高三基础知识天天练 数学11-1人教版

合集下载

2014届高三数学天天练1(教师版)(最新整理)

2014届高三数学天天练1(教师版)(最新整理)

答案:(1) m 1 (2)当 a 1时, x 1 ;当 0 a 1时, x 1
15、设函数 f (x) 2 cos2 x 2 3 sin x cos x mx R (1)化简函数 f x 的表达式,并求函数 f x 的最小正周期
(2)若
x
0,
2
,是否存在实数 m
,使函数
f
2 2 5
10
即 BDM
arccos
10 10
.异 面 直 线
BD 与
A1C
10 角为 arccos
10
函数的解析式 f (x) _________ f (x) 2x2 4
0x ,
13、已知
2 化简:
lg cos
x
tan
x
1
2 sin2
x 2
lg
2
cos
x
4
lg1
sin
2x
答案:0
14、已知函数
f
(x)
loga
1 mx x 1
是奇函数 a
0, a
1
(1)求 m 值
(2)解关于 x 的不等式 f x 0
2014 届高三数学天天练 1
1、不等式 x -1 1的解集是_____________________ 0,2
2、不等式 1 1的解是_______________ x 0或x 1 x
3、若集合 A x x 2, B x x a,满足 A B 2,则实数 a ______ 2
4、若函数 f (x) 的反函数 f 1x log2 x ,则 f (x) _________ f (x) 2x x R
5、若正四棱柱 ABCD A1B1C1D1 的底面边长为 2,高位 4,则异面直线 BD1与AD 所成角

高三基础知识天天练 数学11-6人教版

高三基础知识天天练 数学11-6人教版

第11模块 第6节[知能演练]一、选择题1.如右图,向圆内投镖,如果每次都投入圆内,那么投中正方形区域的概率为( )A.2π B.1π C.23D.13解析:投中正方形区域的概率为正方形的面积与圆的面积之比,设正方形的边长为1,则其面积为1,圆的半径为22,面积为π(22)2=π2,故投中正方形区域的概率为1π2=2π,故选A.答案:A2.在500 mL 的水中有一个细菌,现从中随机取出2 mL 水样放到显微镜下观察,则发现这个细菌的概率是( )A .0.004B .0.002C .0.04D .0.02解析:由于取水样的随机性,所求事件A “在取出的2 mL 水样中有细菌”的概率等于水样的体积与总体积之比,即P =2500=0.004.故选A.答案:A3.已知Ω={(x ,y )|x ≥0,y ≥0,x +y ≤6},A ={(x ,y )|x ≤4,y ≥0,x -2y ≥0},若向区域Ω内随机投一点P ,则点P 落在区域A 内的概率为( )A.13B.23C.19D.29解析:由于点P 落在区域Ω内的位置的随机性,所求事件A 的概率等于区域A 的面积与区域Ω的面积之比,即P =12×4×212×6×6=29.故选D.答案:D4.如下图所示,ABCD 是正方形,E 、F 、G 、H 分别是AD 、BC 、AB 、CD 的中点,三只麻雀分别落在这三个正方形木板上休息,它们落在所在木板的任何地方是等可能的,麻雀落在甲、乙、丙三块木板中阴影部分的概率分别是P 1、P 2、P 3,则()A .P 1<P 2=P 3B .P 1<P 2<P 3C .P 1=P 2=P 3D .P 1>P 2=P 3解析:因为每一个图形中阴影部分的面积均是正方形面积的一半,所以麻雀落在甲、乙、丙三块木板中阴影部分的概率都是12.故选C.答案:C 二、填空题5.一个路口的红绿灯,红灯亮的时间为30秒,黄灯亮的时间为5秒,绿灯亮的时间为40秒,当你到达路口时,看见下列三种情况的概率各是________、________、________.(1)红灯;(2)黄灯;(3)不是红灯.解析:在75秒内,每一时刻到达路口是等可能的,属于几何概型. (1)P =亮红灯的时间全部时间=3030+40+5=25;(2)P =亮黄灯的时间全部时间=575=115;(3)P =不是亮红灯的时间全部时间=亮黄灯或绿灯的时间全部时间=4575=35.故填25、115、35.答案:25 115 356.已知函数f (x )=-x 2+ax -b .若a 、b 都是从区间[0,4]内任取的一个数,则f (1)>0成立的概率是________.解析:f (1)=-1+a -b >0,即a -b >1,如右图,A (1,0),B (4,0),C (4,3),S ΔABC =92,P =S ΔABC S 矩=924×4=932.故填932.答案:932三、解答题7.在1万平方千米的大陆架海域中有40平方千米的大陆架储藏着石油,假设在海域中任意一点钻探,钻到油层面的概率是多少?解:石油在1万平方千米的大陆架海域中的分布可以看作是随机的,而40平方千米可看作构成事件的区域面积,由几何概型的概率公式可以求得概率.记“钻到油层面”为事件A ,则P (A )=储藏石油的大陆架面积大陆架海域的面积=4010000=0.004.答:钻到油层面的概率是0.004.8.已知集合A ={x |-1≤x ≤0},集合B ={x |ax +b ·2x -1<0,0≤a ≤2,1≤b ≤3}. (1)若a ,b ∈N ,求A ∩B ≠Ø的概率; (2)若a ,b ∈R ,求A ∩B =Ø的概率.解:(1)因为a ,b ∈N ,(a ,b )可取(0,1),(0,2),(0,3),(1,1),(1,2),(1,3),(2,1),(2,2),(2,3)共9组.令函数f (x )=ax +b ·2x -1,x ∈[-1,0],则f ′(x )=a +b ln2·2x . 因为a ∈[0,2],b ∈[1,3],所以f ′(x )>0, 即f (x )在[-1,0]上是单调递增函数.f (x )在[-1,0]上的最小值为-a +b 2-1.要使A ∩B ≠Ø,只需-a +b2-1<0,即2a -b +2>0.所以(a ,b )只能取(0,1),(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),共7组. 所以A ∩B ≠Ø的概率为79.(2)因为a ∈[0,2],b ∈[1,3],所以(a ,b )对应的区域为边长为2的正方形(如右图),面积为4.由(1)可知,要使A ∩B =Ø,只需f (x )min =-a +b2-1≥0⇒2a -b +2≤0,所以满足A ∩B =Ø的(a ,b )对应的区域是图中的阴影部分,所以S 阴影=12×1×12=14,所以A ∩B =Ø的概率为P =144=116.[高考·模拟·预测]1.在棱长为a 的正方体ABCD -A 1B 1C 1D 1内任取一点P ,则点P 到点A的距离小于等于a 的概率为( )A.22B.22π C.16D.16π 解析:P =18×43πa 3a 3=π6. 答案:D2.平面上有一组平行线,且相邻平行线间的距离为3 cm ,把一枚半径为1 cm 的硬币任意投掷在这个平面上,则硬币不与任何一条平行线相碰的概率是( )A.14 B.13 C.12D.23解析:如下图所示,当硬币中心落在阴影区域时,硬币不与任何一条平行线相碰,故所求概率为13.答案:133.已知如右图所示的矩形,长为12,宽为5,在矩形内随机地投掷1000粒黄豆,数得落在阴影部分的黄豆数为600粒,则可以估计出阴影部分的面积约为________.解析:设所求的面积为S ,由题意得6001000=S5×12,∴S =36.答案:364.点A 为周长等于3的圆周上的一个定点.若在该圆周上随机取一点B ,则劣弧的长度小于1的概率为________.解析:如右图所示,可设=1,=1,根据题意只要点B在优弧上,劣弧的长度就小于1,由于点B 在圆周上的任意性,故这个概率是优弧的长度与圆的周长之比,即这个概率是23.故填23. 答案:235.设有关于x 的一元二次方程x 2+2ax +b 2=0.(Ⅰ)若a 是从0,1,2,3四个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,求上述方程有实根的概率.(Ⅱ) 若a 是从区间[0,3]任取的一个数,b 是从区间[0,2]任取的一个数,求上述方程有实根的概率.解:设事件A 为“方程x 2+2ax +b 2=0有实根”.当a ≥0,b ≥0时,方程x 2+2ax +b 2=0有实根的充要条件为a ≥b .(Ⅰ)基本事件共有12个:(0,0),(0,1)(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2).其中第一个数表示a 的取值,第二个数表示b 的取值.事件A 中包含9个基本事件,事件A 发生的概率为P (A )=912=34.(Ⅱ)试验的全部结果所构成的区域为{(a ,b )|0≤a ≤3,0≤b ≤2},构成事件A 的区域为{(a ,b )|0≤a ≤3,0≤b ≤2,a ≥b },所以所求的概率为P (A )=3×2-12×223×2=23.[备选精题]6.一条直线型街道的A ,B 两盏路灯之间的距离为120 m ,由于光线较暗,想在中间再随意安装两盏路灯C ,D ,路灯次序依次为A ,C ,D ,B ,求A 与C ,B 与D 之间的距离都不小于40 m 的概率.解:设AC 长为x ,DB 长为y ,则CD 长为120-(x +y )且满足⎩⎪⎨⎪⎧0≤x ≤1200≤y ≤120120-(x +y )≥0设AC ,BD 之间都不小于40的事件为M , 则⎩⎪⎨⎪⎧40≤x ≤12040≤y ≤120x +y ≤120满足条件的点P (x ,y )构成如右图所示的阴影区域,∴P (M )=S △阴影S △OEF =19.。

高三基础知识天天练2-11.数学数学doc人教版

高三基础知识天天练2-11.数学数学doc人教版

⾼三基础知识天天练2-11.数学数学doc⼈教版第2模块第11节[知能演练]⼀、选择题1.设f ′(x )是函数f (x )的导数,y =f ′(x )的图象如右图所⽰,则y =f (x )的图象最有可能是( )解析:由y =f ′(x )的图象可知,当x <0时,f ′(x )>0,∴f (x )在(-∞,0)上单调递增;当0答案:C2.函数f (x )=1+x -sin x 在(0,2π)上是( )A .增函数B .减函数C .在(0,π)上增,在(π,2π)上减D .在(0,π)上减,在(π,2π)上增解析:f ′(x )=1-cos x >0,∴f (x )在(0,2π)上递增.故选A. 答案:A 3.若a >3,则⽅程x 3-ax 2+1=0在(0,2)上恰有( )A .0个根B .1个根C .2个根D .3个根解析:令f (x )=x 3-ax 2+1,则f ′(x )=3x 2-2ax =3x (x -23a ).由f ′(x )=0,得x =0或x =23a (∵a >3,∴23a >2).∴当04.设a ∈R ,若函数y =e ax +3x ,x ∈R 有⼤于零的极值点,则( )A .a >-3B .a <-3C .a >-13D .a <-13解析:y ′=a ·e ax +3=0,当a =0时,显然不合题意,∴a ≠0. ∴e ax =-3a .∴x =1a ln(-3a ).由题意,得1a ln(-3a )>0,∴a <0,0<-3a <1.∴a <-3. 故应选B. 答案:B ⼆、填空题5.已知函数f (x )=x 3-12x +8在区间[-3,3]上的最⼤值与最⼩值分别为M ,m ,则M -m =________.解析:f ′(x )=3x 2-12=3(x +2)(x -2),令f ′(x )=0,得x =±2.∵f (-3)=17,f (3)=-1,f (-2)=24,f (2)=-8,∴M -m =f (-2)-f (2)=32. 答案:32 6.若函数f (x )=4x x 2+1在区间(m,2m +1)上是单调递增函数,则实数m 的取值范围是________.解析:f ′(x )=4(x 2+1)-8x 2(x 2+1)2=4(1-x 2)(x 2+1)2,令f ′(x )>0,∴-1m ≥-1,2m +1≤1,2m +1>m ,∴-1答案:(-1,0] 三、解答题7.设函数f (x )=ln(2x +3)+x 2. (1)讨论f (x )的单调性;(2)求f (x )在区间[-34,14]上的最⼤值和最⼩值.解:(1)函数f (x )的定义域为(-32,+∞),f ′(x )=22x +3+2x =2(2x +1)(x +1)2x +3,令f ′(x )>0,∴x >-12或-32令f ′(x )<0,∴-12.∴f (x )在区间(-32,-1)和(-12,+∞)上为增函数,在区间(-1,-12)上为减函数.(2)当x 在区间[-34,14]上变化时,f ′(x )与f (x )变化情况如下表:f (-34)=916+ln 32,f (-12)=14+ln2,f (14)=116+ln 72,由表知函数f (x )在x =-12处取最⼩值14+ln2.f (-34)-f (14)=12+ln 37=12(1-ln 499)<0.故函数f (x )在x =14处取最⼤值116+ln 72.8.已知f (x )=12x 2-a ln x (a ∈R ),(1)求函数f (x )的单调区间; (2)求证:当x >1时,12x 2+ln x <23x 3.(1)解:f ′(x )=x -a x =x 2-ax(x >0),若a ≤0时,f ′(x )≥0恒成⽴,∴函数f (x )的单调增区间为(0,+∞).若a >0时,令f ′(x )>0,得x >a ,∴函数f (x )的单调增区间为(a ,+∞),减区间为(0,a ). (2)证明:设F (x )=23x 3-(12x 2+ln x ),x .∴F ′(x )=(x -1)(2x 2+x +1)x .∵x >1,∴F ′(x )>0.∴F (x )在(1,+∞)上为增函数.⼜F (x )在[1,+∞)上连续,F (1)=16>0,∴F (x )>16在(1,+∞)上恒成⽴.∴F (x )>0.∴当x >1时,12x 2+ln x <23x 3.[⾼考·模拟·预测]1.函数f (x )=(x -3)e x 的单调递增区间是( )A .(-∞,2)B .(0,3)C .(1,4)D .(2,+∞)解析:函数f (x )=(x -3)e x 的导数为f ′(x )=[(x -3)e x ]′=1·e x +(x -3)·e x =(x -2)·e x ,由函数导数与函数单调性关系得:当f ′(x )>0时,函数f (x )单调递增,此时由不等式f ′(x )=(x -2)·e x >0解得:x >2.答案:D2.若函数f (x )=x 3-6bx +3b 在(0,1)内有极⼩值,则实数b 的取值范围是( )A .(0,1)B .(-∞,1)C .(0,+∞)D .(0,12)解析:∵f ′(x )=3x 2-6b ,由题意,函数f ′(x )图象如右图.∴ f ′(0)<0,f ′(1)>0,即-6b <0,3-6b >0,得0答案:D3.函数f (x )=x 3-15x 2-33x +6的单调减区间为________.解析:由f (x )=x 3-15x 2-33x +6得,f ′(x )=3x 2-30x -33,令f ′(x )<0,即3(x -11)(x +1)<0,求得-1x +1在x =1处取极值,则a =________.解析:由于f ′(x )=(x 2+a )′·(x +1)-(x 2+a )·(x +1)′(x +1)2=2x ·(x +1)-(x 2+a )·1(x +1)2=x 2+2x -a (x +1)2,⽽函数f (x )在x =1处取极值,则f ′(1)=12+2×1-a (1+1)2=0,解得a =3,故填3.答案:35.已知函数f (x )=(x 2+ax -2a 2+3a )e x (x ∈R ),其中a ∈R . (Ⅰ)当a =0时,求曲线y =f (x )在点(1,f (1))处的切线的斜率;(Ⅱ)当a ≠23时,求函数f (x )的单调区间与极值.解:(Ⅰ)当a =0时,f (x )=x 2e x ,f ′(x )=(x 2+2x )e x ,故f ′(1)=3e.所以曲线y =f (x )在点(1,f (1))处的切线的斜率为3e.(Ⅱ)f ′(x )=[x 2+(a +2)x -2a 2+4a ]e x . 令f ′(x )=0,解得x =-2a 或x =a -2. 由a ≠23知,-2a ≠a -2.以下分两种情况讨论.(1)若a >23,则-2a内是增函数,在函数f (x )在x =-2a 处取得极⼤值f (-2a ),且f (-2a )=3a e -2a.函数f (x )在x =a -2处取得极⼩值f (a -2),且f (a -2)=(4-3a )e a -2.(2)若a <23,则-2a >a -2.当x 变化时,f ′(x ),f (x )的变化情况如下表:函数f (x )在x =a -2处取得极⼤值f (a -2),且f (a -2)=(4-3a )e a -2.函数f (x )在x =-2a 处取得极⼩值f (-2a ),且f (-2a )=3a e-2a.[备选精题]6.若存在实常数k 和b ,使得函数f (x )和g (x )对其定义域上的任意实数x 分别满⾜:f (x )≥kx +b 和g (x )≤kx +b ,则称直线l :y =kx +b 为函数f (x )和g (x )的“隔离直线”.已知h (x )=x 2,φ(x )=2eln x (其中e 为⾃然对数的底数).(1)求F (x )=h (x )-φ(x )的极值;(2)函数h (x )和φ(x )是否存在隔离直线?若存在,求出此隔离直线的⽅程;若不存在,请说明理由.解:(1)∵F (x )=h (x )-φ(x )=x 2-2eln x (x >0),∴F ′(x )=2x -2e x =2(x -e)(x +e)x .当x =e 时,F ′(x )=0.∵当0e 时,F ′(x )>0,此时函数F (x )递增,∴当x =e 时,F (x )取极⼩值,其极⼩值为0.(2)由(1)可知函数h (x )和φ(x )的图象在x =e 处有公共点,因此若存在h (x )和φ(x )的隔离直线,则该直线过这个公共点,设隔离直线的斜率为k ,则直线⽅程为y -e =k (x -e),即y =kx +e -k e.由h (x )≥kx +e -k e(x ∈R ),可得x 2-kx -e +k e ≥0,当x ∈R 时恒成⽴.∴Δ=(k -2e)2,∴由Δ≤0,得k =2 e.下⾯证明φ(x )≤2e x -e ,当x >0时恒成⽴.令G (x )=φ(x )-2e x +e =2eln x -2e x +e ,则G ′(x )=2ex -2e =2e(e -x )x ,当x =e 时,G ′(x )=0. ∵当00,此时函数G (x )递增;当x >e 时,G ′(x )<0,此时函数G (x )递减,∴当x =e 时,G (x )取极⼤值,其极⼤值为0. 从⽽G (x )=2eln x -2e x +e ≤0,即φ(x )≤2e x -e(x >0)恒成⽴,∴函数h (x )和φ(x )存在唯⼀的隔离直线y =2e x -e.。

高三基础知识天天练 数学检测11人教版

高三基础知识天天练 数学检测11人教版

单元质量检测(11)一、选择题1.不同的五种商品在货架上排成一排,其中甲、乙两种必须排在一起,丙、丁不能排在一起,则不同的排法共有( )A .12种B .20种C .24种D .48种解析:甲、乙捆绑后与第5种商品排列有A 22种,产生的三个空排丙、丁,有A 23种,再排甲、乙有A 22种,共有A 22A 23A 22=24种.答案:C2.直角坐标xOy 平面上,平行直线x =n (n =0,1,2,…,5)与平行直线y =n (n =0,1,2,…,5)组成的图形中,矩形共有( )A .25个B .36个C .100个D .225个解析:从构成矩形的四条边入手,可以从6条竖着的直线中任取两条,共有C 26种选法;再从6条横着的直线中任取两条直线,共有C 26种选法,所以可构成矩形C 26·C 26=225(个). 答案:D3.(1+3x )6⎝⎛⎭⎪⎫1+14x 10的展开式中的常数项为( )A .1B .46C .4245D .4246 解析:(1+3x )6的通项公式为C r 6x r3,⎝⎛⎭⎪⎫1+14x 10的通项公式为C k10x -k 4,由r 3+(-k 4)=0,得⎩⎪⎨⎪⎧ r =0k =0,⎩⎪⎨⎪⎧ r =3k =4,⎩⎪⎨⎪⎧r =6k =8共三项,所以常数项为C 06C 010+C 36C 410+C 66C 810=4246. 答案:D4.在一底面半径和高都是2 cm 的圆柱形容器中盛满小麦种子,但有一粒带麦锈病的种子混入了其中.现从中随机取出2 cm 3的种子,则取出带麦锈病的种子的概率是( )A.14B.18πC.14πD .1-14π解析:可用体积作为几何度量,易知取出带有麦锈病的种子的概率为P =2π ·22·2=14π.答案:C5.在面积为S 的△ABC 的边AB 上任取一点P ,则△PBC 的面积大于S4的概率是( )A.14B.12 C.34D.23解析:如右图,在AB 边取点P ′,使AP ′AB =34,则P 只能在AP ′内运动,则概率为AP ′AB =34.答案:C6.口袋里放有大小相等的两个红球和一个白球,有放回地每次摸取一个球,定义数列{a n }:a n =⎩⎪⎨⎪⎧-1 第n 次摸取红球1 第n 次摸取白球,如果S n 为数列{a n }的前n 项和,那么S 7=3的概率为( )A .C 57(13)2(23)5B .C 27(23)2(13)5C .C 57(13)2(13)5D .C 37(13)2(23)5 解析:由题意得,在7次摸球中,摸得红球的次数恰为2次,则有S 7=3. 又因为每次摸球,摸得红球的概率为23,设X 为摸得红球的次数,则X ~B (7,23),在7次摸球中,恰有2次摸得红球的概率 P (X =2)=C 27(23)2(13)5. 答案:B7.集合A ={(x ,y )|y ≥|x -1|,x ∈N *},集合B ={(x ,y )|y ≤-x +5,x ∈N *}. 先后掷两颗骰子,设掷第一颗骰子得点数记作a ,掷第二颗骰子得点数记作b ,则(a ,b )∈A ∩B 的概率等于( )A.14B.29C.736 D.536解析:由于y ≥|x -1|⇔⎩⎪⎨⎪⎧x -y -1≤0x +y -1≥0,根据二元一次不等式表示平面的区域,可知A ∩B对应如下图所示的阴影部分的区域中的整数点.其中整数点有(0,1),(0,2),(0,3),(0,4),(0,5),(1,0),(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(3,2),共14个.现先后抛掷2颗骰子,所得点数分别有6种,共会出现36种结果,其中落入阴影区域内的有8种,即(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(3,2).所以满足(a ,b )∈A ∩B 的概率为836=29,故选B.答案:B8.设随机变量的概率分布为:则X ( )A.12B .0C .2D .随p 的变化而变化 解析:EX =0×p 3+1×p 3+2×(1-2p3)=2-p ,又∵p 3≥0,1-23p ≥0,∴0≤p ≤32,∴当p =32时,EX 的值最小,最小值为2-32=12.答案:A9.利用计算机在区间(0,1)上产生两个随机数a 和b ,则方程x =-2a -bx 有实根的概率为( )A.12B.13C.16D.23解析:方程x =-2a -bx ,即x 2+2ax +b =0,若方程有实根,则有Δ=4a 2-4b ≥0即b ≤a 2,其所求概率可转化为几何概型,如右图,其概率等于阴影面积与正方形面积之比,S 阴影=⎠⎛01a 2d a =13a 3| 10=13,所以所求概率P =13.答案:B10.在区间[0,1]上任意两个实数a ,b ,则函数f (x )=12x 3+ax -b 在区间[-1,1]上有且仅有一个零点的概率为( )A.18B.14C.34D.78解析:f ′(x )=32x 2+a ,故f (x )在x ∈[-1,1]上单调递增,又因为函数f (x )=12x 3+ax -b在[-1,1]上有且仅有一个零点,即有f (-1)·f (1)<0成立,即(12+a -b )(-12-a -b )<0,则(12+a -b )(12+a +b )>0,可化为:⎩⎪⎨⎪⎧ 0≤a ≤10≤b ≤112+a -b >012+a +b >0或⎩⎪⎨⎪⎧0≤a ≤10≤b ≤112+a -b <012+a +b <0,由线性规划知识在直角坐标系aOb 中画出这两个不等式组所表示的可行域,再由几何概型可以知道,函数f (x )=12x 3+ax -b 在[-1,1]上有且仅有一个零点的概率为:可行域的面积除以直线a =0,a =1,b =0,b =1围成的正方形的面积,计算可得面积之比为78.答案:D11.若k 为实数,且k ∈[-2,2],则k 的值使得过点A (1,1)的两条直线与圆x 2+y 2+kx -2y -54k =0相切的概率为( )A.14B.12C.34D .不确定解析:由题意知点A (1,1)在圆x 2+y 2+kx -2y -54k =0,即(x +k 2)2+(y -1)2=k 24+1+54k的外部,所以⎩⎨⎧k 24+1+54k >012+12+k -2-54k >0,即⎩⎪⎨⎪⎧k >-1或k <-4k <0.又k ∈[-2,2],所以-1<k <0.故由几何概型概率公式得所求概率为P =14.答案:A12.已知0≤a <2,0≤b <4,为估计在a >1的条件下,函数f (x )=x 2+2ax +b 有两相异零点的概率为P ,用计算机产生了[0,1)内的两组随机数a 1,b 1各2400个,并组成了2400个有序数对(a 1,b 1),统计这2400个有序数对后得到2×2列联表的部分数据如下表:( )A.1348B.1124C.1324D.712解析:本题先对产生的随机数对(a 1,b 1)进行a =2a 1,b =4b 1的变换后可转化为满足题中条件的数对(a ,b ),而当4a 2-4b >0时,原函数f (x )有两个相异零点.所以先将表格补全,知当a >1即a 1>12时,满足a 21-b 1>0时,有两个相异零点,于是P =6501200=1324. 答案:C 二、填空题13.已知(1+kx 2)6(k 是正整数)的展开式中x 8的系数小于120,则k =________.解析:(1+kx 2)6按二项式定理展开的通项为T r +1=C r 6(kx 2)r =C r 6k r ·x 2r. 令2r =8,得r =4,∴x 8的系数为C 46·k 4,即15k 4<120,∴k 4<8.而k 是正整数,故k 只能取1. 答案:114.某校安排5个班到4个工厂进行社会实践,每个班去一个工厂,每个工厂至少安排一个班,不同的安排方法共有________种.(有数字作答)解析:由题意可知有一个工厂安排2个班,另外三个工厂每厂安排1个班,共有C 14·C 25·A 33=240种安排方法.答案:24015.在某项测量中,测量结果ξ服从正态分布N (1,σ2)(σ>0).若ξ在(0,1)内取值的概率为0.4,则ξ在(2,+∞)上取值的概率为________.解析:由正态分布的特征易得 P (ξ>2)=12[1-2P (0<ξ<1)]=12(1-0.8)=0.1. 答案:0.116.罐中有6个红球,4个白球,从中任取1球,记住颜色后再放回,连续摸取4次,设ξ为取得红球的次数,则ξ的期望Eξ=________.解析:因为是有放回地摸球,所以每次摸球(试验)摸得红球(成功)的概率均为35,连续摸4次(做4次试验),ξ为取得红球(成功)的次数,则ξ~B (4,35),从而有Eξ=np =4×35=125.答案:125三、解答题17.在一个盒中装有6支圆珠笔,其中3支一等品,2支二等品和1支三等品,求 (1)从中任取1支,得到一等品或二等品的概率; (2)从中任取2支,没有三等品的概率.解:(1)从6支笔中任取1支得一等品或二等品共有3+2=5种, 不同的取法,任取一支笔共有6种取法, ∴任取1支,得到一等品或二等品的概率为56.(2)从中任取2支,有三等品的取法,有5种,而任取2支共有C 26=15种取法. ∴任取2支,有三等品的概率为515=13,∴任取2支,没有三等品的概率为1-13=23.18.为了调查某野生动物保护区内某种野生动物的数量,调查员某天逮住这种动物600只做好标记后放回,经过一星期后,又逮到这种动物500只,其中做过标记的有50只,根据上述数据,估算保护区内有多少只动物?解:设保护区内这种野生动物有x 只,每只动物被逮到的可能性是相同的,那么第一次逮到的600只占所有这种动物的概率为600x ,第二次逮到的500只中,有50只是第一次逮到的,即事件发生的频数为50,说明第一次逮到的在总的动物中的频率为110,由概率的定义知600x =110,解得x =6000,即按此方法计算,估计保护区内有6000只这种野生动物.19.一个口袋中装有大小相同的2个白球和3个黑球. (1)从中摸出两个球,求两球颜色不同的概率;(2)从中摸出一个球,放回后再摸出一个球,求两球恰好颜色不同的概率.解:(1)记“摸出两个球,两球恰好颜色不同”为A ,摸出两个球共有方法C 25=10种,其中,两球一白一黑有C 12·C 13=6种.∴P (A )=C 12C 13C 25=35.(2)解法一:记“摸出一球,放回后再摸出一个球两球恰好颜色不同”为B ,摸出一球得白球的概率为25=0.4,摸出一球得黑球的概率为35=0.6,“有放回摸两次,颜色不同”指“先白再黑”或“先黑后白”,∴P (B )=2×3+3×25×5=0.4×0.6+0.6×0.4=0.48.解法二:有放回地摸两次,互相独立,摸一次得白球的概率为25,∴“有放回摸两次,颜色不同”的概率为 P (B )=C 12·25·(1-25)=0.48. 20.已知关于x 的二次函数f (x )=ax 2-4bx +1.(1)设集合P ={-1,1,2,3,4,5}和Q ={-2,-1,1,2,3,4},分别从集合P 和Q 中随机取一个数作为a 和b ,求函数y =f (x )在区间[1,+∞)上是增函数的概率;(2)设点(a ,b )是区域⎩⎪⎨⎪⎧x +y -8≤0x >0y >0内的随机点,求函数y =f (x )在区间[1,+∞)上是增函数的概率.解:(1)∵函数f (x )=ax 2-4bx +1的图象的对称轴为x =2ba ,要使函数f (x )=ax 2-4bx +1在区间[1,+∞)上为增函数,当且仅当a >0且2ba≤1,即2b ≤a .若a =1,则b =-2,-1; 若a =2,则b =-2,-1,1; 若a =3,则b =-2,-1,1;若a =4,则b =-2,-1,1,2; 若a =5,则b =-2,-1,1,2; ∴所求事件包含基本事件的个数是 2+3+3+4+4=16. ∴所求事件的概率为1636=49.(2)由(1)知当且仅当2b ≤a 且a >0时,函数f (x )=ax 2-4bx +1在区间[1,+∞)上为增函数,依条件可知试验的全部结果所构成的区域为⎩⎪⎨⎪⎧(a ,b )|⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a +b -8≤0a >0b >0,构成所求事件的区域为如右图阴影部分. 由⎩⎪⎨⎪⎧a +b -8=0b =a 2得交点坐标为(163,83),∴所求事件的概率为 P =12×8×8312×8×8=13.21.某大学开设甲、乙、丙三门选修课,学生是否选修哪门课互不影响.已知某学生选修甲而不选修乙和丙的概率为0.08,选修甲和乙而不选修丙的概率是0.12,至少选修一门课的概率是0.88,用ξ表示该学生选修的课程门数和没有选修的课程门数的乘积.(1)记“函数f (x )=x 2+ξ·x 在R 上的偶函数”为事件A ,求事件A 的概率; (2)求ξ的分布列和数学期望.解:设该学生选修甲、乙、丙的概率分别为x 、y 、z . 依题意得⎩⎪⎨⎪⎧x (1-y )(1-z )=0.08xy (1-z )=0.12.1-(1-x )(1-y )(1-z )=0.88,解得⎩⎪⎨⎪⎧x =0.4y =0.6z =0.5.(1)若函数f (x )=x 2+ξ·x 为R 上的偶函数,则ξ=0. 当ξ=0时,表示该学生选修三门功课或三门功课都没选. ∴P (A )=P (ξ=0)=xyz +(1-x )(1-y )(1-z ) =0.4×0.5×0.6+(1-0.4)(1-0.5)(1-0.6)=0.24. ∴事件A 的概率为0.24.(2)依题意知ξ的取值为0和2,由(1)所求可知P(ξ=0)=0.24,P(ξ=2)=1-P(ξ=0)=0.76.则ξ的分布列为∴ξ的数学期望为Eξ=022.在某学校组织的一次篮球定点投篮训练中,规定每人最多投3次:在A处每投进一球得3分,在B处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投第三次.某同学在A处的命中率q1为0.25,在B处的命中率q2,该同学选择先在A处投一球,以后都在B处投,用ξ表示该同学投篮训练结束后所得的总分,其分布列为(1)求q2的值;(2)求随机变量ξ的数学期望Eξ;(3)试比较该同学选择都在B处投篮得分超过3分与选择上述方式投篮得分超过3分的概率的大小.解:(1)由题设可知,“ξ=0”对应的事件为“在三次投篮中没有一次投中”,由对立事件和相互独立事件性质可知p(ξ=0)=(1-q1)(1-q2)2=0.03,解得q2=0.8(2)根据题意p1=P(ξ=2)=(1-q1)C12(1-q2)q2=0.75×2×0.2×0.8=0.24,p2=P(ξ=3)=q1(1-q2)2=0.25×(1-0.8)2=0.01,p3=P(ξ=4)=(1-q1)q22=0.75×0.82=0.48,p4=P(ξ=5)=q1q2+q1(1-q2)=0.25×0.8+0.25×0.2×0.8=0.24,因此Eξ=0×0.03+2×0.24+3×0.01+4×0.48+5×0.24=3.63.(3)用C表示事件“该同学选择第一次在A处投,以后都在B处投,得分超过3分”,用D表示事件“该同学选择都在B处投,得分超过3分”,则P(C)=P(ξ=4)+P(ξ=5)=p3+p4=0.48+0.24=0.72,P(D)=q22+C12q2(1-q2)q2=0.82+2×0.8×0.2×0.8=0.896.故P(D)>P(C).即该同学选择都在B处投篮得分超过3分的概率大于该同学选择第一次在A处以后都在B处投得分超过3分的概率.。

高考一轮复习课时作业(人教版):11-1分类加法计数原理与分步乘法计数原理word版含答案

高考一轮复习课时作业(人教版):11-1分类加法计数原理与分步乘法计数原理word版含答案

11-1分类加法计数原理与分步乘法计数原理A级基础达标演练(时间:40分钟满分:60分)一、选择题(每小题5分,共25分)1.如图,A、B、C、D为四个村庄,要修筑三条公路,将这四个村庄连接起来,则不同的修筑方案共有().A.8种B.12种C.16种D.20种解析修筑方案可分为两类,一类是“折线型”,用三条公路把四个村庄连在一条曲线上(如图(1),A-B-C-D),有12A44种方法;另一类是“星型”,以某一个村庄为中心,用三条公路发散状连接其他三个村庄(如图(2),A-B,A-C,A-D),有4种方法.共有12+4=16种方法.图(1)图(2)答案 C2.(2012·汕头模拟)如图,用6种不同的颜色把图中A、B、C、D四块区域分开,若相邻区域不能涂同一种颜色,则不同的涂法共有().A.400种B.460种C.480种D.496种解析从A开始,有6种方法,B有5种,C有4种,D、A同色1种,D、A 不同色3种,∴不同涂法有6×5×4×(1+3)=480(种),故选C.答案 C3.甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面.不同的安排方法共有().A.20种B.30种C.40种D.60种解析分三类:甲在周一,共有A24种排法;甲在周二,共有A23种排法;甲在周三,共有A22种排法;∴A24+A23+A22=20.答案 A4.(2011·西安模拟)三个人踢毽,互相传递,每人每次只能踢一下,由甲开始踢,经过5次传递后,毽又被踢回给甲,则不同的传递方式共有().A.6种B.8种C.10种D.16种解析如下图,甲第一次传给乙时有5种方法,同理,甲传给丙也可以推出5种情况,综上有10种传法,故选C.答案 C5.(2012·杭州五校联考)如果一条直线与一个平面平行,那么称此直线与平面构成一个“平行线面组”.在一个长方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“平行线面组”的个数是().A.60 B.48 C.36 D.24解析长方体的6个表面构成的“平行线面组”有6×6=36个,另含4个顶点的6个面(非表面)构成的“平行线面组”有6×2=12个,共36+12=48个,故选B.答案 B二、填空题(每小题4分,共12分)6.(2012·泉州模拟)将数字1,2,3,4,5,6按第一行1个数,第二行2个数,第三行3个数的形式随机排列,设N i(i=1,2,3)表示第i行中最大的数,则满足N1<N2<N3的所有排列的个数是________.(用数字作答)解析由已知数字6一定在第三行,第三行的排法种数为A13A25=60;剩余的三个数字中最大的一定排在第二行,第二行的排法种数为A12A12=4,由分步计数原理满足条件的排列个数是240.答案2407.(2012·马鞍山质检)数字1,2,3,…,9这九个数字填写在如图的9个空格中,要求每一行从左到右依次增大,每列从上到下也依次增大,当数字4固定在中心位置时,则所有填写空格的方法共有________种.解析必有1、4、9一种填法,5只有两种填法.对于5的每一种填法,6、7、8只有3种不同的填法,由分步计数原理知共有22×3=12种填法.答案128.8名世界网球顶级选手在上海大师赛上分成两组,每组各4人,分别进行单循环赛,每组决出前两名,再由每组的第一名与另一组的第二名进行淘汰赛,获胜者角逐冠、亚军,败者角逐第3、4名,大师赛共有________场比赛.解析小组赛共有2C24场比赛;半决赛和决赛共有2+2=4场比赛;根据分类计数原理共有2C24+4=16场比赛.答案16三、解答题(共23分)9.(11分)(2012·深圳模拟)如右图所示三组平行线分别有m、n、k条,在此图形中(1)共有多少个三角形?(2)共有多少个平行四边形?解(1)每个三角形与从三组平行线中各取一条的取法是一一对应的,由分步计数原理知共可构成m·n·k个三角形.(2)每个平行四边形与从两组平行线中各取两条的取法是一一对应的,由分类和分步计数原理知共可构成C2m C2n+C2n C2k+C2k C2m个平行四边形.10.(12分)如图,用四种不同颜色给图中的A,B,C,D,E,F六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色.则不同的涂色方法共有多少种?解先涂A、D、E三个点,共有4×3×2=24种涂法,然后再按B、C、F的顺序涂色,分为两类:一类是B与E或D同色,共有2×(2×1+1×2)=8种涂法;另一类是B与E或D不同色,共有1×(1×1+1×2)=3种涂法.所以涂色方法共有24×(8+3)=264(种).B级综合创新备选(时间:30分钟满分:40分)一、选择题(每小题5分,共10分)1.(2012·福州模拟)高三年级的三个班去甲、乙、丙、丁四个工厂参加社会实践,但去何工厂可自由选择,甲工厂必须有班级要去,则不同的分配方案有().A.16种B.18种C.37种D.48种解析三个班去四个工厂不同的分配方案共43种,甲工厂没有班级去的分配方案共33种,因此满足条件的不同的分配方案共有43-33=37(种).答案 C2.(2011·全国高考)4位同学从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法有().A.12种B.24种C.30种D.36种解析分三步,第一步先从4位同学中选2人选修课程甲.共有C24种不同选法,第二步给第3位同学选课程,有2种选法.第三步给第4位同学选课程,也有2种不同选法.故共有C24×2×2=24(种).答案 B二、填空题(每小题4分,共8分)3.(2010·上海理)从集合U={a,b,c,d}的子集中选出4个不同的子集,需同时满足以下两个条件:(1)∅,U都要选出;(2)对选出的任意两个子集A和B,必有A⊆B或A⊇B.那么,共有________种不同的选法.解析将选法分成两类.第一类:其中一个是单元素集合,则另一集合为两个或三个元素且含有单元素集合中的元素,有C14×6=24(种).第二类:其中一个是两个元素集合,则另一个是含有这两个元素的三元素集合,有C24×2=12(种).综上共有24+12=36(种).答案364.五名学生报名参加四项体育比赛,每人限报一项,则报名方法的种数为________.五名学生争夺四项比赛的冠军(冠军不并列),获得冠军的可能性有________种.解析报名的方法种数为4×4×4×4×4=45(种).获得冠军的可能情况有5×5×5×5=54(种).答案4554三、解答题(共22分)5.(10分)现安排一份5天的工作值班表,每天有一个人值班,共有5个人,每个人都可以值多天班或不值班,但相邻两天不准由同一个人值班,问此值班表共有多少种不同的排法?解可将星期一、二、三、四、五分给5个人,相邻的数字不分给同一个人.星期一:可分给5人中的任何一人,有5种分法;星期二:可分给剩余4人中的任何一人,有4种分法;星期三:可分给除去分到星期二的剩余4人中的任何一人,有4种分法;同理星期四和星期五都有4种不同的分法,由分步计数原理共有5×4×4×4×4=1 280种不同的排法.6.(12分)(2012·太原月考)已知集合A={a1,a2,a3,a4},B={0,1,2,3},f是从A到B的映射.(1)若B中每一元素都有原象,这样不同的f有多少个?(2)若B中的元素0必无原象,这样的f有多少个?(3)若f满足f(a1)+f(a2)+f(a3)+f(a4)=4,这样的f又有多少个?解(1)显然对应是一一对应的,即为a1找象有4种方法,a2找象有3种方法,a3找象有2种方法,a4找象有1种方法,所以不同的f共有4×3×2×1=24(个).(2)0必无原象,1,2,3有无原象不限,所以为A中每一元素找象时都有3种方法.所以不同的f共有34=81(个).(3)分为如下四类:第一类,A中每一元素都与1对应,有1种方法;第二类,A中有两个元素对应1,一个元素对应2,另一个元素与0对应,有C24·C12=12种方法;第三类,A中有两个元素对应2,另两个元素对应0,有C24·C22=6种方法;第四类,A中有一个元素对应1,一个元素对应3,另两个元素与0对应,有C14·C13=12种方法.所以不同的f共有1+12+6+12=31(个).。

高三基础知识天天练3-3. 数学 数学doc人教版

高三基础知识天天练3-3. 数学 数学doc人教版

第3模块 第3节[知能演练]一、选择题1.函数y =xsin x,x ∈(-π,0)∪(0,π)的图象可能是下列图象中的()解析:∵y =xsin x 是偶函数,排除A ,当x =2时,y =2sin2>2,排除D. 当x =π6时,y =π6sin π6=π3>1,排除B.答案:C2.函数f (x )=tan ωx (ω>0)图象的相邻的两支截直线y =π4所得线段长为π4,则f (π4)的值是( )A .0B .1C .-1D.π4解析:由题意知T =π4,由πω=π4得ω=4,∴f (x )=tan4x ,∴f (π4)=tan π=0.答案:A3.函数f (x )=sin x -3cos x (x ∈[-π,0])的单调递增区间是( )A .[-π,-5π6]B .[-5π6,-π6]C .[-π3,0]D .[-π6,0]解析:f (x )=sin x -3cos x =2sin(x -π3)∵-π≤x ≤0,∴-4π3≤x -π3≤-π3当-π2≤x -π3≤-π3时,即-π6≤x ≤0时,f (x )递增.答案:D4.对于函数f (x )=sin x +1sin x(0<x <π),下列结论中正确的是( )A .有最大值而无最小值B .有最小值而无最大值C .有最大值且有最小值D .既无最大值又无最小值解析:f (x )=sin x +1sin x =1+1sin x ,∵0<x <π,∴0<sin x ≤1,∴1sin x ≥1,∴1+1sin x≥2.∴f (x )有最小值而无最大值. 答案:B 二、填空题 5.函数y =lgsin x + cos x -12的定义域为____________,函数y =12sin(π4-23x )的单调递增区间为________.解析:(1)要使函数有意义必须有⎩⎪⎨⎪⎧sin x >0cos x -12≥0, 即⎩⎪⎨⎪⎧sin x >0cos x ≥12,解得⎩⎪⎨⎪⎧2kπ<x <π+2kπ-π3+2kπ≤x ≤π3+2kπ(k ∈Z ), ∴2kπ<x ≤π3+2kπ,k ∈Z ,∴函数的定义域为{x |2kπ<x ≤π3+2kπ,k ∈Z }.(2)由y =12sin(π4-23x )得y =-12sin(23x -π4),由π2+2kπ≤23x -π4≤32π+2kπ,得 98π+3kπ≤x ≤21π8+3kπ,k ∈Z ,故函数的单调递增区间为 [98π+3kπ,21π8+3kπ](k ∈Z ). 答案:{x |2kπ<x ≤π3+2kπ,k ∈Z }[98π+3kπ,21π8+3kπ](k ∈Z ) 6.对于函数f (x )=⎩⎪⎨⎪⎧sin x ,sin x ≤cos x cos x ,sin x >cos x ,给出下列四个命题:①该函数是以π为最小正周期的周期函数;②当且仅当x =π+kπ(k ∈Z )时,该函数取得最小值-1; ③该函数的图象关于x =5π4+2kπ(k ∈Z )对称;④当且仅当2kπ<x <π2+2kπ(k ∈Z )时,0<f (x )≤22.其中正确命题的序号是________.(请将所有正确命题的序号都填上) 解析:画出f (x )在一个周期[0,2π]上的图象.由图象知,函数f (x )的最小正周期为2π,在x =π+2kπ(k ∈Z )和x =32π+2kπ(x ∈Z )时,该函数都取得最小值-1,故①②错误,由图象知,函数图象关于直线x =54π+2kπ(k ∈Z )对称,在2kπ<x <π2+2kπ(k ∈Z )时,0<f (x )≤22.故③④正确.答案:③④ 三、解答题7.已知函数y =f (x )=2sin x1+cos 2x -sin 2x.(1)求函数定义域;(2)用定义判断f (x )的奇偶性; (3)在[-π,π]上作出f (x )的图象; (4)写出f (x )的最小正周期及单调区间. 解:(1)∵f (x )=2sin x 2cos 2x=sin x|cos x |, ∴函数的定义域是{x |x ≠kπ+π2,k ∈Z }.(2)由(1)知f (-x )=sin(-x )|cos(-x )|=-sin x|cos x |=-f (x ),∴f (x )是奇函数. (3)f (x )=⎩⎨⎧tan x (-π2<x <π2)-tan x (-π≤x <-π2或π2<x ≤π),y =f (x )(x ∈[-π,π])的图象如图所示.(4)f (x )的最小正周期为2π,单调递增区间是(-π2+2kπ,π2+2kπ)(k ∈Z ),单调递减区间是(π2+2kπ,3π2+2kπ)(k ∈Z ).8.已知a >0,函数f (x )=-2a sin(2x +π6)+2a +b ,当x ∈[0,π2]时,-5≤f (x )≤1.(1)求常数a ,b 的值;(2)设g (x )=f (x +π2)且lg[g (x )]>0,求g (x )的单调区间.解:(1)∵x ∈[0,π2],∴2x +π6∈[π6,7π6],∴sin(2x +π6)∈[-12,1],∴-2a sin(2x +π6)∈[-2a ,a ],∴f (x )∈[b,3a +b ],又-5≤f (x )≤1.∴⎩⎪⎨⎪⎧ b =-53a +b =1,解得⎩⎪⎨⎪⎧a =2b =-5. (2)f (x )=-4sin(2x +π6)-1,g (x )=f (x +π2)=-4sin(2x +7π6)-1=4sin(2x +π6)-1,又由lg[g (x )]>0,得g (x )>1, ∴4sin(2x +π6)-1>1,∴sin(2x +π6)>12,∴π6+2kπ<2x +π6<56π+2kπ,k ∈Z ,由π6+2kπ<2x +π6≤2kπ+π2,得 kπ<x ≤kπ+π6,k ∈Z .由π2+2kπ≤2x +π6<56π+2kπ得 π6+kπ≤x <π3+kπ,k ∈Z . ∴函数g (x )的单调递增区间为(kπ,π6+kπ](k ∈Z ),单调递减区间为[π6+kπ,π3+kπ)(k ∈Z ).[高考·模拟·预测]1.若函数f (x )=(1+3tan x )cos x,0≤x <π2,则f (x )的最大值为( )A .1B .2 C.3+1D.3+2解析:因为f (x )=(1+3tan x )cos x =cos x +3sin x =2cos(x -π3),当x =π3时,函数取得最大值为2.故选B.答案:B2.若将函数y =tan(ωx +π4)(ω>0)的图象向右平移π6个单位长度后,与函数y =tan(ωx +π6)的图象重合,则ω的最小值为( )A.16 B.14 C.13D.12解析:将函数y =tan(ωx +π4)的图象向右平移π6个单位后,得到的函数为y =tan[ω(x -π6)+π4]=tan(ωx -πω6+π4),这个函数的图象与函数y =tan(ωx +π6)的图象重合,根据正切函数的周期是kπ,故其充要条件是-πω6+π4=kπ+π6(k ∈Z ),即ω=-6k +12(k ∈Z ),当k =0时,ω的最小值为12,故选D.答案:D3.已知函数f (x )=sin(x -π2)(x ∈R ),下面结论中错误的是( )A .函数f (x )的最小正周期为2πB .函数f (x )在区间[0,π2]上是增函数C .函数f (x )在图象关于直线x =0对称D .函数f (x )是奇函数解析:∵f (x )=-cos x ,∴f (x )为偶函数,故选D. 答案:D4.已知α∈(0,π4),a =(sin α)cos α,b =(sin α)sin α,c =(cos α)sin α,则a 、b 、c 的大小关系是________.解析:α∈(0,π4),1>cos α>sin α>0,y =(sin α)x 为减函数,∴a <b .而y =x sin α在(0,+∞)上为增函数,∴c >b .故c >b >a .答案:a <b <c5.已知函数f (x )=3(sin 2x -cos 2x )-2sin x cos x . (1)求f (x )的最小正周期;(2)设x ∈[-π3,π3],求f (x )的值域和单调递增区间.解:(1)∵f (x )=-3(cos 2x -sin 2x )-2sin x cos x =-3cos2x -sin2x =-2sin(2x +π3)∴f (x )的最小正周期为π.(2)∵x ∈[-π3,π3],∴-π3≤2x +π3≤π,∴-32≤sin(2x +π3)≤1. ∴f (x )的值域为[-2,3].∵当y =sin(2x +π3)递减时,f (x )递增,令2kπ+π2≤2x +π3≤2kπ+3π2,则kπ+π12≤x ≤kπ+7π12,k ∈Z ,又x ∈[-π3,π3],∴π12≤x ≤π3.故f (x )的递增区间为[π12,π3].[备选精题]6.设函数f (x )=sin(π4x -π6)-2cos 2π8x +1.(1)求f (x )的最小正周期;(2)若函数y =g (x )与y =f (x )的图象关于直线x =1对称,求当x ∈[0,43]时y =g (x )的最大值.解:(1)f (x )=sin π4x cos π6-cos π4x sin π6-cos π4x =32sin π4x -32cos π4x =3sin(π4x -π3),故f (x )的最小正周期为T =2ππ4=8.(2)解法一:在y =g (x )的图象上任取一点(x ,g (x )),它关于x =1的对称点为(2-x ,g (x )).由题设条件,点(2-x ,g (x ))在y =f (x )的图象上,可知g (x )=f (2-x )=3sin[π4(2-x )-π3]=3sin(π2-π4x -π3)=3cos(π4x +π3).当0≤x ≤43时,π3≤π4x +π3≤2π3,因此y =g (x )在区间[0,43]上的最大值为g (x )max =3cos π3=32.解法二:因区间[0,43]关于x =1的对称区间为[23,2],且y =g (x )与y =f (x )的图象关于x=1对称,故y =g (x )在[0,43]上的最大值即为y =f (x )在[23,2]上的最大值.由(1)知f (x )=3sin(π4x -π3),当23≤x ≤2时,-π6≤π4x -π3≤π6. 因此y =g (x )在[0,43]上的最大值为g (x )max =3sin π6=32.。

宿豫中学09届高三数学二轮复习天天练11

宿豫中学09届高三数学二轮复习天天练11

09届高三数学天天练11一、填空题1.命题“2,0x R x x ∃∈+≤”的否定是 . 2.(1)(12)i i -+= .3.函数()sin 23cos 2f x x x =+的最小正周期是 .4.长方体1111ABCD A B C D -中,12,1AB BC AA ===,则1BD 与平面1111A B C D 所成的角的大小为 .5.已知实数x y ,满足2203x y x y y +≥⎧⎪-≤⎨⎪≤≤⎩,,,则2z x y =+的最小值是 .6.已知抛物线22y px =的准线与双曲线222x y -=的左准线重合,则抛物线的焦点坐标为 .7. 执行右边的程序框图,若4p =,则S = .8.将圆锥的侧面展开恰为一个半径为2的半圆,则圆锥的体积是 . 9.若直线1ax by +=过点(),A b a ,则以坐标原点O 为圆心,半径的圆的面积的最小值是 . 10.已知集合{}21503x A x |x ,B x |x -⎧⎫=-<<=>⎨⎬-⎩⎭,在集合A 任取一个元素x ,则事件“x A B ∈⋂”的概率是 .11.已知1F 、2F 是椭圆22x k ++21y k +=1的左右焦点,弦AB 过F 1,若2ABF ∆的周长为8,则椭圆的离心率为 .12.等边三角形ABC 中,P 在线段AB 上,且AP AB λ=,若CP AB PA PB ⋅=⋅,则实数λ的值是 .13.数列{}n a 的前n 项和是n S ,若数列{}n a 的各项按如下规则排列:11212312341, , , , , , , , , , , 23344455556,若存在整数k ,使10k S <,110k S +≥,则k a = . 14.若函数()3213f x x a x =-满足:对于任意的[]12,0,1x x ∈都有()()12||1f x f x -≤恒成立,则a 的取值范围是 .AB CD A 1B 1C 1D 1二、解答题:(文科班只做15题,30分,理科班两题都做,每题15分)15、 已知圆22:8O x y +=交x 轴于,A B 两点,曲线C 是以AB 为长轴,直线:l 4x =-为准线的椭圆.(Ⅰ)求椭圆的标准方程;(Ⅱ)若M 是直线l 上的任意一点,以OM 为直径的圆K 与圆O 相交于,P Q 两点,求证:直线PQ 必过定点E ,并求出点E 的坐标;(Ⅲ)如图所示,若直线PQ 与椭圆C 交于,G H 两点,且3EG HE =,试求此时弦PQ 的长.16、如图矩形OABC 在变换T 的作用下变成了平行四边形OA B C ''',求变换T 所对应的矩阵M .09届高三数学天天练11答案1.2,0x R x x ∀∈+>2.3i + 3.π4.6π5.16.()1,07.1516 8.33π 9.π 10.16 11.1212.222-13.5714.223,333⎡⎢⎣ 15.解:(Ⅰ)设椭圆的标准方程为()222210x y a b a b+=>>,则:2224a ac⎧=⎪⎨=⎪⎩,从而:222a c ⎧=⎪⎨=⎪⎩,故2b =,所以椭圆的标准方程为22184x y +=。

高三基础知识天天练 数学检测4.人教版

高三基础知识天天练 数学检测4.人教版

单元质量检测(四)一、选择题1.若复数(a 2-4a +3)+(a -1)i 是纯虚数,则实数a 的值是( )A .1B .3C .1或3D .-1解析:由题意知⎩⎪⎨⎪⎧a 2-4a +3=0a -1≠0,解得a =3.答案:B2.复数1-2+i +11-2i的虚部是( )A.15i B.15 C .-15iD .-15解析:∵1-2+i +11-2i=-2-i (-2+i )(-2-i )+1+2i(1-2i )(1+2i )=-2-i 5+1+2i 5=-15+15i , ∴虚部为15.答案:B3.平面向量a ,b 共线的充要条件是( )A .a ,b 方向相同B .a ,b 两向量中至少有一个为零向量C .∃λ∈R ,b =λaD .存在不全为零的实数λ1,λ2,λ1a +λ2b =0解析:A 中,a ,b 同向则a ,b 共线;但a ,b 共线则a ,b 不一定同向,因此A 不是充要条件.若a ,b 两向量中至少有一个为零向量,则a ,b 共线;但a ,b 共线时,a ,b 不一定是零向量,如a =(1,2),b =(2,4),从而B 不是充要条件.当b =λa 时,a ,b 一定共线;但a ,b 共线时,若b ≠0,a =0,则b =λa 就不成立,从而C 也不是充要条件.对于D ,假设λ1≠0,则a =-λ2λ1b ,因此a ,b 共线;反之,若a ,b 共线,则a =nm b ,即m a -n b =0.令λ1=m ,λ2=-n ,则λ1a +λ2b =0. 答案:D4.如下图所示,已知梯形ABCD 中,AB ∥CD ,且AB =3CD ,M ,N 分别是AB ,CD 的中点,设AB →=e 1,AD →=e 2,MN →可表示为( )A .e 2+16e 1B .e 2-12e 1C .e 2-13e 1D .e 2+131解析:MN →=12(MD →+MC →)=12(MD →+MD →+DC →)=12[2(MA →+AD →)+DC →]=12[2(-12e 1+e 2)+131]=-12e 1+e 2+16e 1=e 2-13e 1. 答案:C5.向量a ,b 满足|a |=1,|b |=2,(a +b )⊥(2a -b ),则向量a 与b 的夹角为( )A .45°B .60°C .90°D .120°解析:由(a +b )⊥(2a -b )得(a +b )·(2a -b )=0, 即2|a |2+|a |·|b |cos α-|b |2=0,把|a |=1,|b |=2代入得cos α=0,∴α=90°(其中α为两向量的夹角). 答案:C6.设D 、E 、F 分别是△ABC 的三边BC 、CA 、AB 上的点,且DC →=2BD →,CE →=2EA →,AF →=2FB →,则AD →+BE →+CF →与BC →( )A .反向平行B .同向平行C .互相垂直D .既不平行也不垂直解析:∵DC →=2BD →,∴BC →-BD →=2BD →,∴BD →=13→.∵CE →=2EA →,∴BE →-BC →=2BA →-2BE →, ∴BE →=23BA →+13BC →.∵AF →=2FB →,∴BF →-BA →=-2BF →,∴BF →=13BA →.∴AD →+BE →+CF →=BD →-BA →+BE →+BF →-BC → =13BC →-BA →+23BA →+13BC →+13BA →-BC → =-13BC →.∴AD →+BE →+CF →与BC →反向平行. 答案:A7.已知非零向量a ,b ,若a ·b =0,则|a -2b ||a +2b |等于( )A.14 B .2 C.12D .1解析:|a -2b ||a +2b |=(a -2b )2(a +2b )2=a 2+4b 2a 2+4b 2=1.答案:D8.在△ABC 中,若BC →2=AB →·BC →+CB →·CA →+BC →·BA →,则△ABC 是( )A .锐角三角形B .直角三角形C .钝角三角形D .等边三角形解析:因为AB →·BC →+CB →·CA →+BC →·BA → =BC →·(AB →-CA →+BA →)=BC →·AC →,故BC →2-BC →·AC →=BC →·(BC →-AC →)=BC →·BA →=0, 即∠B =π2.答案:B9.一质点受到平面上的三个力F 1,F 2,F 3(单位:牛顿)的作用而处于平衡状态.已知F 1,F 2成60°角,且F 1,F 2的大小分别为2和4,则F 3的大小为( )A .6B .2C .2 5D .27解析:如图,F 3的大小等于F 1、F 2的合力的大小.由平面向量加法的三角形法则知,在△OAB 中OB 的长就是F 1、F 2的合力的大小,且在△OAB 中,∠OAB =120°,OB =F 21+F 22-2F 1·F 2cos120°=28=27,即F 3为27.答案:D10.函数y =tan(π4-π2)的部分图象如下图所示,则(OA →+OB →)·AB →=( )A .-6B .-4C .4D .6解析:函数y =tan(π4x -π2)的图象是由y =tan x 的图象向右平移π2坐标扩大为原来的4π倍得到,所以点A 的坐标为(2,0),令tan(π4x -π2)=1得π4x -π2=π4,故可得B 点坐标为(3,1),所以(OA →+OB →)·AB →=(5,1)·(1,1)=6.答案:D11.设点P 为△ABC 的外心(三条边垂直平分线的交点),若AB =2,AC =4,则AP →·BC →=( )A .8B .6C .4D .2解析:我们可以采用特殊方法解答,设A (-1,0),B (1,0),C (-1,4),则外心P 为(0,2),故AP →=(1,2),BC →=(-2,4),故AP →·BC →=6.答案:B12.已知P 是△ABC 所在平面内的一点,若CB →=λPA →+PB →(其中λ∈R ),则点P 一定在( )A .△ABC 的内部B .AC 边所在的直线上 C .AB 边所在的直线上D .BC 边所在的直线上解析:CB →=PB →-PC →=λPA →+PB →化简即得-PC →=λPA →,由共线向量的充要条件可知,点P ,A ,C 三点共线,所以答案选B.答案:B 二、填空题13.若复数a +3i1+2i (a ∈R ,i 是虚数单位)是纯虚数,则实数a =________.解析:∵a +3i 1+2i =(a +3i )(1-2i )(1+2i )(1-2i )=a +65+3-2a5i , ∴⎩⎨⎧a +6503-2a 5≠0,∴a =-6.答案:-614.向量a =(cos10°,sin10°),b =(cos70°,sin70°),|a -2b |=________. 解析:|a -2b |=a 2+4b 2-4a ·b =1+4-4(cos10°cos70°+sin10°sin70°) =5-4cos60°= 3. 答案: 315.已知AD 是△ABC 的中线,AD →=λAB →+μAC →(λ,μ∈R ),那么λ+μ=________;若∠A =120°,AB →·AC →=-2,则|AD →|的最小值是________.解析:若AD 为△ABC 的中线,则有AD →=12(AB →+AC →),∴λ+μ=1.|AD →|2=14(AB →+AC →)2=14(|AB →|2+|AC →|2+2AB →·AC →)=14(|AB →|2+|AC →|2-4),∵|AB →|2+|AC →|2≥2|AB →|·|AC →|=2AB →·AC →cos120°8,所以|AD →|≥1.答案:1 116.给定两个长度为1的平面向量OA →和OB →,它们的夹角为120°.如图所示,点C 在以O 为圆心的圆弧AB 上变动.若OC →=xOA →+yOB →,其中x ,y ∈R ,则x +y 的最大值是________.解析:以O 为坐标原点,OA 为x 轴建立平面直角坐标系,则可知A (1,0),B (-12,32),设C (cos α,sin α)(α∈[0,2π3]),则有x =cos α+33sin α,y =233sin α,所以x +y =cos α+3sin α=2sin(α+π6),所以当α=π3时,x +y 取得最大值为2.答案:2 三、解答题17.如图,在平行四边形ABCD 中,M ,N 分别为DC ,BC 的中点,已知AM →=c ,AN →=d ,试用c ,d 表示AB →,AD →.解法一:设AB →=a ,AD →=b , 则a =AN →+NB →=d +(-12)①b =AM →+MD →=c +(-12a )②将②代入①得a =d +(-12)[c +(-12a )]⇒a =43d -23,代入②得b =c +(-12)(43d -23c )=43c -23d .解法二:设AB →=a ,AD →=b . 因M ,N 分别为CD ,BC 中点, 所以BN →=12b ,DM →=12a .因而⎩⎨⎧c =b +12a d =a +12b ⇒⎩⎨⎧a =23(2d -c )b =23(2c -d ),即AB →=23(2d -c ),AD →=23(2c -d ).18.设a =(-1,1),b =(4,3),c =(5,-2),(1)求证a 与b 不共线,并求a 与b 的夹角的余弦值; (2)求c 在a 方向上的投影; (3)求λ1和λ2,使c =λ1a +λ2b .解:(1)∵a =(-1,1),b =(4,3),且-1×3≠1×4,∴a 与b 不共线. 又a ·b =-1×4+1×3=-1,|a |=2,|b |=5, ∴cos 〈a ,b 〉=a ·b |a ||b |=-152=-210. (2)∵a ·c =-1×5+1×(-2)=-7, ∴c 在a 方向上的投影为a ·c |a |=-72=-72 2.(3)∵c =λ1a +λ2b ,∴(5,-2)=λ1(-1,1)+λ2(4,3)=(4λ2-λ1,λ1+3λ2),∴⎩⎪⎨⎪⎧4λ2-λ1=5λ1+3λ2=-2,解得⎩⎨⎧λ1=-237λ2=37.19.设△ABC 的外心为O ,则圆O 为△ABC 的外接圆,垂心为H .求证:OH →=OA →+OB →+OC →.证明:延长BO 交圆O 于D 点,连AD 、DC , 则BD 为圆O 的直径,故∠BCD =∠BAD =90°. 又∵AE ⊥BC ,DC ⊥BC , 得AH ∥DC ,同理DA ∥CH . ∴四边形AHCD 为平行四边形, ∴AH →=DC →.又∵DC →=OC →-OD →=OC →+OB →, ∴AH →=OB →+OC →. 又∵OH →=OA →+AH →, ∴OH →=OA →+OB →+OC →.20.(1)如图,设点P ,Q 是线段AB 的三等分点,若OA →=a ,OB →=b ,试用a ,b 表示OP →,OQ →,并判断OP →+OQ →与OA →+OB →的关系;(2)受(1)的启示,如果点A 1,A 2,A 3,…,A n -1是AB 的n (n ≥3)等分点,你能得到什么结论?请证明你的结论.解:(1)OP →=OA →+AP →=OA →+13AB →=OA →+13OB →-OA →)=13OB →+23OA →=23a +13.同理OQ →=13a +23b ,∴OP →+OQ →=a +b =OA →+OB →.(2)OA 1→+OA n -1 =OA 2→+OA n -2 =…=OA →+OB →. 证明如下:由(1)可推出OA 1→=OA →+AA 1→=OA →+1n AB →=OA →+1n OB →-OA →)=n -1n OA →+1n OB →,∴OA 1→=n -1n a +1n b ,同理OA n -1=1n a +n -1nb ,OA 2→=n -2n a +2n b ,OA n -2=2n a +n -2n b ,…因此有OA 1→+OA n -1=OA 2→+OA n -2=…=OA →+OB →.21.已知△ABC 的面积S 满足3≤S ≤3,且AB →·BC →=6,AB →与BC →的夹角为θ. (1)求θ的取值范围;(2)求函数f (θ)=sin 2θ+2sin θ·cos θ+3cos 2θ的最小值. 解:(1)由题意知: AB →·BC →=|AB →|·|BC →|·cos θ=6① S =12|AB →|·|BC →|·sin(π-θ)=12|AB →|·|BC →|·sin θ② ②÷①得S 6=12tan θ,即3tan θ=S .由3≤S ≤3,得3≤3tan θ≤3,即33≤tan θ≤1. ∵θ为AB →与BC →的夹角,∴θ∈(0,π),∴θ∈[π6,π4].(2)f (θ)=sin 2θ+2sin θ·cos θ+3cos 2θ =1+sin2θ+2cos 2θ=2+sin2θ+cos2θ =2+2sin(2θ+π4).∵θ∈[π6,π4],∴2θ+π4∈[7π12,3π4].∴当2θ+π4=3π4,即θ=π4时,f (θ)有最小值为3.22.设向量a =(4cos α,sin α),b =(sin β,4cos β),c =(cos β,-4sin β). (1)若a 与b -2c 垂直,求tan(α+β)的值; (2)求|b +c |的最大值;(3)若tan αtan β=16,求证:a ∥b . 解:(1)因为a 与b -2c 垂直,所以a ·(b -2c )=4cos αsin β-8cos αcos β+4sin αcos β+8sin αsin β=4sin(α+β)-8cos(α+β)=0, 因此tan(α+β)=2.(2)由b +c =(sin β+cos β,4cos β-4sin β),得 |b +c |=(sin β+cos β)2+(4cos β-4sin β)2 =17-15sin2β≤4 2.又当β=-π4时,等号成立,所以|b +c |的最大值为4 2.(3)由tan αtan β=16得4cos αsin β=sin α4cos β,所以a ∥b .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第11模块第1节
一、选择题
1.从1到10的正整数中,任意抽取两个相加所得和为奇数的不同情形的种数是
() A.10B.15
C.20 D.25
解析:当且仅当偶数加上奇数后和为奇数,从而不同情形有5×5=25(种).
答案:D
2.某体育彩票规定:从01至36共36个号中抽出7个号为一注,每注2元,某人想从01至10中选3个连续的号,从11至20中选2个连续的号,从21至30中选1个号,从31至36中选1个号组成一注,则这个人把这种特殊要求的号买全,至少要
() A.3360元B.6720元
C.4320元D.8640元
解析:从01至10的三个连号的个数有8种;从11至20的两个连号的个数有9种;从21至30的单选号的个数有10种;从31至36的单选号的个数有6种,故总的选法有8×9×10×6=4320种,可得需要钱数为8640元.
答案:D
3.如果一个三位数的十位数字既大于百位数字也大于个位数字,则这样的三位数共有
() A.240个B.285个
C.231个D.243个
解析:当十位数字是9时,百位数字有8种取法,个位数字有9种取法,此时取法种数为8×9;当十位数字是8时,百位数字有7种取法,个位数字有8种取法,此时取法种数为7×8,依此类推,直到当十位数字是2时,百位数字有1种取法,个位数字有2种取法,此时取法种数为1×2,所以总的个数为1×2+2×3+3×4+…+8×9=240.
答案:A
4.一植物园参观路径如右图所示,若要全部参观并且路线不重复,
则不同的参观路线共有
()
A.6种B.8种
C.36种D.48种
解析:如右图,在A点可先参观区域1,也可先参观区域2或3,
共有3种不同选法.每种选法中又有2×2×2×2=16种不同路线.∴
共有3×16=48种不同的参观路线.
答案:D
二、填空题
5.如右图所示为一电路图,从A到B共有________条不同的线
路可通电.
解析:按上、中、下三条线路可分为三类,从上线路中有3种,
中线路中有一种,下线路中有2×2=4种.根据分类计数原理,共有
3+1+4=8(种).
答案:8
6.从-1,0,1,2这四个数中选三个不同的数作为函数f(x)=ax2+bx+c的系数,可组成不同的二次函数共有________个,其中不同的偶函数共有________个.(用数字作答) 解析:一个二次函数对应着a,b,c(a≠0)的一组取值,a的取法有3种,b的取法有3种,c的取法有2种,由分步乘法计数原理,知共有二次函数3×3×2=18个.若二次函数为偶函数,则b=0.同上共有3×2=6个.
答案:18 6
三、解答题
7.由数字1,2,3,4.
(1)可组成多少个三位数;
(2)可组成多少个没有重复数字的三位数;
(3)可组成多少个没有重复数字的三位数,且百位数字大于十位数字,十位数字大于个位数字.
解:(1)百位数共有4种排法;十位数共有4种排法;个位数共有4种排法,根据分步计数原理共可组成43=64个三位数.
(2)百位上共有4种排法;十位上共有3种排法;个位上共有2种排法;由分步计数原理共可排成没有重复数字的三位数4×3×2=24个.
(3)排出的三位数分别是432,431,421,321共4个.
8.从{-3,-2,-1,0,1,2,3,4}中任选三个不同元素作为二次函数y=ax2+bx+c的系
数,问能组成多少条图象为经过原点且顶点在第一象限或第三象限的抛物线?
解:抛物线经过原点,得c =0, 当顶点在第一象限时,a <0,-b
2a
>0,
即⎩
⎪⎨⎪⎧ a <0,b >0,则有3×4=12(种); 当顶点在第三象限时,a >0,-b
2a
<0,
即⎩
⎪⎨⎪⎧
a >0,
b >0,则有4×3=12(种); 共计有12+12=24(种).
[高考·模拟·预测]
1. 50名学生参加甲、乙两项体育活动,每人至少参加了一项,参加甲项的学生有30名,参加乙项的学生有25名,则仅参加了一项活动的学生人数为
( )
A .50
B .45
C .40
D .35
解析:仅参加了一项活动的学生人数=50-(30+25-50)=45.故选B. 答案 :B
2.从5名志愿者中选派4人在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有一人参加,星期六有两人参加,星期日有一人参加,则不同的选派方法共有
( )
A .120种
B .96种
C .60种
D .48种
解析:5人中选4人则有C 45种.星期五一人有C 14种,星期六两人则有C 23种,星期日则有C 11种,故共有C 45C 14C 23C 1
1=60(种),故选C.
答案:C
3.甲组有5名男同学、3名女同学;乙组有6名男同学、2名女同学.若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有
( )
A .150种
B .180种
C .300种
D .345种
解析:分两类:
(1)甲组中选出1名女生有C 15·C 13·C 26=225(种)选法;(2)乙组中选出1名女生有C 25·C 16·
C 1
2=120(种)选法.故共有345种选法.故选D.
答案:D
4.设A是整数集的一个非空子集,对于k∈A,如果k-1∉A,那么k是A的一个“孤立元”.给定S={1,2,3,4,5,6,7,8},由S的3个元素构成的所有集合中,不含“孤立元”的集合共有________个.
解:S的不含“孤立元”的三元集合为由三个连接整数所组成的集合,共有6个,故填6.
答案:6
5.甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是________(用数字作答).
解析:分两类:每级台阶上一人共有A37种站法;
一级二人,一级一人,共有C23·A27种站法,
故共有A37+C23·A27=336(种).
答案:336
6.2008年9月27日16时34分,神舟七号宇航员翟志刚出舱进行太空行走,17时00分35秒返回.某校全体师生集体观看了电视实况转播,观看后组织全体学生进行关于“太空行走”的论文评选.若高一年级共4个班,每班评出两篇优秀论文(男、女生各一篇),把这些优秀论文平均分成四组进行展览,且每组都有男、女生所写论文,则不同的展览方式共多少种?
解:论文分四组展览,可分四步完成:
第一步:先选第一组,因为每组男、女生都有,所以共4×4=16种选法;
第二步:选第二组,共3×3=9种选法;
第三步:选第三组,共2×2=4种选法;
第四步:确定第四组,共1×1=1种选法.
由分步乘法计数原理知,不同的展览方式共有:
16×9×4×1=576种.。

相关文档
最新文档