2012公务员考试行测备考:数量关系之追及问题

合集下载

追及问题及参考答案

追及问题及参考答案

追及问题及参考答案追及问题是一种常见的问题,它涉及到两个或多个物体之间的相对速度和距离。

在这种问题中,一个物体追赶另一个物体,需要找出何时能够追上或者两者之间的距离。

解决追及问题需要理解相对速度的概念,以及如何应用速度和距离的关系。

问题:一辆汽车以速度v1行驶,另一辆汽车以速度v2行驶,两辆汽车在同一道路上同向行驶,v1>v2。

两辆汽车之间的初始距离为d,问两辆汽车何时能够相遇?我们需要找出两辆汽车之间的相对速度。

因为它们同向行驶,所以相对速度为v1-v2。

我们需要考虑两辆汽车相遇时它们所走的总距离。

因为它们同向行驶,所以当它们相遇时,它们所走的总距离为d。

现在,我们可以使用公式:时间t =总距离 /相对速度 = d / (v1-v2)来计算它们相遇的时间。

根据上述公式,我们可以得出答案:t = d / (v1-v2)。

答案:两辆汽车将在时间t = d / (v1-v2)时相遇。

通过这种方法,我们可以解决各种追及问题。

需要注意的是,在解决追及问题时,我们需要考虑物体的相对速度和距离,以及物体的初始位置和速度。

只有理解了这些因素,我们才能正确地解决追及问题。

答案参考:选择A或B者,属于工作满足感不足。

选择C或D者,则除了寻求更好的发展机会外,可能还意味着没有通过工作与同事或客户建立起良好的人际关系。

最好的策略是:如果目前的处境不是很好,先踏实地干好本职工作,再设法爬到相邻的较高层。

答案参考:对公司的了解程度,决定了今后工作的适应程度。

仅仅了解一些表面情况的人,必须加强了解,否则可能成为最后一个知道公司倒闭的人。

D.我在以前的工作中,总能够很快地掌握新的技能。

答案参考:选择A者,有经验固然好,但雇主更希望你能带来新的经验和方法。

选择B者,很好,符合面试的自我定位。

选择C者,表明了强烈的求职愿望,但空洞,缺乏事实支撑。

选择D者,掌握了快速学习能力当然好,但最好能提供证明你能力的学习业绩或证明参照系。

追击问题及答案

追击问题及答案

追及问题【含义】两个运动物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的,行进速度要快些,在前面的,行进速度较慢些,在一定时间之内,后面的追上前面的物体。

这类应用题就叫做追及问题.【数量关系】追及时间=追及路程÷(快速-慢速)追及路程=(快速-慢速)×追及时间例1 好马每天走120千米,劣马每天走75千米,劣马先走12天,好马几天能追上劣马?解 (1)劣马先走12天能走多少千米? 75×12=900(千米)(2)好马几天追上劣马? 900÷(120-75)=20(天) 列成综合算式 75×12÷(120-75)=900÷45=20(天)答:好马20天能追上劣马。

例2 小明和小亮在200米环形跑道上跑步,小明跑一圈用40秒,他们从同一地点同时出发,同向而跑。

小明第一次追上小亮时跑了500米,求小亮的速度是每秒多少米。

解小明第一次追上小亮时比小亮多跑一圈,即200米,此时小亮跑了(500-200)米,要知小亮的速度,须知追及时间,即小明跑500米所用的时间。

又知小明跑200米用40秒,则跑500米用[40×(500÷200)]秒,所以小亮的速度是(500-200)÷[40×(500÷200)]=300÷100=3(米)答:小亮的速度是每秒3米。

例3 我人民解放军追击一股逃窜的敌人,敌人在下午16点开始从甲地以每小时10千米的速度逃跑,解放军在晚上22点接到命令,以每小时30千米的速度开始从乙地追击。

已知甲乙两地相距60千米,问解放军几个小时可以追上敌人?解敌人逃跑时间与解放军追击时间的时差是(22-16)小时,这段时间敌人逃跑的路程是[10×(22-6)]千米,甲乙两地相距60千米。

由此推知追及时间=[10×(22-6)+60]÷(30-10)=220÷20=11(小时)答:解放军在11小时后可以追上敌人。

2012行测数量:突破固定模式,巧解行程问题

2012行测数量:突破固定模式,巧解行程问题

2012行测数量:突破固定模式,巧解行程问题公务员考试行测部分中的数学运算一直是广大考生朋友非常头疼的问题,常感觉无处下手,头脑中根本就没有解题思路。

其实,考试中的这一部分题目运算过程比较简单,并不需要高深的数学知识,但要求思路灵活、能找全题目中的所有可用条件、并能熟练运用各数量间关系。

这些题目可以分为很多类型,每种类型都有固定的、可套用的解题方法。

我们将其一一总结出来,并加以细致分析,最后熟练掌握之后,在考试中就可以顺利解答了。

数学运算中解题思路最广、方法最灵活的就是行程问题了。

行程问题基础知识行程问题中的相遇问题和追及问题主要的变化是在人(或事物)的数量和运动方向上。

我们可以简单的理解成:相遇(相离)问题和追及问题当中参与者必须是两个人(或事物)以上;如果它们的运动方向相反,则为相遇(相离)问题,如果他们的运动方向相同,则为追及问题。

相遇(相离)问题的基本数量关系:速度和×相遇时间=相遇(相离)路程追及问题的基本数量关系:速度差×追及时间=路程差在相遇(相离)问题和追及问题中,我们必须很好的理解各数量的含义及其在数学运算中是如何给出的,这样才能够提高我们的解题速度和能力。

例1、甲、乙两人联系跑步,若让乙先跑12米,则甲经6秒追上乙,若乙比甲先跑2秒,则甲要5秒追上乙,如果乙先跑9秒,甲再追乙,那么10秒后,两人相距多少米?A.15B.20C.25D.30 「答案」C.解析:甲乙的速度差为12÷6=2米/秒,则乙的速度为2×5÷2=5米/秒,如果乙先跑9秒,甲再追乙,那么10秒后,两人相距5×9-2×10=25米。

例2、兄弟两人早晨6时20分从家里出发去学校,哥哥每分钟行100米,弟弟每分钟行60米,哥哥到达学校后休息5分钟,突然发现学具忘带了,立即返回,中途碰到弟弟,这时是7时15分。

从家到学校的距离是多少米? A.3500 B.3750 C.4150 D.4250 「答案」C.解析:哥哥50分钟走一个来回,弟弟55分钟走一个来回,故一个单程为(100×50+60×55)÷2=4150米。

数量关系备考知识——相遇追击问题

数量关系备考知识——相遇追击问题

数量关系备考知识——相遇追击问题知识点介绍相遇追击问题总体上说是隶属于行程问题的范畴。

这是历年国家公务员考试行测数量关系中常考的一类题型。

试题的题型也是千变万化,但是所运用到的基础知识却是我们中学甚至小学都涉及到的内容。

基本公式下面老师来为考生朋友们总结此类问题的常用公式和基本解题要点。

相遇问题基本数量关系:路程和=速度和×相遇时间;追击问题基本数量关系:路程差=速度差×追击时间;背离问题基本数量关系:路程和=速度和×背离时间。

对于多次相遇问题:首先要理清各自的行程路线,然后可以通过画相遇问题相关示意图来帮助打开解题思路。

真题链接下面通过真题,来具体把握相遇追击问题的解题方法及技巧。

(2011国考)甲、乙两人在长30米的泳池内游泳,甲每分钟游37.5米,乙每分钟游52.5米,两人同时分别从泳池的两端出发,触壁后原路返回,如是往返。

如果不计转向的时间,则从出发开始计算的1分50秒内两人共相遇了多少次?()A. 2B. 3C. 4D. 5京佳解析:多次相遇问题。

由甲、乙两人速度和为90米/分钟,1分50秒内两人游的路程和为165米。

两人第一次相遇时,两人须共游的路程和为30米,而后每次相遇,两人须共游60米,(165-30)÷60≈2,即从第一次相遇后,两人相遇2次要游行的路程和是120米,所以在1分50秒时,两人已经相遇了3次。

故应选择B选项。

(2011河南)高速公路上行驶的汽车A的速度是100公里每小时,汽车B的速度是120公里每小时,此刻汽车B前方80公里处,汽车A中途加油停车10分钟后继续向前行驶,那么从两车相距80公里处开始,汽车B至少要多长时间可以追上汽车A?()A. 2小时B. 3小时10分C. 3小时50分D. 4小时10分京佳解析:相遇追击问题。

开始追击时,两车相距80公里。

追击的前10分钟,B行驶20公里,A停车10分钟。

接下来,B车继续120公里每小时行驶,A车100公里每小时行驶,两车还相距60公里。

数量关系追及相遇问题

数量关系追及相遇问题

数量关系追及相遇问题
追及和相遇问题在数学和物理中经常出现,主要涉及到两个或多个物体在同一直线上或不同线路上相对运动的问题。

追及问题
追及问题涉及到两个物体在同一方向上的相对运动。

一个物体(追及者)在后面追赶另一个物体(被追及者),通常会问追及者需要多少时间才能追上被追及者。

解决追及问题的关键是找出两者之间的速度差,然后用这个速度差除以两物体之间的距离,得到时间。

相遇问题
相遇问题涉及到两个物体在相反方向上的相对运动。

通常会问两个物体需要多少时间才能在某一点相遇。

解决相遇问题的关键是找出两者的速度之和,然后用这个速度之和除以两物体之间的距离,得到时间。

例子
假设有两个物体A和B,A的速度为3m/s,B的速度为5m/s,两物体之间的距离为100m。

求A追上B需要多少时间。

这是一个典型的追及问题。

我们可以用速度差除以距离来找出时间:
\(时间 = \frac{速度差}{距离}\)
\(时间 = \frac{5m/s - 3m/s}{100m}\)
\(时间 = \frac{2m/s}{100m}\)
\(时间 = \)
所以,A需要秒才能追上B。

对于相遇问题,可以类推得到解法。

重要的是要理解并利用好速度和距离的关系,以及速度和时间的关系。

公务员行测数量关系速算公式归纳

公务员行测数量关系速算公式归纳

公务员行测数量关系速算公式归纳在公务员行测考试中,数量关系部分往往是让众多考生感到头疼的模块。

然而,掌握一些实用的速算公式,能够帮助我们在考场上快速解题,提高答题效率和准确率。

接下来,就为大家归纳一下常见的公务员行测数量关系速算公式。

一、行程问题1、相遇问题路程和=速度和 ×相遇时间相遇时间=路程和 ÷速度和速度和=路程和 ÷相遇时间例如:甲、乙两人分别从 A、B 两地同时出发相向而行,甲的速度为 5 米/秒,乙的速度为 3 米/秒,经过 10 秒相遇,那么 A、B 两地的距离就是(5 + 3)× 10 = 80 米。

2、追及问题路程差=速度差 ×追及时间追及时间=路程差 ÷速度差速度差=路程差 ÷追及时间比如:甲在乙后面 20 米,甲的速度为 7 米/秒,乙的速度为 5 米/秒,那么甲追上乙所需的时间就是 20 ÷(7 5)= 10 秒。

3、流水行船问题顺水速度=船速+水速逆水速度=船速水速船速=(顺水速度+逆水速度)÷ 2水速=(顺水速度逆水速度)÷ 2假设一艘船在静水中的速度为 15 千米/小时,水流速度为 3 千米/小时,那么顺水速度就是 15 + 3 = 18 千米/小时,逆水速度就是 15 3 =12 千米/小时。

二、工程问题工作总量=工作效率 ×工作时间工作效率=工作总量 ÷工作时间工作时间=工作总量 ÷工作效率例如:一项工程,甲单独做需要 10 天完成,乙单独做需要 15 天完成,那么两人合作完成这项工程需要的时间就是 1 ÷(1/10 + 1/15)=6 天。

三、利润问题利润=售价成本利润率=利润 ÷成本 × 100%售价=成本 ×(1 +利润率)成本=售价 ÷(1 +利润率)比如:一件商品的成本是 80 元,售价是 100 元,那么利润就是 10080 = 20 元,利润率就是 20 ÷ 80 × 100% = 25%。

国考行测数量关系——直线型相遇追及问题

国考行测数量关系——直线型相遇追及问题

国考行测数量关系——直线型相遇追及问题【答题妙招】相遇问题:相遇距离=(大速度+小速度)×相遇时间追及问题:追及距离=(大速度-小速度)×追及时间【例1】公路上有三辆同向行驶的汽车,其中甲车的时速为63公里,乙、丙两车的时速均为60公里,但由于水箱故障,丙车每连续行驶30分钟后必须停车2分钟。

早上10点,三车到达同一位置,问1小时后,甲、丙两车最多相距多少公里()A.5B.7C.9D.11【答案】B。

在这1个小时中,丙车最多休息4分钟,也即丙在一个小时内最少行程为56公里。

而甲车持续行驶,可达63公里。

因此两车最多相距7公里。

【例2】甲、乙两人分别从A.B两地同时出发,相向而行,乙的速度是甲的2/3,两人相遇后继续前进,甲到达B地,乙到达A地立即返回,已知两人第二次相遇的地点距离第一次相遇的地点是3000米,求A.B两地的距离是()米。

A.6000B.6500C.7000D.7500【答案】D 。

解法一:如图所示,设甲第一次走的路程为S 1,乙第一次走的路程为S 2。

可以看出,从第一次相遇到第二次相遇,甲走的路程为2S 2+3000,乙走的路程为2S 1-3000。

由路程与速度成正比可列方程:S 1:S 2=(2S 2+3000):(2S 1-3000)=2:3,解得S 1=4500,S 2=3000。

因此A.B 两地相距4500+3000=7500米。

因此答案选择D 选项。

解法二:设总路程为S ,分析题意可知,甲速:乙速=3:2,所以第一次相遇时,甲乙总路程为1个全程,乙的路程应为总路程的S 52;第二次相遇时,甲乙总路程为3个全程,甲的路程为S 54S S 59+=。

所以第一次相遇点距离第二次相遇点为3000S 52S 52S 54==-,S=7500米。

因此答案选择D 选项。

【例3】往返A 市和B 市的长途汽车以同样的发车间隔从两个城市分别发车,以每小时40公里的速度前往目标城市。

数量关系之追及问题

数量关系之追及问题

数量关系之追及问题追及问题近两年来逐渐成为行测试卷中数字运算部分的“座上客”,在此,中公教育专家针对此问题展开深入的探讨:一、追及问题的特征(一)两个运动物体同地不同时(或同时不同地)出发做同向运动。

后面的比前面的速度快。

(二)在一定时间内,后面的追上前面的。

追及问题涉及两个或多个运动物体,过程较为复杂,一般借助线段图来理清追及问题的运动关系。

例题1:小胖步行上学,每分钟行72米。

一次小胖离家512米后,爸爸发现小胖的文具盒忘在家中,爸爸带着文具盒,立即骑自行车以每分钟200米的速度去追小胖。

问爸爸出发几分钟后在途中追上小胖?A.2B.3C.4D.5中公解析:此题答案为C。

此题属同地不同时的追及问题,画线段图分析:如上图所示,可知存在等量关系:小胖第一段的路程+小胖第二段的路程=爸爸走的路程。

设爸爸x分钟后在途中追上小胖,则有512+72x=200x→200x-72x=512→128x=512,解得x=4。

二、追及问题公式由上例可知,爸爸与小胖的速度之差×时间=开始追及时拉开的距离。

在追及问题中,我们把开始追及时两者的距离称为追及路程,大速度减小速度称为速度差。

由此得出追及问题的公式:例题2:甲、乙两架飞机同时从一个机场起飞,向同一方向飞行,甲机每小时行300千米,乙机每小时行340千米,飞行4小时后它们相隔多少千米?这时候甲机提高速度用2小时追上乙机,甲机每小时要飞行多少千米?A.100,260B.120,320C.160,360D.160,420中公解析:此题答案为D。

乙机速度>甲机速度,因此4小时后甲、乙相隔(340-300)×4=160千米,即后面2小时的追及路程为160千米。

根据速度差=追及路程÷追及时间,可得速度差=160÷2=80千米/时。

乙机速度不变,则甲机每小时应飞行80+340=420千米。

例题3:某环形公路长15千米,甲、乙两人同时同地沿公路骑自行车反向而行,0.5小时后相遇,若他们同时同地同向而行,经过3小时后,甲追上乙,问乙的速度是多少?A.12.5千米/小时B.13.5千米/小时C.15.5千米/小时D.17.5千米/小时中公解析:此题答案为A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012公务员考试行测备考:数量关系之追及问题
追及问题近两年来逐渐成为行测试卷中数字运算部分的“座上客”,在此,中公教育专家针对此问题展开深入的探讨:
一、追及问题的特征
(一)两个运动物体同地不同时(或同时不同地)出发做同向运动。

后面的比前面的速度快。

(二)在一定时间内,后面的追上前面的。

追及问题涉及两个或多个运动物体,过程较为复杂,一般借助线段图来理清追及问题的运动关系。

例题1:小胖步行上学,每分钟行72米。

一次小胖离家512米后,爸爸发现小胖的文具盒忘在家中,爸爸带着文具盒,立即骑自行车以每分钟200米的速度去追小胖。

问爸爸出发几分钟后在途中追上小胖?
A.2
B.3
C.4
D.5
中公解析:此题答案为C。

此题属同地不同时的追及问题,画线段图分析:
如上图所示,可知存在等量关系:小胖第一段的路程+小胖第二段的路程=爸爸走的路程。

设爸爸x分钟后在途中追上小胖,则有512+72x=200x→200x-72x=512→128x=512,解
得x=4。

二、追及问题公式
由上例可知,爸爸与小胖的速度之差×时间=开始追及时拉开的距离。

在追及问题中,我们把开始追及时两者的距离称为追及路程,大速度减小速度称为速度差。

由此得出追及问题的公式:
例题2:甲、乙两架飞机同时从一个机场起飞,向同一方向飞行,甲机每小时行300千米,乙机每小时行340千米,飞行4小时后它们相隔多少千米?这时候甲机提高速度用2小时追上乙机,甲机每小时要飞行多少千米?
A.100,260
B.120,320
C.160,360
D.160,420
中公解析:此题答案为D。

乙机速度>甲机速度,因此4小时后甲、乙相隔(340-300)×4=160千米,即后面2小时的追及路程为160千米。

根据速度差=追及路程÷追及时间,可得速度差=160÷2=80千米/时。

乙机速度不变,则甲机每小时应飞行80+340=420千米。

例题3:某环形公路长15千米,甲、乙两人同时同地沿公路骑自行车反向而行,0.5小时后相遇,若他们同时同地同向而行,经过3小时后,甲追上乙,问乙的速度是多少?
A.12.5千米/小时
B.13.5千米/小时
C.15.5千米/小时
D.17.5千米/小时
中公解析:此题答案为A。

相遇与追及问题。

甲、乙两人同时同地反向而行,相遇路程为环形公路的长15千米,相遇时间为0.5小时。

则甲、乙两人速度和=相遇路程÷相遇时间=15÷0.5=30千米/小时;
甲、乙两人同时同地同向而行,追及路程为环形公路的长15千米,追及时间为3小时,则甲、乙两人速度差=追及路程÷追及时间=15÷3=5千米/小时。

由题意可知,甲的速度大于乙,根据和差关系,乙的速度为(30—5)/2=12.5千米/小时。

相关文档
最新文档