初中数学教程实数课件
人教版《实数》优秀课件初中数学ppt

二、推进新课
填表1
正方形的边长 1 正方形的面积 1
3 0.1 9 0.01
思考:你能从表格中发现什么共同点吗?
已知一个正数,求这个正数的平方, 这就是平方运算。
一、创设情境,导入新课 一、创设情境,导入新课 算数平方根的数学符号表示 会用根号表示一个数的算术平方根(重点); 一个正数有两个算术平方根,且互为相反数。 问题:学校要举行美术作品比赛,小红很高兴,他想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,这块正方 形画布的边长应取多少?你能帮小明算一算吗? 第1课时 算术平方根 了解算术平方根的概念; 思考:你从表2中能发现什么? 算术平方根具有双重非负性 算数平方根的数学符号表示 已知一个数的平方,求这个数的运算叫做开平方。 会用根号表示一个数的算术平方根(重点); 了解算术平方根的概念; 问题:学校要举行美术作品比赛,小红很高兴,他想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,这块正方 形画布的边长应取多少?你能帮小明算一算吗? 一个正数有两个算术平方根,且互为相反数。 用大小完全相同的250块正方形地板砖,铺一间面积为160 m2的地面,每块地板砖的边长是多少? 第1课时 算术平方根 会用根号表示一个数的算术平方根(重点); 已知一个正数,求这个正数的平方,这就是平方运算。
已知一个数的平方,求这个数的运算叫做开平方。
算数平方根的数学符号表示
所以m+n=2
了解算术平方根的概念;
算术平方根具有双重非负性
问题:学校要举行美术作品比赛,小红很高兴,他想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,这块正方
实数 (2) —初中数学课件PPT

其总长大约为6700000m.将6700000用科学记
数法表示为( B )
A.6.7×105 B.6.7×106
C.0.67×107 D.67×108
6.(2017•益阳)目前,世界上能制造出的最
小晶体管的长度只有0.000 000 04m,将
0.000 000 04用科学记数法表示为( B )
A.4×108 B.4×10﹣8
C.0.4×108 D.﹣4×108
数学
首页
末页
课堂精讲
考点2 科学记数法
7.(2017•凉山州)2017年端午节全国景区 接待游客总人数8260万人,这个数用科学记数 法可表示为 8.2考点3 实数的大小比较、数轴、估计无理数的 大小
8.(2017•济南)在实数0,﹣2, ,3中,最 大的是( D ) A.0 B.﹣2 C. D.3
数学
首页
末页
广东中考
26.(2017广东)计算: |﹣7|﹣(1﹣π)0+( )﹣1.
解:原式=7﹣1+3=9.
数学
首页
末页
谢谢!
数学
首页
末页
第一章 数与式
第1节 实 数
课前预习 考点梳理 课堂精讲 广东中考
数学
首页
末页
课前预习
1.(2017湘潭)2 017的倒数是(A)
A. B.-
C.2 017 D.-2 017
2.(2017连云港)2的绝对值是(B)
A.-2 B.2 C.-
D.
数学
首页
末页
课前预习
3.(2017广元)- 的相反数是(D)
(2)用式子表示a的绝对值. a
0 -a
不论有理数a取何值,它的绝对值总是非负数. 即|a|≥0.
初中数学精品课件:实数及其运算

【典例 1】 (2019·宁波)请写出一个小于 4 的无理数: ______.
【答案】 π(答案不唯一)
【类题演练 1】 (2019·衢州)在12,0,1,-9 四个数中,
【典例 1】
在
实
数
-
π 2
,
2
,
22 7
,
0.3333333…
,
0
,
1.732
,
2.1010010001…(每两个“1”之间依次多一个“0”) 中,是无理数的
是
.
【错解】 2,272,2.1010010001…(每两个“1”之间依次多一个“0”)
【析错】 无理数是无限不循环小数,而有理数可以写成 分母不为 0 的分数形式,所以272是有理数,-π2是无理数. 【正解】 -π2, 2,2.1010010001…(每两个“1”之 间依次多一个“0”)
2.初中数学中常见的非负数有:①实数的绝对值:|a|≥0; ②实数的平方:a2≥0;③非负实数的算术平方根: a ≥0(a≥0).如果 a,b,c 都是实数,且满足 a2+|b|+ c =0,那么根据非负数的性质,有 a=b=c=0.由非负 数的性质可以求出多个未知数的值.
易错点1 平方根与算术平方根概念的混淆
数,则 ab= 1 .
(4)绝对值:一个数在数轴上对应的点到原点的距离叫做这个数 的绝对值.
a(a>0), |a|=0(a=0), 以上三条反之亦成立.
-a(a<0).
|a|是一个非负数,即|a|≥0.
(5)科学记数法: 科学记数法就是把一个数表示成 a×10n(反数,则和为 0;若两数互为倒数,则积 为 1.反之亦成立.
人教版七年级下册数学第六章实数课件:6.3 实数

正有理数
正实数
实数
正无理数
0 负实数
负有理数
负无理数
4.实数与数轴上的点是一一对应的.
教学课件 七年级数学下册(RJ)
第六章 实数
6.3 实根(2)
课前预习
带着问题自学课本P54“思考”
1.无理数也有相反数吗?怎么表示? 2.有绝对值吗?怎么表示? 3.有倒数吗?怎么表示?
探究新知
(1) 2的相反数是 ____2___ -π的相反数是____π_____ 0的相反数是____0_____
无理数的概念
所有的数都可以写成有限小数和无限循 环小数的形式吗?
2 =1.41421356237309504880168… 3 5 =1.70997594667669698935310…
π=3.1415926535897932384626…
1.01001000100001…(两个1之间依次多一个0)
解:- 的相反数是 π -3.14的相反数是3.14-π
(2)指出 - 5 ,1- 3 3 分别是什么数的相反数;
(2)- 是 的相反数; 1- 是 -1 的相反数;
例题讲解
(3)求 3 64 的绝对值;
|
|=|-4|=4.
(4)已知一个数的绝对值是 3 ,求这个数。
绝对值为 的数是 或-
实数的运算
35
9
3 4
0.6
(6)实数集合: 9 3 5
0.6
3 4
3 9 3 0.13
64
0.6
3
3
4
0.13
3 9
64 3
3 9
人教版初中数学实数第1课时课件(共26张PPT)

2019/2/23
9
教学过程
单击此处编辑母版标题样式 单击此处编辑母版文本样式 第二级 第三级 第四级 第五级
Teaching Process
无理数的诞生
2、探究新知
2019/2/23
10
教学过程
单击此处编辑母版标题样式 单击此处编辑母版文本样式 第二级 第三级 第四级 第五级
Teaching Process
Teaching Process
2、探究新知
2019/2/23
13
教学过程
单击此处编辑母版标题样式
Teaching Process
2、探究新知
有理数
初中阶段对数的认识范围扩充为 单击此处编辑母版文本样式 第二级 新加入 第三级 第四级 第五级
实数
无理数
有理数和无理数统称实数
思考:实数如何分类?
2019/2/23 14
单击此处编辑母版标题样式 单击此处编辑母版文本样式 第二级 第三级 第四级 第五级
单击此处编辑母版标 实 题样式 数(第1课时)
单击此处编辑母版副标题样式
2019/2/23
1
单击此处编辑母版标题样式 单击此处编辑母版文本样式 第二级 第三级 第四级 第五级
2019/2/23
2
教学过程
单击此处编辑母版标题样式 单击此处编辑母版文本样式 第二级 第三级 第四级 第五级
单击此处编辑母版标题样式
Teaching Process
3、运用新知
2单击此处编辑母版文本样式 下列这些数找不到位置,请你帮它找一找
第二级 第三级 第四级 第五级
2019/2/23
有理数集合
无理数集合
17
《实数》Ppt精品实用课件初中数学5

29.4=已1知6,实(数-a2),4=b,16c,在则数2轴,上-的2位是置16如的图4次所方示根,,化或简者|a说+1b6|-的|4c次-方b|的根结是果2和是-__2_;_____. 9如.果已一知个实数数的an,(nb是,大c在于数1的轴整上数的)位次置方如等图于所a,示这,个化数简就|a叫+做b|-a的|cn-次b方|的根结,果即是x_n_=__a_,_则__x.叫做a的n次方根.如: 第9.6课已知实数的a,性b质,及c在运数算轴上的位置如图所示,化简|a+b|-|c-b|的结果是________. 2再4如=(1-6,2)5(-=2-)43=2,16则,-则22叫,做--2是321的6的5次4次方方根根,,或或者者说说-1362的的45次次方方根根是是2-和2-. 2; 解如:果当 一n个为数偶的数n时(n是,大一于个1负的数整没数有)次n次方方等根于,a,一这个个正数数就的叫n次做方a的根n有次两方个根,,它即们xn互=为a,相则反x数叫;做a的n次方根.如: 再如(-2)5=-32,则-2叫做-32的5次方根,或者说-32的5次方根是-2. 如9.果已一知个实数数的an,(nb是,大c在于数1的轴整上数的)位次置方如等图于所a,示这,个化数简就|a叫+做b|-a的|cn-次b方|的根结,果即是x_n_=__a_,_则__x.叫做a的n次方根.如: (1)64的6次方根是______,-243的5次方根是______,0的10次方根是______; 如再果如一 (-个2)数5=的-n(3n2是,大则于-12的叫整做数-)次32方的等5次于方a,根这,个或数者就说叫-做32a的的5n次次方方根根是,-即2x.n=a,则x叫做a的n次方根.如: 如24果=一16个,数(-的2n)4(n=是1大6,于则1的2,整-数2)是次1方6的等4于次a方,根这,个或数者就说叫1做6a的的4n次次方方根根是,2即和x-n=2;a,则x叫做a的n次方根.如:
实数完整版课件

实数完整版课件一、教学内容本节课我们将学习教材第十章“实数”部分,详细内容如下:1. 实数的定义及分类;2. 实数的性质及运算规则;3. 实数与数轴的关系;4. 实数在数学中的应用。
二、教学目标1. 理解实数的定义,掌握实数的分类;2. 学会实数的性质和运算规则,并能熟练运用;3. 理解实数与数轴的关系,能将实数在数轴上表示出来。
三、教学难点与重点1. 教学难点:实数的性质及运算规则;2. 教学重点:实数的定义、分类及与数轴的关系。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔;2. 学具:练习本、铅笔、直尺。
五、教学过程1. 导入:通过实际情景引入实数概念,如温度、长度等;2. 新课导入:讲解实数的定义、分类及性质;3. 例题讲解:讲解实数运算规则,如加减乘除、乘方等;4. 随堂练习:让学生进行实数运算的练习,巩固所学知识;5. 知识拓展:介绍实数与数轴的关系,引导学生将实数在数轴上表示出来;7. 课堂作业:布置实数相关的作业,巩固所学知识。
六、板书设计1. 实数的定义及分类;2. 实数的性质及运算规则;3. 实数与数轴的关系。
七、作业设计1. 作业题目:(1)判断下列数哪些是实数,哪些不是:2、3/2、√2、π;(2)计算:2/3 + 5/6 1/2;答案:(1)实数:2、3/2、√2、π;(2)2/3 + 5/6 1/2 = 3/2;(3)见附图。
八、课后反思及拓展延伸1. 了解无理数的概念,探究无理数与有理数的关系;2. 探索实数在生活中的应用,如测量、计算等。
重点和难点解析1. 实数的定义及分类;2. 实数的性质及运算规则;3. 实数与数轴的关系;4. 作业设计中实数在数轴上的表示;5. 课后拓展延伸的无理数概念及实数在生活中的应用。
一、实数的定义及分类实数是数学中一个重要的概念,包括有理数和无理数。
有理数是可以表示为两个整数之比的数,如分数、整数等;无理数则不能表示为两个整数之比,如π、√2等。
初中数学七年级数学第六章实数(全章节图文详解)

实 数
有理数
正整数 0 自然数 负整数 正分数
无理数
无限不循环小数
一般有三种情况
负分数 正无理数 负无理数 (1)含π 的数
2 开方开不尽的数
(3)有规律但不循环的无限小数
七年级数学第六章实数
也可以这样来分类: 正实数 实 数 0
负有理数 正有理数
正无理数
负实数
负无理数
七年级数学第六章实数
七年级数学第六章实数
几个基本公式:(注意字母 的取值范围)
a a =
2
a
0
a
3
2
a
a 0
a
a 0 a 0
(a 0)
a
3
a a
3
3
a为任何数 a为任何数 a为任何数
a
3
a =
-3 a
七年级数学第六章实数
区别
你知道算术平方根、平方根、立方根联系和区别吗?
3 47 9 11 5 3, , , , , 5 8 11 90 9
3 47 3 3.0, 0.6, 5.875, 5 8 9 11 5 0. 81, 0.1 2, 0. 5 11 90 9
事实上,任何一个有理数都可以写成有限小数或 无限循环小数。
4
3 0.13
(2)无理数集合: (3)整数集合: (4)负数集合: (5)分数集合: (6)实数集合: 9
3
5
64
3
3
9
9
3
3 4
9
3 4
0. 6
3
0.13
3 0. 6 4
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)了解无理数和实数的概念 (2)知道实数和数轴上的点一一对应 (3)会求实数的相反数与绝对值。
情境导入
有 小 1上 2数..所数理数的吗有轴数点?的上来有有所表限理有示小整分数的吗数数数都点?可都无限以表循用示环小数有数轴理
无限小数
无限不循环小数
积累经验 准备开战
用知识武装自己 用智慧打败敌人
“僵尸来袭” 全力攻敌
引导自学
带着问题自学课本84页“思考”和 “例1”
1.无理数也有相反数吗?怎么表示? 2.有绝对值吗?怎么表示? 3.有倒数吗?怎么表示?
在实数范围内,相反数、绝对值的意义和有理数范围内 的相反数、绝对值的意义完全一样。
2 的相反数是_____2__
的相反数是_______
3.带根号的数都是无理数。( ×)
4.无理数都是无限小数。( )
5.无理数一定都带根号。( ×)
课堂检测
1.下列实数中,无理数是( D)
A.3.14
B. -
3 5
C.0
D.√—3
2.下列各组数中,互为相反数的一组是( D)
A.-3与 √—3
B.
-3 与
-
1 3
C. -3
与
1 3
D. -3与√ (-3)2
每一个实数都可以用数轴上的一个点来表示;反过来, 数轴上的每一点都表示一个实数。即实数和数轴上的 点是一一对应的。
1.请将数轴上的各点与下列实数对应起来;
√—2 -1.5 √—5 ~ 3
A
B C DE
-2
0
4
情境导入
1.所有的有理数都可以用数 轴上的点来表示吗? 2.数轴上所有的点都表示有 理数吗?
(1)无限小数都是无理数.( 错 ) (2)无理数都是无限小数.( 对 ) (3)带根号的数都是无理数.( 错 )
2.把下列各数分别填在相应的集合中;
3.1415926 √—7 0.6 √—36 0 ~ 22
7
-8
√3 —3
0.191191119…
每相邻两个9之间依次多一个1
有理数集合
无理数集合
按性质分类:
0 0的相反数是_______
2 ___2___ ______
0 __0__
a是一个实数,它的相反数为 -a
一个正实数的绝对值是它本身;一个负实数的 绝对值是它的相反数;0的绝对值是0
1.填空:
任意实数a的相反数是 ( -a )
a﹥0 a =a
任意实数a的绝对值是
a = 0 a =0
2.求下列个数的相反数和绝对值. a﹤0 a =-a
数
实
性格开朗 的大孩子
正实数
性格内向
0
负实数 的小孩子
正有理数 正无理数 负有理数 负无理数
负实数
0
正实数
、 2 是有理数吗? 、 2 是无理数
无限不循环的小数 ---- 叫做无理数.
如: 3, 3 7 都是无理数。
(1) 你能举出一些无理数吗?
(2)每个有理数都可以用数轴上的点表示,那么无理 数是否也可以用数轴上的点来表示呢?如果可以
知己知彼 百战百胜
让我们用 所学知识 使智慧之
树开花
课堂小结
有理数和无理数统 称为实数
定义
相反数 绝对值
按 定
分类
义
分
类 按性质分类
性质 思想
分类讨 论思想
类比思想
乘胜追击 速战速决
课堂检测
判断快枪手——看准最快最准!
1.实数不是有理数就是无理数。( ) 2.无理数都是无限不循环小数。( )
D.数3.在是±数(轴√—上7 与原)点距离等√于—7 的点表示的
这一仗打得很 漂亮,现在来 一下攻坚战吧
3 2 2 3
这一仗打得很 漂亮,现在盘 点一下本节课 的收获吧
优秀小组颁奖
收兵回营 盘点收获
分层作业
这一秒不放弃! 下一秒有奇迹!
探究一
质疑点拨
使用计算器,把下列有理数化成小数的形式:
3= 3.0
-
3 5
=
-0.6
47= 5.875 8
9
11
~~
0.81
11 ~~ 0.12
90
5 9
~~
0.5
任何一个有理数都能写成有限小数或无限循环小数的形式 反过来任何有限小数或无限循环小数也都是有理数;
、 2
是有理数吗?
探究二
质疑点拨
2.5 -√—7 ~
0
√3 —-8
2
填空 实力神枪手——看谁百发百中
1、正实数的绝对值是 它本身 ,0的绝对值是 0 , 负实数的绝对值是 它的相反数 .
2、 3 的相反数是
3、一个数的绝对值是
3
p
,绝对值是 ,则这个数是
3
p 2
. .
2
4、比较大小:-7
50
5、绝对值等于 5 的数是 5 。
你能在数轴上找到表示 、 2 这样的无理数
பைடு நூலகம்的点吗?
探究二
质疑点拨
1.你能把无理数~在数
轴上表示出来吗?
?直径为1个单位长度的圆的周长为(~ )
探究二
质疑点拨
√ 21..你你轴能能上把把表无无示理理出数数来~吗—在?2 数在 数轴上表示出来吗?
-2 -1
0
1
2
每一个无理数都能在数轴上表示出来.
数轴上的点有些表示有理数,有些表示无理数.
使用计算器,把下列数化成小数的形式:
√—2
-√—5
√3 —3
-√3 —2
无限不循环小数叫做无理数; (开方开不尽的数;含有~的数;有规律但不循环的数;)
按定义分类:
整数
有理数:
有限小数或无限循环小数
分数
实数
女孩子
开方开不尽的数
妈 妈
无理数: 无限不循环小数
含有 ~ 的数
有规律但不循环的数
男孩子
1.判断下列说法是否正确;