2016-2017学年高中物理 第16章 动量守恒定律 1 实验 探究碰撞中的不变量课时作业 新人教

合集下载

高中物理 第十六章 动量守恒定律 1 实验:探究碰撞中的不变量共同成长素材 新人教版选修35

高中物理 第十六章 动量守恒定律 1 实验:探究碰撞中的不变量共同成长素材 新人教版选修35

1 实验:探究碰撞中的不变量共同成长见仁见智关于碰撞前后的守恒量和不守恒量,下列同学发表了自己的观点:人物甲:在某些特定的碰撞中,m1v12+m2v22=m1v1′2+m2v2′2成立,但它不具有普遍性,在碰撞过程中产生的形变不能完全恢复时,这一关系就一定不成立.人物乙:关于碰撞前后的守恒量,经过验证带有普遍性的关系是m1v1+m2v2=m1v1′+m2v2′.人物丙:验证碰撞前后的守恒量和不守恒量,可以有多套验证方案.我的观点:___________________________________________________________________. 读书做人罗伯特·迈尔,1814年11月25日生于德国的海尔布隆.他的父亲是位药剂师.少年时代的迈尔,经常跟着父亲去看制作各种药品的试验,最后在父亲的鼓励下,他走上了学医的道路.1838年,迈尔在蒂宾根大学获得学位.25岁的迈尔正式在汉堡开业行医.迈尔把他对能量守恒定律的最初发现写成了一篇题为《论力的量和质的测定》的论文.1845年,迈尔又发表了第二篇论文《与有机运动相联系的新陈代谢》.这篇文章进一步发展了他的观点.迈尔进一步把能量守恒定律应用于非生物界、生物界和宇宙.1848年他又发表了《对天体力学的贡献》等论文.根据迈尔的意见,植物一边接受太阳的力,一边把它变成化学力使之成为自己的生长之源.动物吃植物是把复杂的营养物分解成为燃料物而使它发生热,热的一部分变成了体温,其他部分转化成为肌肉的机械功能.那么,动物体内的燃烧热的发生源在哪里呢?是肌肉么?迈尔提出了这个课题,他用计算热功当量的方法,说明是一种别的东西——“血”.阅读以上材料,请你思考以下问题:(1)作为一名医生的迈尔为什么会在能量守恒理论体系的完善中起到重要的作用?(2)你认为迈尔的探索精神有哪些值得你学习的地方?1。

抄坝学校高一物理第十六章 动量守恒律

抄坝学校高一物理第十六章 动量守恒律

批扯州址走市抄坝学校高一物理第十六章动量守恒律【本讲信息】一. 教学内容:第十六章动量守恒律1. :探究碰撞中的不变量2. 动量守恒律〔一〕3. 动量守恒律〔二〕二. 知识要点:1. 理解碰撞过程中动量守恒的探究过程。

2. 理解动量守恒律的理论推导过程,理解动量守恒的意义,记住动量守恒律的三种表达式,会用动量守恒解相关问题。

三. 重难点解析:1. 碰撞中守恒量的探究的根本思路我们只研究最简单的情况——两个物体碰撞前沿同一直线运动,碰撞后仍沿同一直线运动。

这种碰撞叫做一维碰撞。

与物体运动有关的物理量可能有哪些呢?在一维碰撞的情况下只有物体的质量和物体的速度。

设两个物体的质量分别为m1、m2,碰撞前的速度分别为v1、v2,碰撞后的速度分别为v'1、v'2。

如果速度与我们设的方向一致,取正值,否那么取负值。

现在的问题是,碰撞前后哪个物理量可能是不变的?质量是不变的,但质量并不描述物体的运动状态,不是我们追寻的“不变量〞。

速度在碰撞前后是变化的,但一个物体的质量与它的速度的乘积是不是不变量?如果不是,那么,两个物体各自的质量与自己的速度的乘积之和是不是不变量?也就是说,关系式m 1v 1+m 2v 2=m l v '1+m 2 v '2是否成立?或者,各自的质量与自己的速度的二次方的乘积之和是不变量?也就是说,关系式m l v 21+m 2v 22=m 1v 2'1+m 2v 2'2是否成立?也许,两个物体的速度与自己质量的比值之和在碰撞前后保持不变?也就是说,关系式 11m v +22m v =1'1m v +2'2m v 是否成立?也许……碰撞可能有很多情形。

例如,两个质量相同的物体相碰撞,两个质量相差悬殊的物体相碰撞,两个速度大小相同、方向相反的物体相碰撞,一个运动物体与一个静止物体相碰撞……两个物体的质地不同,碰撞的情形也不一样。

例如两个物体碰撞时可能碰后分开,也可能粘在一起不再分开…我们寻找的不变量必须在各种碰撞的情况下都不改变,这样才符合要求。

高中物理第十六章动量守恒定律1实验:探究碰撞中的不变量自主训练新人教版选修3-5(new)

高中物理第十六章动量守恒定律1实验:探究碰撞中的不变量自主训练新人教版选修3-5(new)

1 实验:探究碰撞中的不变量自主广场我夯基 我达标1.在用气垫导轨进行验证实验时,所用到的实验仪器除了光电门、滑块、挡光片外还有_____________。

思路解析:在验证过程中非常关键的一点就是确定滑块的运动时间,这就需要一个计时装置,而在本实验中所用到的计时装置应该是光电计时器.答案:光电计时器2.在用气垫导轨进行验证实验时,首先应该做的是( )A 。

给气垫导轨通气B 。

对光电计时器进行归零处理C 。

把滑块放到导轨上D 。

检验挡光片通过光电门时是否能够挡光计时 思路解析:为保护气垫导轨,在一切实验步骤进行之前首先应该给导轨通气。

答案:A3.在用气垫导轨进行验证实验时,不需要测的物理量是( )A 。

滑块的质量 B.挡光时间C.挡光片间的距离 D 。

光电门的高度思路解析:从实验原理出发进行分析,得A 、B 、C 项中的各个量都为必须测量的量。

答案:D4.某一滑块通过光电门时,双挡光片两次挡光的记录为284。

1 ms 、294。

6 ms ,测得挡光片的挡光距离为5 cm ,则此滑块的速度为多大?思路解析:两次挡光时间之差Δt=t 2—t 1=294。

6 ms —284。

1 ms=10。

5 ms据v=32105.10105--⨯⨯=∆∆t d m/s=4。

76 m/s 。

答案:4。

76 m/s我综合 我发展5.两个质量相同的小钢球,按如图16—1—2所示的样式悬挂,让一小球保持静止,把另一小球拉开一定角度,然后自由释放.下列说法正确的是( )图16-1-2A 。

碰撞后,两球相互交换速度,运动的球变为静止,静止的小钢球以两球相碰前瞬间运动球的速度运动B 。

碰撞后,运动小钢球反弹回来,静止小钢球以两倍两球相碰前瞬间运动小球的速度运动C.碰撞前后系统mv 1=mv 2(m 为小球质量,v 1、v 2分别为碰撞前后瞬间两球的速度) D 。

碰撞前后系统mv 1≠mv 2(m 为小球质量,v 1、v 2分别为碰撞前后瞬间两球的速度)思路解析:由于钢球的弹性非常好,两个小球相碰时,作用时间非常短,故可以得到:两球相撞前后相互交换速度,运动的小球静止,静止的小球以原来的运动小球的速度运动,故A 、C 正确.答案:AC6.在气垫导轨上有两个质量都为m 的滑块,两个滑块都带有尼龙卡搭扣,使一滑块以速度v 运动,和静止的另一滑块相碰,碰后两滑块以共同速度v′运动。

高中物理 第十六章 动量守恒定律 1 实验:探究碰撞中的不变量课件 新人教版选修35

高中物理 第十六章 动量守恒定律 1 实验:探究碰撞中的不变量课件 新人教版选修35

类型一 实验原理及注意事项
【典例 1】 如图所示,在实验室用两端带竖直挡板 C、D 的气垫导轨和有固定挡板的质量都是 M 的滑块 A、 B 做探究碰撞中的不变量的实验.
(1)把两滑块 A 和 B 紧贴在一起,在 A 上放质量为 m 的砝码,置于导轨上,用电动卡销卡住 A 和 B,在 A 和 B 的固定挡板间放一弹簧,使弹簧处于水平方向上的压缩 状态.
1.保证两物体发生的是一维碰撞,即两个物体碰撞 前沿同一直线运动,碰撞后仍沿同一直线运动.
2.若利用气垫导轨进行实验,调整气垫导轨时注意 利用水平仪确保导轨水平.
3.若利用摆球进行实验,两小球静放时球心应在同 一水平线上,且刚好接触,摆线竖直.将小球拉起后, 两条摆线应在同一竖直面内.
4.碰撞有很多情形.我们寻找的不变量必须在各种 碰撞情况下都不改变,才符合要求.
要验证碰撞前后守恒的量,必须测量 A、B 两球的质量, C 正确.
(3)依题意知,碰撞前 A 球做平抛运动的水平位移为 xA, 碰撞后 A、B 做平抛运动的水平位移分别为 x′A、x′B,由于 碰撞前、后两球做平抛运动的时间相等,因此通过式子 mAxA =mAx′A+mBx′B 即可验证 A、B 两球碰撞中的不变量.
mv2
m1v21+m2v22
m1v′1 2+m2v′2 2
v m
mv11+mv22
v′1+v′2 m1 m2
经过验证后可知,在误差允许的范围内,碰撞前后 不变的量是物体的质量与速度的乘积,即 m1v1+m2v2= m1v1′+m2v2′.
三、误差分析
1.碰撞是否为一维碰撞,是产生误差的一个原因, 设计实验方案时应保证碰撞为一维碰撞.
由此得出结论是___________________________. (本题计算结果均保留三位有效数字)

实验:探究碰撞中的不变量

实验:探究碰撞中的不变量
由以上测量结果可得:碰前mAvA+mBvB=_______kg·m/s;碰后 mAvA′+mBvB′=______kg·m/s.
答案:(1)BC
DE
(2)0.42
0.417
某同学利用如图所示的装置“探究碰撞中的不变量”。 图 中两摆摆长相同,悬挂于同一高度,A、B 两摆球均很小,质 量之比为 1:2。当两摆球均处于自由静止状态时,其侧面刚好 接触。 向右上方拉动 B 球使其摆线伸直并与竖直方向成 45° 角, 然后将其由静止释放。结果观察到两摆球粘在一起摆动,且最 大摆角为 30° 。若本实验允许的最大误差为± 4%,此实验是否 成功地验证了碰撞中的守恒量,此守恒量是什么?
例题2:
3.动量守恒定律解题的一般步骤: (1)明确题意,明确研究对象; (2)受力分析,判断是否守恒; (3)确定动量守恒系统的作用前总动量和作用后总动量; (4) 选定正方向根据动量守恒定律列出方程; (5)解方程,得出结论。
明确: ① 应用动量守恒定律分析问题时研究的对象不是 一个物体,而是相互作用的两个或多个物体组成的 物体系。应用时注意选系统。 ② 动量守恒定律的表达式实际上是一个矢量式。 处理一维问题时,注意规定正方向。 ③动量守恒定律指的是系统任一瞬时的动量矢量 和恒定。 ④应用动量守恒定律时,各物体的速度必须是相 对同一惯性系的速度。一般以地球为参考系。
猜想:
碰撞前后速度V的变化和物体的质量m 的关系,可以做如下猜测:
m2v2 ? m1v1 m2v2 m1v1
m v m v m v m2v2
2 1 1 2 2 2 2 1 1 2
? ?
m1 m2 m1 m2 v1 v2 v1 v2
……

高中物理第十六章动量守恒定律第1节实验:探究碰撞中的不变量课件新人教版选修3_5

高中物理第十六章动量守恒定律第1节实验:探究碰撞中的不变量课件新人教版选修3_5

考点二 实验创新设计
• 2018学典例年高2 (二山下东学省期临质朐检县)如20图17所~示,
斜高槽度末由端静水止平滚下,,小球落到m1从水斜平槽面某上一的P 点同度地。滚,的球今 下球m在 ,m12和,槽 并m仍口 与2的让末 球落球端m2地m正放1点从碰一分斜后与别槽使m1是同两半M一球径、高落相N。
第一节 实验:探究碰撞中的不变量
学习目标
※ 了解探究碰撞中的不变量的基本思路和实验方法 ※ 体验探究自然规律的过程 ※ 探究一维碰撞中的不变量
知识导图
1
课前预习
2
课内探究
3
素养提升
4
课堂达标
5
课时作业
课前预习
知识点 1 实验的基本思路
• 1.一维碰撞
• 两个物体碰撞前沿___同_一_直_线______运动,碰撞后仍沿__这_条_直_线___________运 动。这种碰撞叫做一维碰撞。
• 解题指导:注意碰撞前后小车均做匀速运动,碰撞前后的速度可利 用纸带上点迹分布均匀的部分计算。
• 解析:(1)按照先安装,后实验,最后重复的顺序,该同学正确的 实验步骤为ADCEB。
• (2)碰撞前后均为匀速直线运动,由纸带上的点迹分布求出速度。
碰后小车A、B合为一体,求出AB整体的共同速度。注意打点计时器
(2)打点计时器打下的纸带中,比较理想的一条如上图所示,根据这些数据
完成下表。
碰撞前
碰撞后
A车
B车
AB整体
质量/kg
速度/(m·s-1)
mv /(m·s-1·kg-1) mv/(kg·m·s-1)
mv2/(kg·m2·s-2) (3)根据以上数据猜想碰撞前后不变量的表达式为m_A_vA_+_m_B_vB_=_(_m_A+__m_B)_v_______。

高中物理 第十六章 动量守恒定律 1 实验:探究碰撞中

高中物理 第十六章 动量守恒定律 1 实验:探究碰撞中

第十六章 动量守恒定律1 实验:探究碰撞中的不变量1.(多选)对于实验最终的结论m 1v 1+m 2v 2=m 1v ′1+m 2v ′2,下列说法正确的是( )A .仅限于一维碰撞B .任何情况下m 1v 21+m 2v 22=m 1v 1′2+m 2v 2′2也一定成立C .式中的v 1、v 2、v ′1、v ′2,都是速度的大小D .式中的不变量是m 1和m 2组成的系统的质量与速度乘积之和解析: 这个实验是在一维碰撞情况下设计的实验.系统的质量与速度的乘积之和在碰撞前后为不变量是实验的结论,其他探究的结论情况不成立,而速度是矢量,应考虑方向.故选项A 、D 正确.答案:AD2.如图(a)所示,在水平光滑轨道上停着甲、乙两辆实验小车,甲车系一穿过打点计时器的纸带,当甲车受到水平向右的瞬时力时,随即启动打点计时器,甲车运动一段距离后,将与静止的乙车发生正碰并连在一起运动,纸带记录下碰撞前甲车和碰撞后两车的运动情况如图(b)所示,电源频率为50 Hz ,则碰撞前甲车速度大小为______m/s ,碰撞后的共同速度大小为________m/s.(a)(b)解析:由题图知碰前在0.02 s 内甲车位移约为1.2×10-2 m ,故碰前速度v 1=1.2×10-20.02 m/s =0.6 m/s ;碰后在0.02 s 内两车位移约为0.8×10-2m ,故碰后速度v 2=0.8×10-20.02m/s =0.4 m/s. 答案:0.6 0.43.如图所示为气垫导轨上两个滑块A 、B 相互作用后运动过程的频闪照片,频闪的频率为10 Hz.开始时两个滑块静止,它们之间有一根被压缩的轻弹簧,滑块用细绳连接,细绳烧断后,两个滑块向相反方向运动.已知滑块A 、B 的质量分别为200 g 、300 g ,根据照片记录的信息,细绳烧断后,A 滑块做________运动,其速度大小为________m/s ,本实验得出的结论是___________________________.解析:由题图可知,细绳烧断后A 、B 均做匀速直线运动,开始时:v A =0,v B =0,A 、B 被弹开后,v ′A =0.09 m/s ,v ′B =0.06 m/s ,m A v ′A =0.2×0.09 kg ·m/s =0.018 kg ·m/s ,m B v ′B =0.3×0.06 kg ·m/s =0.018 kg ·m/s , 由此可得:m A v ′A =m B v ′B ,即0=m B v ′B -m A v ′A .结论:两滑块组成的系统在相互作用前后质量与速度乘积的矢量和守恒.答案:匀速直线 0.09 两滑块组成的系统在相互作用前后质量与速度乘积的矢量和守恒4.用如图所示装置探究碰撞中的不变量,质量为m A 的钢球A 用细线悬挂于O 点,质量为m B 的钢球B 放在小支柱N 上,离地面高度为H ,O 点到A 球球心距离为L ,使悬线在A 球释放前伸直,且线与竖直方向的夹角为α.A 球释放后摆到最低点时恰好与B 球正碰,碰撞后,A 球把轻质指示针OC 推移到与竖直方向夹角为β处,B 球落到地面上,地面上铺一张盖有复写纸的白纸D ,保持α角度不变.多次重复上述实验,白纸上记录到多个B 球的落点.(1)图中s 应是B 球初始位置到________的水平距离.(2)实验中需要测量的物理量有哪些?(3)实验中不变量遵循的关系式是怎样的?解析:由机械能守恒定律可知:m A gL (1-cos α)=12m A v 2A ,则A 球向下摆到与B 球相碰前的速度为 v A =2gL (1-cos α),碰后A 球的速度v ′A =2gL (1-cos β),碰后B 球做平抛运动,v ′B =s t =s 2H g=s g 2H. 在碰撞中物体质量与速度的乘积之和不变,则m A v A =m A v ′A +m B v ′B .故有m A 2gL (1-cos α)=m A 2gL (1-cos β)+m B sg 2H . 答案:(1)落地点(2)L 、α、β、H 、s 、m A 、m B (3)m A 2gL (1-cos α)=m A 2gL (1-cos β)+m B s g 2H5.某同学用图甲所示装置通过半径相同的a 、b 两球的碰撞来探究碰撞中的不变量.实验时把无摩擦可转动支架Q 放下,先使a 球从斜槽上某一固定位置P 由静止开始滚下,落到位于水平地面的记录纸上,留下痕迹.重复上述操作10次,得到10个落点痕迹.再把支架Q 竖起,放上b 球,让a 球仍从位置P 由静止开始滚下,到达水平槽末端时和b 球碰撞,a 、b 分别在记录纸上留下各自的落点痕迹,重复这种操作10次.图中O 点是水平槽末端点在记录纸上的垂直投影点,O ′为支架上b 球球心在记录纸上的垂直投影点.图甲 图乙(1)碰撞后b 球的水平射程应取图中________段.(2)(多选)在以下选项中,属于本次实验必须进行的测量是( )A .支架上未放b 球时,测量a 球落点位置到O 点的距离B .a 球与b 球碰撞后,测量两球落点位置到O 点(或O ′点)的距离C .测量a 球或b 球的直径D .测量a 球和b 球的质量M 和mE .测量P 点相对于水平槽面的高度 (3)实验中若某同学测量了小球直径,使用千分尺所得的结果如图乙所示,则球的直径D =________cm.(4)结合课堂实验结论,按照本实验方法,探究不变量的表达式应是:____________________________________________________.解析:题图甲中B 点是不发生碰撞时小球a 的落点,A 点是发生碰撞后小球a 的落点,C 点是碰后小球b 的落点,设小球a 运动到轨道末端时的速度大小为v 0,与小球b 发生碰撞后瞬间小球b 的速度大小为v b ,碰后小球a 的速度大小为v a .如果碰撞过程满足质量和速度的乘积mv 守恒,则关系式“Mv 0=Mv a +mv b ”一定成立,因为小球做平抛运动的高度相同,下落时间相同,它们在水平方向上位移与水平方向上的速度成正比,所以本实验中关系式“M ·— OB =M ·— OA +m ·— O ′C ”一定也成立.(1)两球碰撞后,a 球的落点比原来不放b 球时的落点B 要近些,即落在A 点处,而b 球被碰后的落点肯定比B 大,即落在C 点,所以碰撞后b 球的水平射程应取图中O ′C 段.(2)根据实验原理分析可知,本实验需要测量的物理量有M 、m 、OB 、OA 和O ′C ,即选项A 、B 、D.(3)球的直径D =10.5 mm +40.5×0.01 mm =10.905 mm =1.090 5 cm.(4)根据实验原理分析可知,本实验得到的守恒量的表达式是M ·— OB =M ·— OA +m ·— O ′C . 答案:(1)O ′C (2)ABD (3)1.090 5(1.090 3~1.090 7都对) (4)M ·— OB =M ·— OA +m ·— O ′C。

高中物理第十六章动量守恒定律1实验:探究碰撞中的不变量2动量守恒..

高中物理第十六章动量守恒定律1实验:探究碰撞中的不变量2动量守恒..

1 实验:探究碰撞中的不变量2 动量守恒定律疱丁巧解牛知识·巧学一、实验:探究碰撞中的不变量1.一维碰撞两物体碰撞前沿同一条直线运动,碰撞后仍沿同一条直线运动,这种碰撞叫做一维碰撞. 要点提示一维磁撞是碰撞中最为简单的情景.2.实验探究的基本思路(1)与物体运动有关的物理量有哪些?(质量和速度)(2)碰撞前后哪个物理量可能是变化的?哪个物理量是不变化的?(速度的大小和方向可能变化;质量是不变化的)(3)新的不变量可能的形式是怎样的?(比如:两个物体各自的质量与速度的乘积之和;两个物体各自的质量与速度的二次方的乘积之和;两个物体各自的质量与速度的比值之和等等) (4)碰撞的情形可能有哪些?(两个质量相同的物体相碰撞;两个质量悬殊很大的物体相碰撞;两个速度方向相同的物体相碰撞;两个速度方向相同的物体相碰撞;两物体碰撞后可能分开,也可能不分开等等)深化升华在设计实验前应充分考虑到各种不同的情景,以便于我们得到的结论具有普适性.3.需要考虑的问题(1)怎样保证两个物体在碰撞之前沿同一直线运动,在碰撞之后还沿同一直线运动?(可以用气垫导轨或其他)(2)怎样测量物体的质量、怎样测量两个物体在碰撞前后的速度?(质量可用天平测量,速度可用与气垫导轨配套的光电计时装置测量或用打点计时器或其他原理,如平抛运动等)4.实验探究(1)实验器材:气垫导轨、光电计时器、两个质量相同的小车、弹簧、细线、砝码、双面胶.(2)探究过程:①调整导轨使之处于水平状态,并使光电计时器系统开始工作;②导轨上一小车静止,用另一小车与其碰撞,观察两小车的速度变化;③将两小车用压缩的弹簧连接在一起,烧断细线,观察两小车的运动速度;④在一小车上贴上双面胶,用另一小车碰撞它,使两小车随后粘在一起.观察小车碰撞前、后速度的变化;⑤改变其中某一小车的质量,重复以上步骤.(3)分析论证:两车在碰撞过程中所受合外力为零,碰撞前后小车的质量与速度的乘积的矢量和不变.二、动量1.定义:运动物体的质量和它的速度的乘积叫做物体的动量.联想发散引入动量这一物理量的目的.运动的物体能够产生一定的机械效果,如迎面飞来的足球我们可以用手接,若是铅球呢.这说明这个效果的强弱取决于物体的质量和速度两个因素,这个效果只能发生在物体运动方向上,为描述运动物体的这一特性而引入动量这一概念.2.表达式:p=mv.3.单位:千克米每秒,符号kg·m·s-1.4.方向:动量是矢量,它的方向与速度的方向相同.其方向表示了运动物体在哪个方向上能产生机械效果,运动物体在某一时刻的动量方向,就是该时刻物体运动的方向,即瞬时速度方向,如做圆周运动的物体其速度方向时刻在改变,故动量也是时刻在变化.学法一得动量的运算服从矢量运算法则,即要按平行四边形法则进行运算.深化升华(1)动量是状态量,我们讲物体的动量,总是指物体在某一时刻的动量,因此计算时相应的速度应取这一时刻的瞬时速度;(2)动量具有相对性,选用不同参考系时,同一运动物体的动量可能不同,通常在不说参考系的情况下,指的是物体相对于地面的动量.在分析有关问题时要指明相应的参考系.5.动量的变化量(1)动量是矢量,它的大小p=mv,方向与速度的方向相同.因此,速度发生变化时,物体的动量也发生变化.速度的大小或方向发生变化时,速度就发生变化,物体具有的动量的大小或方向也相应发生了变化,我们就说物体的动量发生了变化.设物体的初动量p1=mv1,末动量p2=mv2,则物体动量的变化Δp=p2-p1=mv2-mv1由于动量是矢量,因此,上式一般意义上是矢量式.深化升华动量改变有三种情况:①动量的大小和方向都发生变化,对同一物体而言p=mv,则物体的速度的大小和方向都发生变化;②动量的方向改变而大小不变,对同一物体来讲,物体的速度方向发生改变而速度大小没有变化,如匀速圆周运动的情况;③动量的方向没有发生变化,仅动量的大小发生变化,对同一物体来说,就是速度的方向没有发生变化,仅速度的大小改变.(2)动量的变化量Δp是用末动量减去初动量.(3)动量的变化量Δp是矢量,其方向与速度的改变量Δv的方向相同.学法一得动量的变化量的计算遵循矢量合成法则,要用平行四边形法则进行计算.若在同一直线上,先规定正方向,再用正、负表示初末动量,即可将矢量运算转化为代数运算.三、动量守恒定律1.几个相关概念系统:相互作用的几个物体所组成的整体叫做系统.内力:系统内各物体之间的相互作用力叫做内力.外力:外部其他物体对系统的作用力叫做外力.2.动量守恒定律(1)内容:如果一个系统不受外力,或者所受外力的矢量和为零,那么这个系统的总动量保持不变.(2)表达式:①p=p′,表示系统的总动量保持不变;②Δp1=Δp2,表示一个物体的动量变化量与另一个物体的动量变化量大小相等、方向相同;③Δp=0,表示系统的总动量增量为零,即系统的总动量保持不变;④m1v1+m2v2=m1v1′+m2v2′,表示相互作用前的总动量等于相互作用后的总动量.动量守恒定律的表达式是矢量式,解题时选取正方向为正、负来表示方向,将矢量运算转换为代数运算.学法一得动量守恒定律表达式中各速度应对应同一参考系,一般以地面为参考系.在利用动量守恒定律的表达式解题时,一定要先规定正方向.在利用动量守恒定律解题时要掌握把矢量运算转化为标量运算的方法:选定一正方向,速度方向与其相同的取正值,相反的取负值.在计算时一定要把正确的正、负号代入,对于结果中的正、负号也要理解其表示的物理意义.(3)适用条件:①系统不受外力或者所受外力之和为零则系统的动量守恒;②系统内力远大于外力,可以忽略外力,系统总动量守恒;③系统在某一方向上不受外力或所受合外力为零,或所受外力比内力小得多,该方向上的动量守恒.学法一得 动量守恒定律是对应于某一系统,系统的选取是否恰当,直接影响动量守恒定律能否成立,因此系统的正确选取是利用动量守恒定律解题的前提. 典题·热题 知识点一 动量例1 下列关于动量的说法中,正确的是( ) A.速度大的物体,它的动量不一定大 B.动量大的物体,它的速度不一定大C.只要物体速度大小不变,则物体的动量也保持不变D.竖直上抛的物体(不计空气阻力)经过空中同一点时动量一定相同解析:动量的大小由质量和速度的乘积决定,p=mv ,故A 、B 两项正确,动量是矢量,其方向与速度方向相同,竖直上抛的物体两次经过同一点,方向相反,故C 、D 两项错误. 答案:AB方法点拨 动量总是与物体的瞬时速度相对应,这一点可记作动量的瞬时性.例2 有一质量为0.1 kg 的小钢球从5 m 高处自由下落,与水平钢板碰撞后反弹跳起,若规定竖直向下的方向为正方向,碰撞过程中钢球动量的变化为-1.8 kg·ms -1,求钢球反弹跳起的最大高度(g 取10 m/s 2,不计空气阻力).解析:由动量的变化求出钢球与水平钢板碰撞后反弹跳起时的初速度,再据竖直上抛运动规律求出反弹跳起的最大高度. 小钢球与水平钢板碰前速度为 v=gh 2=5102⨯⨯ m/s=10 m/s 方向竖直向下,此时其动量p=mv=0.1×10 kg·m/s=1 kg·m/s设小钢球与水平钢板碰撞后的速度为v ′,选向下为正. 因为 Δp=mv′- mv 所以v=m 1(Δp+mv)=1.01×(-1.8+1) m/s=-8 m/s 负号表示方向竖直向上.小钢球反弹跳起的最大高度为h′h′=g v 22'=102(-8)2⨯ m=3.2 m.方法归纳 将题中小球的运动分为三个过程:自由落体,与钢板的碰撞,竖直上抛.注意这三个过程的转折点.和解其他的动力学问题一样,都应从受力分析和运动分析入手.深化升华 动量的变化也是矢量,且一定为末动量减初动量,如初、末动量的方向沿一条直线,可先规定一个正方向,将矢量运算变成代数运算,用正、负号表示方向.知识点二 动量守恒定律成立的条件例3 在光滑水平面上A 、B 两小车中间有一弹簧,如图16-1-1所示,用手抓住小车并将弹簧压缩后使小车处于静止状态.将两小车及弹簧看作一个系统,下面说法正确的是( )图16-1-1A.两手同时放开后,系统总动量始终为零B.先放开左手,再放开右手,动量不守恒C.先放开左手,后放开右手,总动量向左D.无论何时放手,两手放开后,在弹簧恢复原长的,系统总动量都保持不变,但系统的总动量不一定为零解析:在两手同时放开后,水平方向无外力作用,只有弹簧的弹力(内力),故动量守恒,即系统的总动量始终为零,所以选项A正确.先放开左手,再放开右手后,是指两手对系统都无作用力之后的那一段时间,系统所受合外力也为零,即动量是守恒的,所以选项B错误.先放开左手,系统在右手作用下,产生向左的冲量,故有向左的动量,再放开右手后,系统所受合外力也为零,即系统的动量仍守恒,即此后的总动量向左,所以选项C正确.其实,无论何时放开手,只要是两手都放开就满足动量守恒的条件,即系统的总动量保持不变.若同时放开,那么作用后系统的总动量就等于放手前的总动量,即为零;若两手先后放开,那么两手都放开的总动量就与放开最后一只手系统所具有的总动量相等,即不为零,所以选项D正确.答案:ACD巧解提示判断系统的动量是否守恒时,要注意动量守恒的条件是系统不受外力或所受外力之和为零.因此,要区分清系统中的物体所受的力哪些是内力,哪些是外力.应选准系统,并且紧紧抓住动量守恒的条件.例4 试判断下列作用过程系统的动量是否守恒.A.如图16-1-2(a)所示,水平地面上有一大炮,斜向上发射一枚弹丸的过程;B.如图16-1-2(b)所示,粗糙水平面上有两个物体,压紧它们之间的一根轻弹簧,在弹簧弹开的过程中;C.如图16-1-2(c)所示,光滑水平面上有一斜面体,将另一物体从斜面的顶端释放,在物体下滑的过程中.图16-1-2解析:对于(a),大炮发射弹丸的过程中,弹丸加速上升,系统处于超重状态,地面对于系统向上的支持力大于系统的重力,所以系统在竖直方向动量不守恒.在水平方向上系统不受外力,或者说受到的地面给炮身的阻力远小于火药爆发过程中的内力,故系统在水平方向上动量守恒.对于(b)来说,在弹簧弹开的过程中,地面给两物体的摩擦力方向相反且是外力,若两个摩擦力大小相等,则系统无论在水平方向上还是在竖直方向上所受合外力为零,则系统动量守恒;若两个物体受到的摩擦力大小不相等,则系统动量不守恒.对于(c)来说,物体在斜面上加速下滑的过程处于失重状态,系统在竖直方向上受到的合外力竖直向下,系统的动量增加,不守恒,而在水平方向上系统不受外力作用,故系统在水平方向上动量守恒.答案:对于(a)系统在水平方向上动量守恒;对于(b),若两个摩擦力大小相等,则系统动量守恒;若两个物体受到的摩擦力大小不相等,则系统动量不守恒.对于(c),系统在水平方向上动量守恒.方法归纳 分析动量守恒时要着眼于系统,要在不同的方向上研究系统所受外力的矢量和;系统动量严格守恒的情况是很少的,在分析守恒条件是否满足时,要注重对实际过程的理想化.知识点三 动量守恒定律的应用例5 如图16-1-3所示,水平面上有两个木块,两木块的质量分别为m 1、m 2,且m 2=2m 1.开始两木块之间有一根用轻绳缚住的压缩轻弹簧,烧断细绳后,两木块分别向左右运动,若两木块m 1和m 2与水平面间的动摩擦因数为μ1、μ2=2μ2,则在弹簧伸长的过程中,两木块( )图16-1-3A.动量大小之比为1∶1B.速度大小之比为2∶1C.通过的路程之比为2∶1D.通过的路程之比为1∶1解析:以两木块及弹簧为研究对象,绳断开后,弹簧将对两木块有推力作用,这可以看成是内力;水平面对两木块有方向相反的滑动摩擦力,且F 1=μ1m 1g ,F 2=μ2m 2g.因此系统所受合外力F 合=μ1m 1g-μ2m 2g=0,即满足动量守恒定律条件.设弹簧伸长过程中某一时刻,两木块速度分别为v 1、v 2,由动量守恒定律有(以向右为正方向): -m 1v 1+m 2v 2=0, 即m 1v 1=m 2v 2.即两物体的动量大小之比为1∶1,故A 项正确. 则两物体的速度大小之比为21v v =12m m =12,故B 项正确,由于木块通过的路程正比于其速度,两木块通过的路程之比21s s =21v v =12,故C 项正确,D 项错误,故本题应选A 、B 、C 三项.答案:ABC误区警示 本题若水平面光滑,就很容易想到动量守恒定律求解.现在两木块受到了摩擦力作用,不少人就想不到要用动量守恒定律求解.原因:一是没有认真分析受力;二是误认为系统受摩擦力作用.实际上系统所受摩擦力之和为零,因此动量守恒的条件是满足的.例6 质量为3 kg 的小球A 在光滑水平面上以6 m/s 的速度向右运动,恰遇上质量为5 kg 的小球B 以4 m/s 的速度向左运动,碰撞后B 球恰好静止,求碰撞后A 球的速度.解析:两球都在光滑水平面上运动,碰撞过程中系统所受合外力为零,因此系统动量守恒. 碰撞前两球动量已知,碰撞后B 球静止,取A 球初速度方向为正,由动量守恒定律有:m A v A +m B v B =m A v A ′ v′A =AB B A A m v m v m +=3(-4)563⨯+⨯m/s≈-0.67 m/s即碰后A 球速度大小为0.67 m/s ,方向向左.误区警示 动量守恒定律是矢量式,应特别注意始末状态动量的方向.很多同学在解题时没有注意到这一点而导致出错,或在解出速度数值后没有说明方向. 问题·探究 方案设计探究问题试用平抛运动规律来探究碰撞中的动量守恒.探究过程:实验装置如图16-1-4所示.让一个质量较大的小球m1从斜槽上滚下来,跟放在斜槽末端的另一质量较小的小球(半径相同)m2发生碰撞(正碰).图16-1-4小球的质量可以用天平称出.测出两个小球碰撞前后的速度.两球碰撞前后的速度方向都是水平的,因此两球碰撞前后的速度,可以利用平抛运动的知识求出.在这个实验中,做平抛运动的小球落到地面,它们的下落高度相同,飞行时间t 也就相同,它们飞行的水平距离x=vt与小球开始做平抛运动时的水平速度v成正比.设小球下落的时间为t,质量为m1的入射小球碰前的速度为v1,碰撞后,入射小球的速度是v1′,被碰小球的速度是v2′.则在图16-1-5中图16-1-5OP=v1t v1=tOPOM=v′1t v1′=tOMON=v′2t v2′=tON具体实验操作如下:安装好实验装置.将斜槽固定在桌边,使槽的末端点的切线是水平的.被碰小球放在斜槽前端边缘处.为了记录小球飞出的水平距离,在地上铺一张白纸,白纸上铺放复写纸,当小球落在复写纸上时,便在白纸上留下了小球落地的痕迹.在白纸上记下重垂线所指的位置O.先不放上被碰小球,让入射小球从斜槽上某一高处滚下,重复10次.用尽可能小的圆把所有的小球落点圈在里面.圆心P就是小球落点的平均位置.把被碰小球放在斜槽前端边缘处,让入射小球从原来的高度滚下,使它们发生碰撞.重复实验10次.用同样的方法标出碰撞后入射小球的落点的平均位置M和被碰小球的落点的平均位置N.线段ON的长度是被碰小球飞出的水平距离;OM是碰撞后小球m1飞行的距离;OP则是不发生碰撞时m1飞行的距离.用刻度尺测量线段OM、OP、ON的长度.注意事项:①斜槽末端的切线必须水平;②入射球与被碰球的球心连线与入射球的初速度方向一致;③入射球每次都必须从斜槽上同一位置由静止开始滚下;④地面须水平,白纸铺好后,实验过程中不能移动,否则会造成很大误差.探究结论:碰撞中动量守恒(本实验设计思想巧妙之处在于用长度测量代替速度测量).交流讨论探究问题动量守恒定律与机械能守恒定律的区别有哪些?探究过程:龚小明:研究对象都是由两个或两个以上的物体组成的力学系统,若系统中存在重力做功过程应用机械能守恒定律时,系统中必包括地球,应用动量守恒定律时,对象应为所有相互作用的物体,并尽量以“大系统”为对象考虑问题.冯崇:守恒条件有质的区别:=0,在系统中的每一对内力,无论其动量守恒的条件是系统所受合外力为零,即∑F外性质如何,对系统的总冲量必为零,即内力的冲量不会改变系统的总动量,而内力的功却有可能改变系统的总动能,这要由内力的性质决定.保守内力的功不会改变系统的总机械能;耗散内力(滑动摩擦力、爆炸力等)做功,必使系统机械能变化.张强:两者守恒的性质不同:动量守恒是矢量守恒,所以要特别注意方向性,有时可以在某一单方向上系统动量守恒,故有分量式,而机械能守恒为标量守恒,即始、末两态机械能量值相等,与方向无关.白小艳:应用的范围不同:动量守恒定律应用范围极为广泛,无论研究对象是处于宏观、微观、低速、高速,无论是物体相互接触,还是通过电场、磁场而发出的场力作用,动量守恒定律都能使用,相比之下,机械能守恒定律应用范围是狭小的,只能应用在宏观、低速领域内机械运动的范畴内.刘青青:适用条件不同:动量守恒定律不涉及系统是否发生机械能与其他形式的能的转化,即系统内物体之间相互作用过程中有无能量损失均不考虑,相反机械能守恒定律则要求除重力、弹簧弹力外的内力和外力对系统所做功代数和必为零.探究结论:二者对照,各自的守恒条件、内容、意义、应用范围各不相同,在许多问题中既有联系,又有质的区别.从两守恒定律进行的比较中可以看出:(1)动量守恒定律适用范围更宽泛;(2)两者都是物体在相互作用中系统的不变量,研究对象都是系统;(3)两者都遵守各自成立的条件,互不影响.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十六章动量守恒定律1 实验:探究碰撞中的不变量一、A组(20分钟)1.在气垫导轨上进行实验时首先应该做的是()A.给气垫导轨通气B.给光电计时器进行归零处理C.把滑块放到导轨上D.检查挡光片通过光电门时是否能够挡光计时解析:为保护气垫导轨,同时为了保证滑块与导轨间的摩擦力为零,实验时应该先给气垫导轨通气。

选项A正确。

答案:A2.在利用气垫导轨探究碰撞中的不变量时,用到的测量工具有()A.停表、天平、刻度尺B.弹簧测力计、停表、天平C.天平、刻度尺、光电计时器D.停表、刻度尺、光电计时器解析:用天平测滑块质量,用刻度尺测挡光片的宽度。

运动时间是指挡光片通过光电门的时间,由光电计时器计时,因此不需要停表。

答案:C3.在做探究碰撞中的不变量实验时,实验条件是()A.斜槽轨道必须是光滑的B.斜槽轨道末端的切线是水平的C.入射球每一次都要从同一高度由静止滚下D.碰撞的瞬间,入射球和被碰球的球心连线与轨道末端的切线平行解析:探究碰撞中的不变量实验,要求入射小球每次到槽口时,具有相同的速度,所以应从槽上同一位置滚下,但斜槽不需要光滑,选项A错误,选项C正确;由于碰撞前、后要求小球均做平抛运动,且抛物线在同一平面,选项B、D正确。

只有满足实验所必需的条件,所做实验才能达到预期目的。

答案:BCD4.在利用气垫导轨探究碰撞中的不变量的实验中,哪些因素可导致实验误差()A.导轨安放不水平B.小车上挡光板倾斜C.两小车质量不相等D.两小车碰后连在一起解析:导轨不水平,小车速度将会受重力影响,选项A正确;挡光板倾斜会导致挡光板宽度不等于挡光阶段小车通过的位移,导致速度计算出现误差,选项B正确;本实验要求两小车碰后连在一起,不要求两小车质量相等。

答案:AB5.某同学把两块大小不同的木块用细线连接,中间夹一被压缩的弹簧,如图所示,将这一系统置于光滑的水平桌面上,烧断细线,观察物体的运动情况,进行必要的测量,验证物体间相互作用时的守恒量。

(1)该同学还必须有的器材是、。

(2)需要直接测量的数据是、。

(3)用所得数据验证守恒量的关系式为。

解析:两物体弹开后各自做平抛运动,根据平抛运动知识可知两物体在空中运动的时间相等。

所需验证的表达式为m1v1=m2v2,两侧都乘以时间t,有m1v1t=m2v2t,即m1s1=m2s2。

答案:(1)刻度尺天平(2)两物体的质量m1、m2两木块落地点分别到桌子两侧边的水平距离s1、s2(3)m1s1=m2s26,左侧滑块质量m1=170 g,右侧滑块质量m2=110 g,挡光片宽度为3.00 cm,两滑块之间有一压缩的弹簧片,并用细线连在一起,如图所示。

开始时两滑块静止,烧断细线后,两滑块分别向左、右方向运动。

挡光片通过光电门的时间分别为Δt1=0.32 s,Δt2=0.21 s,则两滑块的速度分别为v1'= m/s,v2'= m/s。

烧断细线前m1v1+m2v2=kg·m/s,烧断细线后m1v1'+m2v2'=kg·m/s。

可得到的结论是。

解析:取向左方向为正,两滑块速度v1'=m/s≈0.094 m/s,v2'=m/s≈-0.143 m/s。

烧断细线前m1v1+m2v2=0烧断细线后m1v1'+m2v2'=(0.170×0.094-0.110×0.143) kg·m/s=2.5×10-4kg·m/s,在实验允许的误差范围内,m1v1+m2v2=m1v1'+m2v2'。

答案:0.0940.14302.5×10-4在实验允许的误差范围内,两滑块质量与各自速度的乘积之和为不变量7.在“探究碰撞中的不变量”的实验中,如图所示,若绳长为L,球A、B分别由偏角α和β静止释放,则在最低点碰撞前的速度大小分别为、。

若碰撞后向同一方向运动最大偏角分别为α'和β',则碰撞后两球的瞬时速度大小分别为、。

解析:小球从静止释放运动到最低点的过程中,机械能守恒,对于球A有m A gL(1-cos α)=,所以v A=,同理可得v B=。

碰后小球A的速度为v A'=,小球B的速度为v B'=。

答案:8.某同学设计了一个用打点计时器研究“探究碰撞中的不变量”的实验:在小车A的前端粘有橡皮泥,在小车A后连着纸带,推动小车A使之做匀速运动,然后与原来静止在前方的小车B相碰并粘合成一体,继续做匀速运动,他设计的具体装置如图甲所示。

甲乙(1)长木板右端下面垫放一小木片的原因是。

(2)若已获得的打点纸带如图乙所示,A为运动的起点,各计数点间距分别记为AB、BC、CD和DE,用天平测得A、B两车的质量分别为m A、m B,则需验证的表达式为。

解析:(1)长木板右端下面垫放一小木片,目的是平衡摩擦力,使小车拖着纸带在木板上能做匀速运动。

(2)从题图中可以看出,B到C之间和D到E之间打点均匀,所以可以用BC代表小车碰前的速度,用DE代表小车碰后的速度,应有m A·BC=(m A+m B)·DE。

答案:(1)平衡摩擦力(2)m A·BC=(m A+m B)·DE二、B组(20分钟)1,入射小球m1=15 g,原来静止的被碰小球m2=10 g。

由实验测得它们在碰撞前后的x-t图象如图所示,由图可知,入射小球碰撞前的m1v1是,入射小球碰撞后的m1v1'是,被碰小球碰撞后的m2v2'是。

由此得出结论。

解析:由题图可知碰撞前m1的速度大小v1= m/s=1 m/s,故碰撞前m1v1=0.015×1 kg·m/s=0.015 kg·m/s。

碰撞后m1速度大小v1'= m/s=0.5 m/s,m2的速度大小v2'= m/s=0.75 m/s。

故m1v1'=0.015×0.5 kg·m/s=0.007 5 kg·m/s,m2v2'=0.01×0.75 kg·m/s=0.007 5 kg·m/s,可知m1v1=m1v1'+m2v2'。

答案:0.015 kg·m/s0.007 5 kg·m/s0.007 5 kg·m/s碰撞中mv的矢量和是不变量2.如图所示的装置中,质量为m A的钢球A用细线悬挂于O点,质量为m B的钢球B放在离地面高度为h 的小支柱N上。

O点到A球球心的距离为l。

使悬线在A球释放前伸直,且线与竖直线的夹角为α,A球释放后摆动到最低点时恰与B球相碰,碰撞后,A球把轻质指示针OC推移到与竖直线的夹角为β处,B球落到地面上,地面上铺一张盖有复写纸的白纸D。

保持α角度不变,多次重复上述实验,白纸上记录到多个B球的落点。

(1)图中x应是B球初始位置到的水平距离。

(2)为了探究碰撞中的不变量,应测得等物理量(用字母表示)。

(3)用测得的物理量表示:m A v A=;m A v A'=;m B v B'=。

解析:小球A在碰撞前后摆动,满足机械能守恒。

小球B在碰撞后做平抛运动,则x应为B球的平均落点到初始位置的水平距离。

要得到碰撞前后的mv,要测量m A、m B、α、β、l、h、x等,对A,由机械能守恒得m A gl(1-cos α)=m A,则m A v A=m A。

碰后对A,有m A gl(1-cos β)=m A v A'2,则m A v A'=m A。

碰后B做平抛运动,有x=v B't,h=gt2,所以m B v B'=m B x。

答案:(1)B球平均落点(2)m A、m B、α、β、l、h、x(3)m A m A m B x3.如图所示,在实验室用两端带竖直挡板C、D的气垫导轨和有固定挡板的质量都是M的滑块A、B 做探究碰撞中不变量的实验:(1)把两滑块A和B紧贴在一起,在A上放质量为m的砝码,置于导轨上,用电动卡销卡住A和B,在A和B的固定挡板间放一弹簧,使弹簧处于水平方向上的压缩状态。

(2)按下电钮使电动卡销放开,同时启动两个记录两滑块运动时间的电子计时器,当A和B与挡板C 和D碰撞同时,电子计时器自动停表,记下A至C的运动时间t1,B至D的运动时间t2。

(3)重复几次取t1、t2的平均值。

请回答以下几个问题:(1)在调整气垫导轨时应注意;(2)应测量的数据还有;(3)作用前A、B两滑块速度与质量乘积之和为,作用后A、B两滑块速度与质量乘积之和为。

解析:(1)为了保证滑块A、B作用后做匀速直线运动,必须使气垫导轨水平,需要用水平仪加以调试。

(2)要求出A、B两滑块在卡销放开后的速度,需测出A至C的时间t1和B至D的时间t2,并且要分别测量出两滑块到挡板的距离L1和L2,再由公式v=求出其速度。

(3)设向左为正方向,根据所测数据求得两滑块的速度分别为v A=,v B=。

碰前两物体静止,速度与质量乘积之和为0。

碰后两滑块的速度与质量乘积之和为(M+m)-M。

答案:(1)用水平仪调试使得导轨水平(2)A至C的距离L1、B至D的距离L2(3)0(M+m)-M4.在“探究碰撞中的不变量”的实验中,下面是某实验小组选用水平气垫导轨、光电门的测量装置来研究两个滑块碰撞过程中系统的不变量。

实验仪器如图所示。

实验过程:(1)调节气垫导轨水平,并使光电计时器系统正常工作。

(2)在滑块1上装上挡光片并测出其长度L。

(3)在滑块2的碰撞端面粘上橡皮泥(或双面胶纸)。

(4)用天平测出滑块1和滑块2的质量m1、m2。

(5)把滑块1和滑块2放在气垫导轨上,让滑块2处于静止状态(v2=0),用滑块1以初速度v1与之碰撞(这时光电计时器系统自动计算时间),碰后两者粘在一起,分别记下滑块1的挡光片碰前通过光电门的遮光时间t1和碰后通过光电门的遮光时间t2。

(6)先根据v=计算滑块1碰撞前的速度v1及碰后两者的共同速度v;再计算两滑块碰撞前后的质量与速度乘积,并比较两滑块碰撞前后的质量与速度乘积之和。

实验数据:m1=0.324 kg,m2=0.181 kg,L=1.00×10-3 m解析:先分清碰前与碰后的状态量,再代入数据计算。

答案:见解析5.某同学用如图甲装置做“探究碰撞中的不变量”实验。

先将1球从斜槽轨道上某固定点处由静止开始滚下,在水平地面上的记录纸上留下压痕,重复10次;再把同样大小的2球放在斜槽轨道末端水平段的最右端附近静止,让1球仍从原固定点由静止开始滚下和2球相碰后,两球分别落在记录纸的不同位置处,重复10次。

已知1球的质量大于2球的质量。

相关文档
最新文档