19.1.2(一) 平行四边形的判定教学设计

合集下载

“平行四边形的判定”教学设计

“平行四边形的判定”教学设计

“平行四边形的判定”教学设计课题平行四边形的判定教学目标知识与技能:掌握平行四边形的判定方法,并能简单运用。

过程与方法:学生经历动手操作、观察、探究、归纳、总结等过程,获得用数学的思想方法处理问题的能力。

情感、态度与价值观:①通过学生的合作交流,培养学生的集体意识和合作意识;②使学生养成自主探究、合作探究、自觉运用三种数学语言的良好习惯,培养学习数学的兴趣。

教学重点①平行四边形的判定方法的得出过程。

②会用平行四边形的判定方法解决问题。

教学难点理解判定方法,以及判定方法的应用。

教学工具课件;师生各准备两个全等的三角形纸板。

教学过程一、温故蕴新教学内容:出示第一个问题:两个全等的三角形能否拼成一个平行四边形?(学生动手拼图)师生活动:通过学生动手拼平行四边形,合作交流,个性展示。

活动时间要充足,保证学生能够充分思考。

教师及时点播、引导学生理清解决问题中用到的知识点和思想方法。

设计意图:这个环节的目的是通过一个拼图活动复习本课要用到的基本知识点和思想方法。

有利于学生顺利找到判定方法。

例如:平行四边形的定义、通过做辅助线将四边形的问题转化成三角形的问题来解决的思想方法。

二、借故生新教学内容:出示第二个问题探究判定定理:两组对边分别相等的四边形是平行四边形。

师生活动:学生观察教具演示,做猜想,并证明,感受方法的多样性。

教师演示教具,引导学生观察,点拨、订正。

教师演示速度要适当,不能太快,留给学生仔细观察,以及充分思考的时间。

每个环节都让学生经历“自主探究—合作交流—教师点拨—订正规范—返悟小记”的知识发展过程。

设计意图本环节的主要目的有两个:1.针对本节的知识点而形成的典型例题进行讲解分析,让学生知道做这种题型的思路是什么。

因此,在这儿要让学生充分的暴露不足和缺陷,教师及时的订正,已形成典型例题的基本解题方法和思想。

为以后学生做题有法可循、有据可依打下基础。

2.以题目为载体,总结做题的方法,渗透基本的数学思想。

平行四边形的判定教学设计

平行四边形的判定教学设计

平行四边形的判定教学设计.docx课题:平行四边形的判定(一)知识背景分析本课在学生学习了平行线、全等三角形、平行四边形定义及性质的基础上,研究平行四边形的判定方法(定义法,判定定理)。

它为学习矩形、菱形、正方形、等腰梯形的判定创造条件。

因而,具有承上启下的作用。

二.教学目标:(1)知识目标理解并掌握平行四边形的判定方法(定义法及三个判定定理)。

(2)技能目标通过逆命题猜想、操作验证、逻辑论证,发展合情推理与逻辑推理能力。

(3)情感态度目标联系学生的生活环境、创设情景,经历发现平行四边形判定方法的过程,培养大胆设想、小心求证的科学精神与独立思考、合作交流的良好习惯,增强学习数学的兴趣与信心。

三.教学重点、难点:重点:运用平行四边形的判定定理。

难点:对判定定理的论证与应用。

四.教学过程设疑猜想创设现实情境,通过实际问题设疑,激发学生学习兴趣,引入本节课要研究的内容。

师:独秀初中化学实验室有一块平行四边形的玻璃片,小X一不小心碰碎了一部分.同学们,你有办法把原来的平行四边形重新画出来吗提问:1.同学们回想一下平行四边形的定义是什么它有哪些性质2.怎样判断一个四边形是平行四边形(通过教师提问、学生回答,复习基础知识,并引出本课课题)师:同学们,前面我们分析平行四边形的性质是从边、角、对角线出发的,研究平行四边形的判定方法同样也可以从这些方面入手,今天我们就先从边中找一找判定平行四边形的方法。

幻灯片出示平行四边形的性质:平行四边形两组对角分别相等。

平行四边形两组对边分别平行;平行四边形两组对边分别相等。

平行四边形的对角线互相平分。

师:我们看性质的逆命题,即两组对边分别平行的四边形是平行四边形。

它是不是平形四边形的定义能不能作为平行四边形的判定方法仿照性质,对于性质你能产生什么样的猜想学生思考后可得出如下猜想:猜想一:一组对边平行且相等的四边形是平行四边形。

问题:如果将位置关系(平行)与数量关系(相等)相结合,你又有什么样的猜想猜想二:一组对边平行,另一组对边相等的四边形是平行四边形。

平行四边形的判定 教学设计

平行四边形的判定 教学设计

教学设计:平行四边形的判定1. 目标:使学生能够理解并掌握平行四边形的定义和判定方法。

2. 教学内容:-平行四边形的定义:对于四边形ABCD,如果两对对边分别平行,则该四边形为平行四边形。

-判定方法:-对边判定法:通过测量四边形的对边长度和夹角来判断是否平行。

-向量判定法:通过将四边形的对边向量进行比较来判断是否平行。

3. 教学步骤:步骤一:引入概念-引导学生回顾并复习平行线的定义和性质,强调平行线之间的关系和特点。

-引入平行四边形的概念,给出平行四边形的定义,并展示一些实际生活中的例子。

步骤二:对边判定法-解释对边判定法的原理和步骤:通过测量四边形的对边长度和夹角来判断是否平行。

-示意图:绘制一个示意图,标记四边形的对边和夹角,让学生可以更好地理解和应用判定法。

-搭配实例:给出几个具体的四边形,让学生通过测量对边长度和夹角来判断是否为平行四边形。

步骤三:向量判定法-解释向量判定法的原理和步骤:通过将四边形的对边向量进行比较来判断是否平行。

-示意图:绘制一个示意图,标记四边形的对边向量,让学生可以更好地理解和应用判定法。

-搭配实例:给出几个具体的四边形,让学生通过比较对边向量来判断是否为平行四边形。

步骤四:综合应用-提供一些综合性的问题和情境,要求学生运用所学的对边判定法和向量判定法来判断是否为平行四边形。

-鼓励学生主动提出问题,并进行讨论和解答,培养学生的分析和解决问题的能力。

4. 教学资源:-平行四边形的定义和性质的教材资料或课件。

-示意图的投影或绘制工具。

-实际生活中的平行四边形的图片或示例。

5. 教学评估:-练习题:提供一些练习题,让学生通过对边判定法和向量判定法来判断是否为平行四边形。

-问题解答:提出一些情境问题,要求学生运用所学的知识进行分析和解答。

-讨论参与:鼓励学生积极参与教学过程中的问题讨论和解答,评估他们的理解和应用能力。

通过以上教学设计,学生可以逐步理解和掌握平行四边形的定义和判定方法。

19.1.2平行四边形的判定(1)

19.1.2平行四边形的判定(1)

解:图中互相平行的线段有: AB//DC//EF, AD//BC, DE//CF B 理由如下:
AB=DC AD=BC
如图,AB=DC=EF,AD=BC,DE=CF, 图中有哪些互相平行的线段? D A
E F
C
四边形ABCD 是平行四边形 四边形CDEF 是平行四边形
AD∥BC
AB∥DC DC∥EF
2.已知:如图,E,F分别是 ABCD 的边AD,BC的中点。
求证:BE=DF.
证明: B ∵四边形ABCD是平行四边形,
A
E
D
F
C
∴AB∥CD (平行四边形的定义) AD=BC(平行四边形的对边分别相等), ∵E,F分别是AD,BC的中点, ∥ ∴ED=BF,即ED ﹦ BF. ∴四边形EBFD是平行四边形(一组对边 平行并且相等的四边形是平行四边形)。 ∴BE=DF(平行四边形的对边分别相等)。
B
1.已知:E、F是平行四边形ABCD对角线 AC上的两点,并且AE=CF。
求证:四边形BFDE是平行四边形
证法2:作对角线BD,交AC于点O。 ∵四边形ABCD是平行四边形 ∴ AO=CO,BO=DO ∵AE=CF
A
E O F
D
C
∴AO-AE=CO-CF
∴EO=FO
又 BO=DO ∴ 四边形BFDE是平行四边形
已知:如图,在四边形ABCD中,AB=DC, AD=BC,求证:四边形ABCD是平行四边形 . 证明:连接AC, 在△ABC 和△CDA中, A 1 D 4 AB=CD(已知), 3 AD=BC(已知), 2 B C AC=CA(公共边), 所以△ABC ≌ △CDA (SSS)。 所以∠1=∠2, ∠3=∠4。 所以AB∥DC,AD∥BC。 所以四边形ABCD是平行四边形。

平行四边形的判定 (2) 优质课评选教案

平行四边形的判定 (2) 优质课评选教案

课题:平行四边形的判定韶关市始兴县沈所中学温茂华教材:人教版义务教育课程标准实验教科书《数学》八年级上册第19.1.2节一、教材分析1、教材的地位和作用:“平行四边形的判定”是初中数学几何部分一节十分重要的内容。

主要体现在知识技能和思想方法两个方面。

从知识技能上讲,它既是对前面所学的全等三角形和平行四边形性质的一个回顾和延伸,又是以后学习特殊平行四边形的基础,同时它还进一步培养学生简单的推理能力和图形迁移能力;从思想方法上讲,通过平行四边形和三角形之间的相互转化,渗透了化归思想。

综上所述,本节课不论从知识技能还是思想方法上,都是一节十分难得的素材,它对培养学生的探索精神、动手能力、应用意识和抽象建模能力都有很好的作用。

2、教学目标:根据教学大纲要求,结合学生的实际情况,我把教学目标确定为:(1)知识目标:经历并了解平行四边形判定方法的探索过程,使学生逐步掌握说理的基本方法;能根据判定方法进行有关的应用。

(2)能力目标:在探索过程中发展学生合作推理意识和主动探究的习惯。

(3)情感目标:通过平行四边形判定条件的探索,培养学生面对挑战,勇于克服困难的意志,鼓励学生大胆尝试,从中获得成功的体验,激发学生的学习热情。

3、教学重点和难点:重点:探索平行四边形的判定方法。

难点:判定方法的说理及应用。

二、过程分析教学程序教学过程设计理念温故知新,情景导入1、温故知新:1、平行四边形的定义。

2、平行四边形的性质。

(从边、角、对角线三个方面归纳,并结合图形用符号语言表达出来。

)2、情景引入,发现新知:一块平行四边形的玻璃片被碰碎了,只剩下如图所示部分,如何才能割一块和原来一样的玻璃片呢?(如图A,B,C为三顶点,即找出第四个顶点D).在复习平行四边形的定义和性质时,给出情景问题,让学生从真实的生活中感受数学,激起学生的学习欲望,而且自然引入本节课的课题。

活动感悟、发现新知教学活动一:如图将两长两短的四根细木条用小钉绞合在一起,做成一个四边形,使等长的木条成为对边.这个四边形是平行四边形吗?转动这个四边形,使它形状改变,它一直是一个平行四边形吗?1、各小组学生动手做出如图所示的四边形2、学生探讨证明的方法:(学生可能会想到的方法有)(1)、平行推移说明两组对边分别平行。

平行四边形判定教案

平行四边形判定教案

1 AC(三角形中位线定理) . 2 1 同理 EF∥AC,EF= AC. 2
四边形 EFGH 是平行四边形.
∴ HG EF ∴ 此题可得结论:顺次连结四边形四边中点所得的四边形 是平行四边形.
五、平行线间的距离 前面我们学习了点与点之间的距离、点到直线的距离, 在此基础上,我们结合平行四边形的知识,介绍两条平行线 间的距离。 如图,a、b是两条平行线,从直线a上的任意一点A向直 线b做垂线l,垂足为点B,我们得到线段AB,按同样的作法, 作出线段CD,容易发现AB=CD。
∴ AD∥CB,AD=CD. ∵ E、F分别是AD、BC的中点, 1 1 ∴ DE∥BF,且DE= AD,BF= BC. 2 2 ∴ DE=BF. ∴ 四边形BEDF是平行四边形 (一组对边平行且相等的 四边形平行四边形) . ∴ BE=DF. 例2(补充)已知:如图, 是平行四边形. 证明:∵ 四边形ABCD是平 行四边形, ∴ AB=CD,且AB∥CD. ∴ ∠BAE=∠DCF. ∵ BE⊥AC于E,DF⊥AC于F, ∴ BE∥DF,且∠BEA=∠DFC=90°. ∴ △ABE≌△CDF (AAS) . ∴ BE=DF. ∴ 四边形BEDF是平行四边形 (一组对边平行且相等的 四边形平行四边形) . 三、随堂练习 1.判断题: (1)相邻的两个角都互补的四边形是平行四边形 ( (2)两组对角分别相等的四边形是平行四边形 ( ) ) ) ) ) 师生共同分析, 学生板书 ABCD中,E、F分别是AC 上两点,且BE⊥AC于E,DF⊥AC于F.求证:四边形BEDF
课 题
授课日期 19.1.1 平行四边形的判定 课 知 识 技 能 时 1. 运用类比的方法,通过学生的合作探究,得出平行四边形的判 定方法,并学会简单运用。 2. 理解和领会三角形中位线的概念,掌握三角形中位线定理及其 应用。 3. 会综合运用平行四边形的四种判定方法和性质来证明问题。 1. 通过类比、观察、实验、猜想、验证、推理、交流等教学活动, 进一步培养学生的动手能力、合情推理能力;使学生学会将平 行四边形的问题转化成三角形的问题,渗透化归思想。 2. 经过探索三角形中位线定理的过程,理解它与平行四边形的内 在联系,感悟几何学的推理方法。 3. 应用平行四边形的知识解决三角形中位线定理的证明,以“加 倍法”来构建平行四边形。

第19章 《四边形》全章教案

第19章 《四边形》全章教案

第十九章四边形19.1.1 平行四边形及其性质(一)一、教学目标:1.理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.2.会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证.3.培养学生发现问题、解决问题的能力及逻辑推理能力.二、重点、难点1.重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用.2.难点:运用平行四边形的性质进行有关的论证和计算.三、例题的意图分析例1是教材P84的例1,它是平行四边形性质的实际应用,题目比较简单,其目的就是让学生能运用平行四边形的性质进行有关的计算,讲课时,可以让学生来解答.例2是补充的一道几何证明题,即让学生学会运用平行四边形的性质进行有关的论证,又让学生从较简单的几何论证开始,提高学生的推理论证能力和逻辑思维能力,学会演绎几何论证的方法.此题应让学生自己进行推理论证.四、课堂引入1.我们一起来观察下图中的竹篱笆格子和汽车的防护链,想一想它们是什么几何图形的形象?平行四边形是我们常见的图形,你还能举出平行四边形在生活中应用的例子吗?你能总结出平行四边形的定义吗?(1)定义:两组对边分别平行的四边形是平行四边形.(2)表示:平行四边形用符号“”来表示.如图,在四边形ABCD中,AB∥DC,AD∥BC,那么四边形ABCD是平行四边形.平行四边形ABCD记作“ ABCD”,读作“平行四边形ABCD”.①∵AB//DC ,AD//BC,∴四边形ABCD是平行四边形(判定);②∵四边形ABCD是平行四边形∴AB//DC,AD//BC(性质).注意:平行四边形中对边是指无公共点的边,对角是指不相邻的角,邻边是指有公共端点的边,邻角是指有一条公共边的两个角.而三角形对边是指一个角的对边,对角是指一条边的对角.(教学时要结合图形,让学生认识清楚)2.【探究】平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?我们一起来探究一下.让学生根据平行四边形的定义画一个一个平行四边形,观察这个四边形,它除具有四边形的性质和两组对边分别平行外以,它的边和角之间有什么关系?度量一下,是不是和你猜想的一致?(1)由定义知道,平行四边形的对边平行.根据平行线的性质可知,在平行四边形中,相邻的角互为补角.(相邻的角指四边形中有一条公共边的两个角.注意和第一章的邻角相区别.教学时结合图形使学生分辨清楚.)(2)猜想平行四边形的对边相等、对角相等.下面证明这个结论的正确性.已知:如图ABCD,求证:AB=CD,CB=AD,∠B=∠D,∠BAD=∠BCD.分析:作ABCD的对角线AC,它将平行四边形分成△ABC和△CDA,证明这两个三角形全等即可得到结论.(作对角线是解决四边形问题常用的辅助线,通过作对角线,可以把未知问题转化为已知的关于三角形的问题.)证明:连接AC,∵AB∥CD,AD∥BC,∴∠1=∠3,∠2=∠4.又AC=CA,∴△ABC≌△CDA(ASA).∴AB=CD,CB=AD,∠B=∠D.又∠1+∠4=∠2+∠3,∴∠BAD=∠BCD.由此得到:平行四边形性质1 平行四边形的对边相等.平行四边形性质2 平行四边形的对角相等.五、例习题分析例1(教材P84例1)例2(补充)如图,在平行四边形ABCD中,AE=CF,求证:AF=CE.分析:要证AF=CE,需证△ADF≌△CBE,由于四边形ABCD是平行四边形,因此有∠D=∠B ,AD=BC,AB=CD,又AE=CF,根据等式性质,可得BE=DF.由“边角边”可得出所需要的结论.证明略六、随堂练习1.填空:(1)在ABCD中,∠A=50,则∠B= 度,∠C= 度,∠D= 度.(2)如果ABCD中,∠A—∠B=240,则∠A= 度,∠B= 度,∠C= 度,∠D= 度.(3)如果ABCD的周长为28cm,且AB:BC=2∶5,那么AB= cm,BC= cm,CD= cm,CD= cm.2.如图4.3-9,在ABCD中,AC为对角线,BE⊥AC,DF⊥AC,E、F为垂足,求证:BE=DF.七、课后练习1.(选择)在下列图形的性质中,平行四边形不一定具有的是().(A)对角相等(B)对角互补(C)邻角互补(D)内角和是3602.在ABCD中,如果EF∥AD,GH∥CD,EF与GH相交与点O,那么图中的平行四边形一共有().(A)4个(B)5个(C)8个(D)9个3.如图,AD∥BC,AE∥CD,BD平分∠ABC,求证AB=CE.19.1.1 平行四边形的性质(二)一、教学目标:1.理解平行四边形中心对称的特征,掌握平行四边形对角线互相平分的性质.2.能综合运用平行四边形的性质解决平行四边形的有关计算问题,和简单的证明题.3.培养学生的推理论证能力和逻辑思维能力.二、重点、难点1.重点:平行四边形对角线互相平分的性质,以及性质的应用.2.难点:综合运用平行四边形的性质进行有关的论证和计算.三、例题的意图分析本节课安排了两个例题,例1是一道补充题,它是性质3的直接运用,然后对例1进行了引申,可以根据学生的实际情况选讲,并归纳结论:过平行四边形对角线的交点作直线交对边或对边的延长线,所得的对应线段相等.例1与后面的三个图形是一组重要的基本图形,熟悉它的性质对解答复杂问题是很有帮助的.例2是教材P85的例2,这是复习巩固小学学过的平行四边形面积计算.这个例题比小学计算平行四边形面积的题加深了一步,需要应用勾股定理,先求得平行四边形一边上的高,然后才能应用公式计算.在以后的解题中,还会遇到需要应用勾股定理来求高或底的问题,在教学中要注意使学生掌握其方法.四、课堂引入1.复习提问:(1)什么样的四边形是平行四边形?四边形与平行四边形的关系是:(2)平行四边形的性质:①具有一般四边形的性质(内角和是︒360).②角:平行四边形的对角相等,邻角互补.边:平行四边形的对边相等.2.【探究】:请学生在纸上画两个全等的ABCD和EFGH,并连接对角线AC、BD和EG、HF,设它们分别交于点O.把这两个平行四边形落在一起,在点O处钉一个图钉,将ABCD绕点O旋转180,观察它还︒和EFGH重合吗?你能从子中看出前面所得到的平行四边形的边、角关系吗?进一步,你还能发现平行四边形的什么性质吗?结论:(1)平行四边形是中心对称图形,两条对角线的交点是对称中心;(2)平行四边形的对角线互相平分.五、例习题分析例1(补充)已知:如图4-21,ABCD的对角线AC、BD相交于点O,EF过点O与AB、CD分别相交于点E、F.求证:OE=OF,AE=CF,BE=DF.证明:在ABCD中,AB∥CD,∴∠1=∠2.∠3=∠4.又OA=OC(平行四边形的对角线互相平分),∴△AOE≌△COF(ASA).∴OE=OF,AE=CF(全等三角形对应边相等).∵ABCD,∴ AB=CD(平行四边形对边相等).∴AB—AE=CD—CF.即BE=FD.※【引申】若例1中的条件都不变,将EF转动到图b的位置,那么例1的结论是否成立?若将EF 向两方延长与平行四边形的两对边的延长线分别相交(图c和图d),例1的结论是否成立,说明你的理由.解略例2(教材P85的例2)已知四边形ABCD是平行四边形,AB=10cm,AD=8cm,AC⊥BC,求BC、CD、AC、OA的长以及ABCD的面积.分析:由平行四边形的对边相等,可得BC、CD的长,在Rt△ABC中,由勾股定理可得AC的长.再由平行四边形的对角线互相平分可求得OA的长,根据平行四边形的面积计算公式:平行四边形的面积=底×高(高为此底上的高),可求得ABCD的面积.(平行四边形的面积小学学过,再次强调“底”是对应着高说的,平行四边形中,任一边都可以作为“底”,“底”确定后,高也就随之确定了.)3.平行四边形的面积计算解略(参看教材P85).六、随堂练习1.在平行四边形中,周长等于48,①已知一边长12,求各边的长②已知AB=2BC,求各边的长③已知对角线AC、BD交于点O,△AOD与△AOB的周长的差是10,求各边的长2.如图,ABCD中,AE⊥BD,∠EAD=60°,AE=2cm,AC+BD=14cm,则△OBC的周长是____ ___cm.3.ABCD一内角的平分线与边相交并把这条边分成cm7的两条线段,则ABCD的周长是__5,cm___cm.七、课后练习1.判断对错(1)在ABCD中,AC交BD于O,则AO=OB=OC=OD.()(2)平行四边形两条对角线的交点到一组对边的距离相等.()(3)平行四边形的两组对边分别平行且相等.()(4)平行四边形是轴对称图形.()2.在ABCD中,AC=6、BD=4,则AB的范围是__ ______.3.在平行四边形ABCD中,已知AB、BC、CD三条边的长度分别为(x+3),(x-4)和16,则这个四边形的周长是.4.公园有一片绿地,它的形状是平行四边形,绿地上要修几条笔直的小路,如图,AB=15cm,AD=12cm,AC⊥BC,求小路BC,CD,OC的长,并算出绿地的面积.19.1.2 平行四边形的判定(一)一、教学目标:1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法.2.会综合运用平行四边形的判定方法和性质来解决问题.3.培养用类比、逆向联想及运动的思维方法来研究问题.二、重点、难点3.重点:平行四边形的判定方法及应用.4.难点:平行四边形的判定定理与性质定理的灵活应用.三、例题的意图分析本节课安排了3个例题,例1是教材P87的例3,它是平行四边形的性质与判定的综合运用,此题最好先让学生说出证明的思路,然后老师总结并指出其最佳方法.例2与例3都是补充的题目,其目的就是让学生能灵活和综合地运用平行四边形的判定方法和性质来解决问题.例3是一道拼图题,教学时,可以让学生动起来,边拼图边说明道理,即可以提高学生的动手能力和学生的思维能力,又可以提高学生的学习兴趣.如让学生再用四个不等边三角形拼一个如图的大三角形,让学生指出图中所有的平行四边形,并说明理由.四、课堂引入1.欣赏图片、提出问题.展示图片,提出问题,在刚才演示的图片中,有哪些是平行四边形?你是怎样判断的?2.【探究】:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?让学生利用手中的学具——硬纸板条通过观察、测量、猜想、验证、探索构成平行四边形的条件,思考并探讨:(1)你能适当选择手中的硬纸板条搭建一个平行四边形吗?(2)你怎样验证你搭建的四边形一定是平行四边形?(3)你能说出你的做法及其道理吗?(4)能否将你的探索结论作为平行四边形的一种判别方法?你能用文字语言表述出来吗?(5)你还能找出其他方法吗?从探究中得到:平行四边形判定方法1 两组对边分别相等的四边形是平行四边形。

浙教版数学八年级下册4.4《平行四边形的判定》教学设计1

浙教版数学八年级下册4.4《平行四边形的判定》教学设计1

浙教版数学八年级下册4.4《平行四边形的判定》教学设计1一. 教材分析《平行四边形的判定》是浙教版数学八年级下册4.4节的内容,本节内容主要引导学生探究平行四边形的判定方法,培养学生空间想象能力和逻辑思维能力。

教材通过丰富的图片和生活实例,激发学生学习兴趣,让学生感受数学与生活的紧密联系。

本节课的内容是学生进一步学习几何图形的重要基础,对于学生形成系统化的几何知识体系具有重要意义。

二. 学情分析八年级的学生已经掌握了平行线的性质,四边形的分类等基础知识,具备了一定的空间想象能力和逻辑思维能力。

但学生的知识水平参差不齐,部分学生对几何图形的认知仍较模糊。

因此,在教学过程中,要关注学生的个体差异,引导他们积极参与课堂讨论,提高他们的几何素养。

三. 教学目标1.知识与技能:使学生掌握平行四边形的判定方法,能运用判定方法判断一个四边形是否为平行四边形。

2.过程与方法:通过观察、操作、猜想、验证等过程,培养学生的空间想象能力和逻辑思维能力。

3.情感态度与价值观:激发学生学习数学的兴趣,感受数学与生活的紧密联系,培养学生的团队协作和交流能力。

四. 教学重难点1.重点:平行四边形的判定方法。

2.难点:如何引导学生发现并证明平行四边形的判定方法。

五. 教学方法1.情境教学法:通过生活实例和图片,激发学生的学习兴趣,让学生感受数学与生活的紧密联系。

2.启发式教学法:引导学生积极参与课堂讨论,启发学生思考,培养学生的逻辑思维能力。

3.合作学习法:学生进行小组讨论,培养学生团队协作和交流能力。

六. 教学准备1.教学课件:制作包含生活实例、图片、动画等丰富的教学课件。

2.学习素材:准备相关的生活实例和图片,供学生观察和操作。

3.课堂练习:设计具有梯度的练习题,巩固所学知识。

七. 教学过程1.导入(5分钟)利用生活实例和图片,引导学生观察并思考:这些实例和图片中是否存在平行四边形?让学生初步感知平行四边形的存在,激发学生的学习兴趣。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

19.1.2(一)平行四边形的判定教学设计
丹江口市土台中学刘桂林
一、教学目标:
1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法.
2.会综合运用平行四边形的判定方法和性质来解决问题.
3.培养用类比、逆向联想及运动的思维方法来研究问题.
二、重点、难点
1.重点:平行四边形的判定方法及应用.
2.难点:平行四边形的判定定理与性质定理的灵活应用.
3.难点的突破方法:
平行四边形的判别方法是本节课的核心内容.同时它又是后面进一步研究矩形、菱形、正方形判别的基础,更是发展学生合情推理及说理的良好素材.本节课的教学重点为平行四边形的判别方法.在本课中,可以探索活动为载体,并将论证作为探索活动的自然延续与必要发展,从而将直观操作与简单推理有机融合,达到突出重点、分散难点的目的.
(1)平行四边形的判定方法1、2都是平行四边形性质的逆命题,它们的证明都可利用定义或前一个方法来证明.
(2)平行四边形有四种判定方法,与性质类似,可从边、对角线两方面进行记忆.
要注意:
①本教材没有把用角来作为判定的方法,教学中可以根据学生的情况作为补充;
②本节课只介绍前两个判定方法.
(3)教学中,我们可创设贴近学生生活、生动有趣的问题情境,开展有效的数学活动,如通过欣赏图片及识别图片中的平行四边形,使学生建立对平行四边形的直觉认识.并复习平行四边形的定义,建立新旧知识间的相互联系.接着提出问题:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?从而组织学生主动参与、勤于动手、积极思考,使他们在自主探究与合作交流的过程中,从整体上把握“平行四边形的判别”的方法.
然后利用学生手中的学具——硬纸板条通过观察、测量、猜想、
验证、探索构成平行四边形的条件.
在学生拼图的活动中,教师可以以问题串的形式展开对平行四边形判别方法的探讨,让学生在问题解决中,实现对平行四边形各种判别方法的掌握,并发展了学生说理及简单推理的能力.(4)从本节开始,就应让学生直接运用平行四边形的性质和判定去解决问题,凡是可以用平行四边形知识证明的问题,不要再回到用三角形全等证明.应该对学生提出这个要求.
(5)平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质去解决某些问题.例如求角的度数,线段的长度,证明角相等或线段相等等;二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判定一个四边形是平行四边形,然后再眼再用平行四边形的性质去解决某些问题.
(6)平行四边形的概念、性质、判定都是非常重要的基础知识,这些知识是本章的重点内容,要使学生熟练地掌握这些知识.
三、例题的意图分析
本节课安排了3个例题,例1是教材P96的例3,它是平行四边形的性质与判定的综合运用,此题最好先让学生说出证明的思路,
然后老师总结并指出其最佳方法.例2与例3
都是补充的题目,其目的就是让学生能灵活和
综合地运用平行四边形的判定方法和性质来
解决问题.例3是一道拼图题,教学时,可以让学生动起来,边拼图边说明道理,即可以提高学生的动手能力和学生的思维能力,又可以提高学生的学习兴趣.如让学生再用四个不等边三角形拼一个如图的大三角形,让学生指出图中所有的平行四边形,并说明理由.
四、课堂引入
1.欣赏图片、提出问题.
展示图片,提出问题,在刚才演示的图片中,有哪些是平行四边形?你是怎样判断的?
2.【探究】:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?
让学生利用手中的学具——硬纸板条通过观察、测量、猜想、验证、探索构成平行四边形的条件,思考并探讨:
(1)你能适当选择手中的硬纸板条搭建一个平行四边形吗?
(2)你怎样验证你搭建的四边形一定是平行四边形?
(3)你能说出你的做法及其道理吗?
(4)能否将你的探索结论作为平行四边形的一种判别方法?
你能用文字语言表述出来吗?
(5)你还能找出其他方法吗?
从探究中得到:
平行四边形判定方法 1 两组对边分别相等的四边形是平行四边形。

平行四边形判定方法2 对角线互相平分的四边形是平行四边形。

五、例习题分析
例1(教材P96例3)已知:如图ABCD
的对角线AC、BD交于点O,E、F是AC上
的两点,并且AE=CF.
求证:四边形BFDE是平行四边形.
分析:欲证四边形BFDE是平行四边形可以根据判定方法2来证明.
(证明过程参看教材)
问;你还有其它的证明方法吗?比较一
下,哪种证明方法简单.
例2(补充)已知:如图,A′B′∥BA,
B′C′∥CB,C′A′∥AC.
求证:(1) ∠ABC=∠B′,∠CAB=∠A′,
∠BCA=∠C′;
(2) △ABC的顶点分别是△B′C′A′各边的中点.
证明:(1) ∵A′B′∥BA,C′B′∥BC,
∴四边形ABCB′是平行四边形.
∴∠ABC=∠B′(平行四边形的对角相等).
同理∠CAB=∠A′,∠BCA=∠C′.
(2) 由(1)证得四边形ABCB′是平行四边形.同理,四边形ABA′C 是平行四边形.
∴AB=B′C,AB=A′C(平行四边形的对边相等).
∴B′C=A′C.同理B′A=C′A,A′B=C′B.
∴△ABC的顶点A、B、C分别是△B′C′A′的边B′C′、C′A′、A′B′的中点.
例3(补充)小明用手中六个全等的正三角形做拼图游戏时,拼
成一个六边形.你能在图中找出所有的平行四边形
吗?并说说你的理由.
解:有6个平行四边形,分别是ABOF,ABCO,
BCDO,CDEO,DEFO,EFAO.
理由是:因为正△ABO≌正△AOF,所以AB=BO,OF=FA.根据“两组对边分别相等的四边形是平行四边形”,
可知四边形ABCD是平行四边形.其它五个同理.
六、随堂练习
1.如图,在四边形ABCD中,AC、BD相交于
点O,
(1)若AD=8cm,AB=4cm,那么当BC=___ _cm,CD=___ _cm 时,四边形ABCD为平行四边形;
(2)若AC=10cm,BD=8cm,那么当AO=__ _cm,DO=__ _cm 时,四边形ABCD为平行四边形.
2.已知:如图,ABCD中,点E、F分别
在CD、AB上,DF∥BE,EF交BD于点O.求
证:EO=OF.
3.灵活运用课本P89例题,如图:由火柴棒拼出的一列图形,第n 个图形由(n+1)个等边三角形拼成,通过观察,分析发现:
①第4个图形中平行四边形的个数为___ __.(6个)
②第8个图形中平行四边形的个数为___ __.(20个)
七、课后练习
1.(选择)下列条件中能判断四边形是平行四边形的是().(A)对角线互相垂直(B)对角线相等
(C)对角线互相垂直且相等(D)对
角线互相平分
2.已知:如图,△ABC,BD平分∠ABC,
DE∥BC,EF∥BC,
求证:BE=CF。

相关文档
最新文档