰ)证明:DE 为异面直线AB 1与CD 的公垂线;(Ⅱ)设异面直线AB 1与CD 的夹角为45°,求二面角A 1-AC 1-B 1的大小7、(2010江西理)如图△BCD 与△MCD 都是边长为2的正三角形,平面MCD ⊥平面BCD ,AB ⊥平面BCD ,AB =(1) 求点A 到平面MBC 的距离;(2) 求平面ACM 与平面BCD 所成二面角的正弦值。

8、(2010重庆文)四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥底面ABCD ,PA AB ==,点E 是棱PB 的中点.(Ⅰ)证明:AE ⊥平面PBC ;(Ⅱ)若1AD =,求二面角B EC D --的平面角的余弦值.9、(2010浙江文)如图,在平行四边形ABCD 中,AB=2BC ,∠ABC=120°。

E 为线段AB 的中点,将△ADE 沿直线DE 翻折成△A ’DE ,使平面A ’DE ⊥平面BCD ,F 为线段A ’C 的中点。

(Ⅰ)求证:BF ∥平面A ’DE ;(Ⅱ)设M 为线段DE 的中点,求直线FM 与平面A ’DE 所成角的余弦值。

10、(2010重庆理)四棱锥P-ABCD 中,底面ABCD 为矩形,PA ⊥底面ABCD ,,点E 是棱PB 的中点。

(1)求直线AD 与平面PBC 的距离;(2)若A-EC-D 的平面角的余弦值。

11、(2010北京理)如图,正方形ABCD 和四边形ACEF 所在的平面互相垂直,CE (Ⅰ)求证:AF ∥平面BDE ; (Ⅱ)求证:CF ⊥平面BDE ; (Ⅲ)求二面角A-BE-D 的大小。

12、如图,弧AEC 是半径为a 的半圆,AC 为直径,点E 为弧AC 的中点,点B 和点C 为线段AD 的三等分点,平面AEC 外一点F 满足FC ⊥平面BED,FB=a 5(1)证明:EB ⊥FD(2)求点B 到平面FED 的距离.13、(2010江苏卷)如图,在四棱锥P-ABCD 中,PD ⊥平面ABCD ,PD=DC=BC=1,AB=2,AB ∥DC ,∠BCD=900。

(1)求证:PC ⊥BC ;(2)求点A 到平面PBC 的距离。

14、(2012上海)如图,在四棱锥P -ABCD 中,底面ABCD 是矩形,PA ⊥底面ABCD ,E 是PC 的中点.已知AB=2,AD=22,PA=2.求:(1)三角形PCD 的面积;(2)异面直线BC 与AE 所成的角的大小.15、(2012四川)如图,在三棱锥P ABC -中,90APB ∠=,60PAB ∠=,AB BC CA ==,平面PAB ⊥平面ABC 。

(Ⅰ)求直线PC 与平面ABC 所成角的大小;(Ⅱ)求二面角B AP C --的大小。

16、(2012安徽)长方体1111D C B A ABCD -中,底面1111D C B A 是正方形,O 是BD 的中点,E 是棱1AA 上任意一点。

相关文档
最新文档