6-2定积分在几何上的应用
定积分的部分应用

第六章 定积分的应用§6-1 微元法用定积分解决已知变化率求总量问题的过程.若某量在[a ,b ]上的变化率f (x ),求它在[a ,b]上的总累积量S : 因为分割区间、取i 都要求有任意性,求和、求极限又是固定模式,故可简述过程:再简化一下,则变成:称为微元.以求曲边梯形面积A 问题为例,用微元法就可以简写成这样:任取微段[x ,x +dx ],曲边梯形在此微段部分的面积微元dA =f (x )dx ,所以A =⎰ba dx x f )(.§6-2定积分在几何中的应用一、平面图形的面积1. 直角坐标系下平面图形的面积 (1)X -型与Y -型平面图形的面积把由直线x =a,x =b (a <b )及两条连续曲线y =f 1(x ), y =f 2(x ),(f 1(x )≤f 2(x ))所围成的平面图形称为X y =d (c <d )y ) ≤g 2(y ))注意 构成图形的两条直线,有时也可能蜕化为点.把X -型图形称为X -型双曲边梯形,把Y -型图形称为Y -型双曲边梯形.1)用微元法分析X -型平面图形的面积取横坐标x 为积分变量,x ∈[a ,b ].在区间[a ,b ]上任取一微段[x ,x +dx ],该微段上的图形的面积dA 可以用高为f 2(x )-f 1(x )、底为dx 的矩形的面积近似代替.因此dA =[ f 2(x )-f 1(x )]dx , 从而 A =.)]()([ 12⎰-ba dx x f x f (1)2)微元法分析Y -型图形的面积A =.)]()([ 12⎰-dc dy y g y g (2)对于非X -型、非Y -型平面图形,我们可以进行适当的分割,划分成若干个X -型图形和Y -型图形,然后利用前面介绍的方法去求面积.例1 求由两条抛物线y 2=x , y =x 2所围成图形的面积A .解 解方程组,,22x y x y ==得交点(0,0),(1,1).将该平面图形视为X -型图形,确定积分变量为x ,积分 区间为[0,1].由公式(1),所求图形的面积为A =1 0 31 0 23132)(23x x dx x x -=-⎰=31. 例2 求由曲线y 2=2x 与直线y =-2x +2所围成图形的面积A . 解解方程组,22 ,22+-==x y x y 得交点(21,1),(2,-2). 积分变量选择y ,积分区间为[-2,1].所求图形的面积为 A =12- 31 2- 22]6141[]21)211[(y y y dy y y ⎰--=--=49.例3 求由曲线y =sin x ,y =cos x 和直线x =2π及y 轴所围成图形的面积A .解 在x =0与x =2π之间,两条曲线有两个交点: B (4π,22),C (45π,-22). 由图易知,整个图形可以划分为[0,4π],[4π,45π],[45π,2π]三段,在每一段上都是X -型图形.应用公式(1),所求平面图形的面积为A =⎰⎰⎰-+-+-4455 02)sin (cos )cos (sin )sin (cos πππππdx x x dx x x dx x x =42.2. 极坐标系中曲边扇形的面积在极坐标系中,称由连续曲线r =r (θ)及两条射线θ=α, θ=β,(α<β)所围成的平面图形为曲边扇形.在[α,β]上任取一微段[θ,θ+d θ],面积微元dA 表示1这个角内的小曲边扇形面积,dA =21[r (θ)]2d θ 所以 A =⎰βαθθ 2)]([21d r . (3) 例5 求心形线r =a (1+cos θ),(a >0)所围成图形的积A .解 因为心形线对称于极轴,所以所求图形的面积 A 是极轴上方图形A 1的两倍.极轴上方部分所对应的极角变化范围为θ∈[0,π],由 公式(3),所求图形的面积为A =2⨯⎰βαθθ 2)]([21d r=⎰⎰++=+ππθθθθθ 022 02)cos cos 21()]cos 1([d a d a=)23|2sin 41sin 22302=++ ⎝⎛πθθθa πa 2.二、空间立体的体积 1. 一般情形设有一立体,它夹在垂直于x 轴的两个平面x =a , x =b 之间(包括只与平面交于一点的情况),其中a <b ,如图所示.如果用任意垂直于x 轴的平面去截它,所得的截交面面积A 可得为A =A (x ),则用微元法可以得到立体的体积V 的计算公式.过微段[x ,x +dx ]两端作垂直于x 轴的平面,截得立体一微片,对应体积微元dV =A (x )dx . 因此立体体积V =.)( ⎰ba dx x A (4)例5 经过一如图所示的椭圆柱体的底面的短轴、与底面交成角α的一平面,可截得圆柱体一块楔形块, 求此楔形块的体积V .解 据图,椭圆方程为64422y x +=1. 过任意x ∈[-2,2]处作垂直于x 轴的平面,与楔形块 截交面为图示直角三角形,其面积为A (x )=21y ⋅y tan α=21y 2tan α=32(1-42x )tan α=8(4-x 2)tan α, 应用公式(4)V =⎰--22 2)4(tan 8dx x α=16tan α⎰-22)4(dx x =3256tan α.2. 旋转体的体积旋转体就是由一个平面图形绕这平面内的一条直线l 旋转一周而成的空间立体,其中直线l 称为该旋转体的旋转轴.把X -型图形的单曲边梯形绕x 旋转得到旋转体,则公式(4)中的截面面积A (x )是很容易得到的.如图,设曲边方程为y =f (x ), x ∈[a ,b ](a <b ),旋转体体积记作V x .过任意x ∈[a ,b ]处作垂直于x 轴的截面,所得截面是半径为|f (x )|的圆,因此截面面积 A (x )= π|f (x )|2.应用公式(4),即得V x =π⎰ba dx x f 2)]([ (5)类似可得Y -型图形的单曲边梯形绕y 轴旋转得到的旋转体的体积V y 计算公式 V y =π⎰d c dy y g 2)]([ (6)其中的x =g (y )是曲边方程,c ,d (c <d )为曲边梯形的上下界.例6 求曲线y =sin x (0≤x ≤π)绕x 轴旋转一周所得的旋转体体积V x .解 V x =π⎰b a dx x f 2)]([=π⎰π0 2)(sin dx x=⎰-=-ππππ0 0 ]22sin [2)2cos 1(2x x dx x =22π. 例7 计算椭圆2222bya x +=1(a >b >0)绕x 轴及y 轴旋转而成的椭球体的体积V x ,V y . 解 (1)绕x 轴旋转,旋转椭球体如图所示,可看作上半椭圆y =22x a ab-及x 轴围成的单曲边梯形绕x 轴旋转而成的,由公式(5)得V x =π⎰-a a dx x a a b - 222)(=⎰-a dx x a a b 02222)(2π =a 0 3222]3[2x x a a b -π=34πab 2.(2)绕y 轴旋转,旋转椭球体如图所示,可看作右半 椭圆x =22y b ba-及y 轴围成的单曲边梯形绕y 轴旋转而成的,由公式(6)得V y =π⎰-bb dy y b b a - 222)(=⎰-b dy y b ba 0 2222)(2π =b 0 3222]3[2y y b ba -π=34πa 2b .f (x当a =b =R 时,即得球体的体积公式V =34πR 3. 例8 求由抛物线y =x 与直线y =0,y =1和y 轴围成的平面图形,绕y 轴旋转而成的旋转体的体积V y .解 抛物线方程改写为x =y 2,y ∈[0,1]. 由公式(6)可得所求旋转体的体积为 V y =π55])[(1 0514122ππ===⎰⎰y dy y dy y .三、平面曲线的弧长1. 表示为直角坐标方程的曲线的长度计算公式称切线连续变化的曲线为光滑曲线.若光滑曲线C 由直角坐标方程y =f (x ),(a ≤x ≤b ),则导数f '(x )在[a ,b ]上连续.如图所示,在[a ,b ]上任意取一微段[x ,x +dx ],对应的曲线微段为AB ,C 在点A 处的切线也有对应微段AP .以AP 替代AB ,注意切线改变量是微分,即得曲线长度微元d s 的计算公式d s=22)()(dy dx +, (7) 得到的公式称为弧微分公式.以C 的方程y =f (x )代入,得 ds =2)]([1x f '+dx.据微元法,即得直角坐标方程表示的曲线长度的一般计算公式s =⎰ba ds =⎰'+ba dx x f 2)]([1 (8)若光滑曲线C 由方程x =g (y )(c ≤y ≤d )给出,则g '(y )在[c ,d ]上连续,根据弧微分公式(7)及微元法,同样可得曲线C 的弧长计算公式为 s =⎰'+d cdy y g 2)]([1 (9)例9 求曲线y =41x 2-21ln x (1≤x ≤e )的弧长s . 解 y '=21x -x 21=21(x -x1),ds =2)]([1x f '+dx =)1(21)1(4112x dx x x +=-+dx , 所求弧长为s =⎰ba ds =41]ln 21[21)1(21e1 2 1=+=+⎰x x dx x x e (e 2+1). 例10 求心形线r =a (1+cos θ) (a >0)的全长.解 θ∈[0,2π];又因为心形线关于极轴对称,全长是其半长的两倍,所以θ∈[0,π].ds =22)]([)]([θθr r +'d θ=2)cos 1(2θ+d θ=2a cos 2θd θ,所以 s =2⎰πθθ2cos2d a =8a .§6—3 定积分在物理中的部分应用一、变力做功物体在一个常力F 的作用下,沿力的方向作直线运动,则当物体移动距离s 时,F 所作的功W =F ⋅s .物体在变力作用下做功的问题,用微元法来求解.设力F 的方向不变,但其大小随着位移而连续变化;物体在F 的作用下,沿平行于力的作用方向作直线运动.取物体运动路径为x 轴,位移量为x ,则F =F (x ).现物体从点x =a 移动到点x =b ,求力F 作功W .在区间[a ,b ]上任取一微段[x ,x +dx ],力F 在此微段上做功微元为dW .由于F (x )的连续性,物体移动在这一微段时,力F (x )的变化很小,它可以近似的看成不变,那么在微段dx 上就可以使用常力做功的公式.于是,功的微元为dW =F (x )dx . 作功W 是功微元dW 在[a ,b ]上的累积,据微元法W =⎰ba dW =⎰ba dx x F )(. (12)例1 在弹簧弹性限度之内,外力拉长或压缩弹簧,需要克服弹力作功.已知弹簧每拉长0.02m 要用9.8N 的力,求把弹簧拉长0.1m 时,外力所做的功W .解 据虎克定律,在弹性限度内,拉伸弹簧所需要的外力F 和弹簧的伸长量x 成正比,即 F (x )=kx ,其中k 为弹性系数. 据题设,x =0.02m 时,F =9.8N ,所以 9.8=0.02k ,得k =4.9⨯102(N/m).所以外力需要克服的弹力为 F (x )=4.9⨯102x .由(12)可知,当弹簧被拉长0.1m 时,外力克服弹力作功W =⎰⨯1.0 0 2109.4xdx =21⨯4.9⨯1021.0 0 2x =2.45(J).例2 一个点电荷O 会形成一个电场,其表现就是对周围的其他电荷A 产生沿径向OA作用的引力或斥力;电场内单位正电荷所受的力称为电场强度.据库仑定律,距点电荷r =OA 处的电场强度为F (r )=k 2r q(k 为比例常数,q 为点电荷O 的电量). 现若电场中单位正电荷A 沿OA 从r =OA =a 移到r =OB =b (a <b ),求电场对它所作的功W .解 这是在变力F (r )对移动物体作用下作功问题.因 为作用力和移动路径在同一直线上,故以r 为积分变量,可应用公式(12),得W =⎰b adr rq k 2=kq b a r ]1[-=kq (b a 11-).二、液体的压力单位面积上所受的垂直于面的压力称为压强,即p=ρ⋅h,(其中ρ是液体密度,单位是kg/3m,h是深度,单位是m).如果沉于一定深度的承压面平行于液体表面,则此时承压面上所有点处的h是常数,承压面所受的压力P=ρ⋅h⋅A,其中A是单位为m2的承压面的面积.若承压面不平行于液体表面,此时承压面不同点处的深度未必相同,压强也就因点而异.考虑一种特殊情况:设承压面如图那样为一垂直于液体表面的薄板,薄板在深度为x 处的宽度为f(x),求液体对薄板的压力.薄板沿深度为x的水平线上压强相同,为ρ⋅x,现在在薄板深x处取一高为dx的微条(见图中斜线阴影区域),设其面积为dA.微条上受液体压力为压力微元dP.近似认为在该微条上压强相同,为ρ⋅x,则dP=ρ⋅xdA;又深度为x处薄板宽为f(x),故dA=f(x)dx,因此dP=ρ⋅x⋅f(x)dx.若承压面的入水深度从a到b(a<b),则薄板承压面上液体总压力是x从a到b所有压力微元dP的累积.据微元法P=⎰badxxxf)(ρ=ρ⎰badxxxf)(.(13)。
定积分在几何和物理中的应用

定积分在几何和物理中的应用定积分是高等数学中非常重要的一个概念,它可以用于计算曲线、曲面的面积或体积,还可以应用到物理学、工程学中。
在本文中,我们将着重探讨定积分在几何和物理中的应用。
一、计算面积我们首先来看一个简单的例子,如果我们想要计算一个曲线所围成的面积,我们需要怎么做呢?假设曲线为y=f(x),我们可以将这条曲线分成若干个无限小的小矩形,每个小矩形的宽度为Δx,高度为函数值f(x),则该小矩形的面积为f(x)Δx。
我们将所有小矩形的面积相加,得到所求的曲线面积S:S=∫a^b f(x) dx其中a和b分别是曲线的起点和终点。
这里的∫符号代表积分符号,具体的计算方法不在本文中详细说明。
二、计算体积在物理学中,我们经常需要计算物体的体积,定积分也可以帮助我们实现这一目的。
比如我们需要计算一个旋转曲线所围成的立体体积,我们可以依然使用之前的方法将其分解成无限小的小圆柱体积,每个小圆柱的体积可以表示为:V=π[f(x)]^2dx我们将所有小圆柱的体积相加,得到所求的立体体积V:V=∫a^b π[f(x)]^2dx三、计算重心和质心在物理学中,重心和质心是非常重要的概念。
对于一个平面图形或者一个立体体形,它的重心和质心分别表示为:重心:(∫xdS)/(∫dS)质心:(∫xdm)/(∫dm)这里的dS和dm分别表示面元和质量元,x则表示距离中心的距离。
我们可以通过对图形进行分割并使用定积分来计算重心和质心。
四、积分在物理学中的应用定积分在物理学中的应用非常广泛,比如我们可以使用它来计算弹性势能、动能、功、功率等物理量。
举一个简单的例子,假设质量为m的物体从高度为h处自由落下,当它下落到高度为y 时,它的速度为v,我们可以使用动能和势能的转化关系求出v,设重力加速度为g,则它下落过程中失去的重力势能为mgh-mgy,同时增加的动能为(1/2)mv^2,因此:mgh-mgy=(1/2)mv^2v=sqrt(2g(h-y))我们可以使用定积分来求解物体在过程中的运动状态,以及计算其他物理量的值。
高等数学第六章第二节定积分在几何学上的应用课件.ppt

解:
cos x 0,
2
x
2
s
2
2
2 2 0
1 y2 dx 1 ( cos x)2 dx
2 2
2 cos x dx
0
2
2
2
2
sin
x 2
2
0
4
的弧长.
例11. 计算摆线
一拱
的弧长 .
y
解: ds
(dd
x t
)2
(
d d
y t
)
2
d
t
o
a2 (1 cos t)2 a2 sin2 t d t
1 y2 dx
因此所求弧长
s b 1 y2 dx a
b
a
1 f 2(x) dx
y
y f (x)
ds
o a xxdxb x
(2) 曲线弧由参数方程给出:
弧长元素(弧微分) :
ds (dx)2 (dy)2
2 (t) 2 (t) dt
因此所求弧长
s
2 (t) 2 (t) d t
(3) 曲线弧由极坐标方程给出:
y b
o x ax
则 V 2 a y2 dx 0
(利用对称性)
2
b2 a2
a
(a
2
x2
)
dx
0
2
b2 a2
a2 x
1 3
x3
a 0
4 ab2
3
方法2 利用椭圆参数方程
则 V 20a y2 dx 2 ab2 sin3t d t
2 ab2 2 1
3
4 ab2
3
特别当b
=
a
定积分在几何学上的应用

解 解 直角三角形斜边的直线方程为 y
r V ( x)2 dx 0 h
h
r x. h
r 2 1
1 h [ x3 ]0 hr 2 . 3 h2 3
首页
上页
返回
下页
结束
铃
旋转体的体积: b [ f (x)]2 dx . V a 例7 计算由椭圆
2 x2 y 2 1 所成的图形绕x轴旋转而成的 2 a b
V [ f ( x)]2 dx .
a b
首页
上页
返回
下页
结束
铃
旋转体的体积: b [ f (x)]2 dx . V a 例6 连接坐标原点O及点P(h, r)的直线、直线xh及x轴围 成一个直角三角形. 将它绕x轴旋转构成一个底半径为r、高 为h的圆锥体. 计算这圆锥体的体积.
ds a 2 (1 cos )2 a 2 sin 2 d 2a sin
2
d .
于是所求弧长为
s
2 0
2a sin
2
d
2
2a[2 cos ]0 8a. 2
首页 上页 返回 下页 结束 铃
曲线yf(x)(axb)的弧长: s
a
b
1 y2 dx .
S 4 ydx .
0 a
2
y2
因为椭圆的参数方程为 xacost, ybsint, 所以
S 4 ydx 4b sin td ((acostt) S 4 ydx 4 b sin td a cos )
00
22
aa
00
4ab sin 2 tdt 2ab 2 (1 cos2t)dt
定积分在几何,物理学中的简单应用

定积分在几何,物理学中的简单应用
定积分在几何,物理学中的简单应用
积分是数学中一个非常重要的概念。
它在几何学和物理学中都有重要的应用。
首先,在几何学中,积分可以用来表示曲线下面积和表面积,通过计算曲线或曲面的积分,我们可以求出它们的面积。
比如说,我们可以使用椭圆的一类函数积分来计算两条椭圆之间的Group重叠面积。
同样,在物理学中,积分也有很多用处。
比如,有一些物理量,比如力,可以用积分的方法来计算它们在不同空间点所引起的效应。
比如说,如果我们想要计算一个球在特定空间点上产生的力,我们可以通过对球的各个点的力进行积分来得到这个力的大小。
综上所述,积分在几何学和物理学中都有广泛的应用,它可以帮助我们计算出面积,也可以帮助我们计算力的大小,它是一个非常重要的概念。
定积分在几何中的应用

782020年第 5 期中定积分在几何中的应用杨姜维一、平面图形的面积(一)以为积分变量的情形1.在直角坐标中,设曲线()与直线及轴所围成的平面图形面积为,则面积元素,面积。
例1:求曲线与直线及轴所围成的平面图形的面积。
解:如图1,面积元素,图形面积=2.设曲线与直线及轴所围成的图形面积为,则面积元素,面积。
3.设由,所围成的平面图形的面积:函数由大减小(上减下),积分从左到右;那么,第一种情况里面的面积公式,也可以看作是,轴即直线。
例2:求直线与抛物线所围成的平面图形的面积。
解:由图2分析可知,交点面积元素,图形面积4.任意由所围成的平面图形(图3)的面积。
例3:求抛物线,与轴及直线在第一象限所围成的平面图形的面积。
解:如图4,由交点面积+(二)以为积分变量的情形1.由曲线、直线及轴围成的平面图形面积:。
2.由曲线、直线及轴围成的平面图形面积:。
3.由曲线直线及轴围成的平面图形面积:若,。
可看作是函数由大减小(右减左),积分从下到上。
例4:计算抛物线与直线所围成的图形的面积。
定积分在几何中的应用,主要体现在求解平面图形的面积和旋转体的体积等,文中主要介绍了求解平面图形面积的几种情形,即分别以为积分变量来讨论;求旋转体体积的两种情况,即曲线分别围绕轴和轴旋转一周所得的立体体积。
JIAO HAI TAN HANG/教海探航解:如图5,由交点为方便计算,选取为积分变量,则有4.任意由曲线直线及轴围成的平面图形面积:。
二、旋转体的体积一个平面图形围绕其所在平面上的一条直线旋转一周而成的立体即为旋转体,常见的旋转体有圆柱体、圆锥、圆台、球体等,这些都有对应的体积公式,面对日常生活中所用到的水杯、花瓶等立体物件,求解体积时可考虑以下情况:(一)曲线绕轴旋转的情形由连续曲线与直线及轴所围成的曲边梯形绕轴旋转一周而成的立体,选为积分变量,该旋转体的体积元素,体积为。
(二)曲线绕轴旋转的情形由曲线、直线及轴围成的平面图形绕轴旋转一周所得的立体,选为积分变量,该旋转体的体积元素,体积为。
定积分在几何计算中的应用

定积分在几何计算中的应用定积分是高等数学中的一个重要概念,它在几何计算中有着广泛的应用。
在几何学中,定积分可以用来计算曲线的长度、曲面的面积、体积等等。
下面我们就来看看定积分在几何计算中的应用。
定积分可以用来计算曲线的长度。
对于一条曲线,我们可以将其分成无数个小段,然后对每个小段的长度进行求和,最终得到整条曲线的长度。
这个过程可以用定积分来表示,即:L = ∫a^b √(1+(dy/dx)^2) dx其中,a和b分别表示曲线的起点和终点,dy/dx表示曲线在每个点的斜率。
这个式子的意义是,将曲线分成无数个小段,每个小段的长度为√(1+(dy/dx)^2) dx,然后对所有小段的长度进行求和,最终得到整条曲线的长度。
定积分可以用来计算曲面的面积。
对于一个曲面,我们可以将其分成无数个小面元,然后对每个小面元的面积进行求和,最终得到整个曲面的面积。
这个过程可以用定积分来表示,即:S = ∫∫D √(1+(∂z/∂x)^2+(∂z/∂y)^2) dxdy其中,D表示曲面的投影区域,z表示曲面在每个点的高度,∂z/∂x和∂z/∂y分别表示曲面在每个点在x和y方向上的斜率。
这个式子的意义是,将曲面分成无数个小面元,每个小面元的面积为√(1+(∂z/∂x)^2+(∂z/∂y)^2) dxdy,然后对所有小面元的面积进行求和,最终得到整个曲面的面积。
定积分可以用来计算体积。
对于一个立体图形,我们可以将其分成无数个小体元,然后对每个小体元的体积进行求和,最终得到整个立体图形的体积。
这个过程可以用定积分来表示,即:V = ∫∫∫E dxdydz其中,E表示立体图形的空间区域。
这个式子的意义是,将立体图形分成无数个小体元,每个小体元的体积为dxdydz,然后对所有小体元的体积进行求和,最终得到整个立体图形的体积。
定积分在几何计算中有着广泛的应用,可以用来计算曲线的长度、曲面的面积、体积等等。
这些应用不仅在数学中有着重要的意义,也在实际生活中有着广泛的应用,例如在建筑设计、工程计算等领域中都有着重要的作用。
定积分在几何,物理学中的简单应用

定积分在几何,物理学中的简单应用
定积分是一种常见的数学工具,用来解决许多几何和物理问题。
它可以在几何学、物理学中解决积分、面积和容积计算题中应用。
首先,定积分在几何学中的简单应用。
比如,如果我们要计算一个几何图形的面积,则可以通过定积分来计算。
它可以计算任意形状的几何图形的面积,比如三角形、椭圆、圆形等。
它的应用范围非常广泛,比如可以用它来计算面积、周长、体积等。
其次,定积分也可以用在物理学中。
比如,如果我们要计算一个物体在多次不同力作用之下移动的路程,可以用定积分来计算。
它可以帮助我们精确地计算物体受力作用前后的距离,也可以帮助我们精确计算弹性作用力等。
最后,定积分也可以应用于物理学的温度问题中。
比如,我们可以通过定积分求出一个物体在单位温差下的热量传递,也可以求出一个物体的总热量。
还可以用它求解温度场、热传导率、热导率等问题。
以上是定积分在几何、物理学中的简单应用。
定积分是一种通用而有效的数学工具,在几何、物理学中都有着广泛的应用,不仅可以用来解决相关的面积、容积计算题,而且还可以用来解决物理热力学、温度等问题。
只要我们掌握它的基本使用方法以及它的一些特性和用途,就可以在几何、物理学中更好地应用它来解决其它问题。
- 1 -。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例 8 求心形线 r a (1 cos ) 所围平面图形的 面积(a 0) . 1 2 dA a (1 cos )2 d 解: 2
利用对称性知 1 2 A 2 a (1 cos ) 2 d 2 0 2 a (1 2 cos cos 2 )d
取积分变量为 x ,
x [a , b]
在[a , b]上任取小区 间[ x , x dx ],
y
y f ( x)
o
x x dx
x
取以 dx 为底的窄边梯形绕 x 轴旋转而成的薄片的 2 体积元素为: dV [ f ( x )] dx
旋转体的体积为:
V [ f ( x )] dx
例 13
求以半径为 R 的圆为底、平行且等于底圆
直径的线段为顶、高为 h的正劈锥体的体积.
解: 取坐标系如图 底圆方程为 截面面积 立体体积
y
2 2
h
x y R
2
垂直于 x 轴的截面为等腰三角形
o
x
R
x
1 2 2 A( x) .2 y.h h y h R x 2 R
R 2 2
(0,0) (1,1) 1 y 2 y 2 2 dy V 0
x y
2
y x
2
y y 4 dy
1 2 1 5 3 . y y 5 0 10 2
0
1
1
布置作业
P284 习题6-2
5. (1), (3) ; 18.
o
y
截面面积:
x
R
1 1 2 A( x) y. y tan ( R x 2 ) tan , 2 2
R
x
R
立体体积: 1 (R 2 x 2 ) tandx tan R 2 x 2 dx V 2 R 0 3 R 2 2 3 x tan R x R tan . 3 0 3
4 5 3 3 2 7 3 3 3
a
类似地,如果旋转体是由连续曲线 x ( y ) 、直 线 y c 、 y d 及 y 轴所围成的曲边梯形绕 y 轴旋转 一周而成的立体,体积元素为
dV [ ( y)] dy
2
y
d
旋转体的体积为:
V [ ( y)] dy
2 c
面积元素
d
r ( )
d
1 dA [ ( )]2 d 2
o
曲边扇形的面积
x
A
1 [ ( )]2 d . 2
小圆扇形的面积近似 替代小曲边扇形面积
例6
计算阿基米德螺线
a (a0)上相应于
从 0 到 2 的一段弧与极轴所围平面图形的面积.
a 2 2 b
2
2 y b y 3 0
3
b
4 2 a b. 3
三、平行截面面积为已知的立体的体积
如果一个立体不是旋转体,但却知道该立 体上垂直于一定轴的各个截面面积,那么,这 个立体的体积也可用定积分来计算.
A( x ) 表示过点
x 且垂直于x 轴
o
a
x
x dx
x
o
x 0, h]上任取小区间[ x , x dx ],
以 dx 为底的窄边梯形绕 x 轴旋转而成的薄片的 体积元素为
r x dx dV h
圆锥体的体积
2
2
y
P
r
o
h
x
V
h
0
hr r x dx r x . 2 h 3 h 3 0
xy 4 y 1
y 1
立体体积: V y
1
x dy
o
反常积分
x
1
16 16 dy 2 y 16. y 1
P284 习题6-2 作业提示 5.求有下列各曲线所围成的图形的面积:
2 2a cos , 亦即x 2 y 2 2ax. 1 2a cos ,
解: A
2
2
1 2 2a cos d 2
2
y
2a cos
a x
4a
cos
0
2
2
d
0
2a
a .
2
(圆)
15.求下列已知曲线所围成的图形,按指定的轴旋转 所产生的旋转体的体积:
1 y x
2
, x y , 绕 y 轴;
2
解: 两曲线的交点
d
x ( y)
c
o
x
例11.计算由椭圆
x y 2 1 2 a b
2
2
y
所围成的图形绕y轴一周而成的旋 转体(叫做旋转椭球体)的体积. a2 2 解: x 2 2 b y 2 b
b
o
a
x
a2 2 dV 2 b y 2 dy b b b 2 a2 2 a 2 V 2 b y dy 2 2 b 2 y 2 dy b b b 0
解: 面积元素
于是所求面积为:
1 2 dA (a) d 2
2
2a
1 2 2 A a d 0 2 2 3 2 a 4
d
a
3 a 2 0 3
2
3
例 7 求伯努利双纽线 a cos 2 所围平面图
2 2
形的面积.
P359—附录II.几种常见的曲线
第二节 定积分在几何学上的应用
一、平面图形的面积 1.直角坐标系情形 2.极坐标系情形 二、旋转体的体积 三、平行截面面积为已知的立体的体积 四、小结
2.极坐标系情形
(1)极坐标系的定义:在平面内由极点、极轴 和极径组成的坐标系称之.
o
极径
P ,
极坐标 极角
极点
极轴
x
在平面上取定一点O,称为极点.从O出发引一条 射线Ox,称为极轴.再取定一个长度单位,通常规 定角度取逆时针方向为正.
2 a
b
例 9
连接坐标原点 O 及点 P ( h, r ) 的直线、直线
x h 及 x 轴围成一个直角三角形.将它绕 x 轴旋
转构成一个底半径为 r 、高为 h 的圆锥体,计算圆 锥体的体积.
y
解: 直线 OP方程为
P
r r y x k tan h h
r
h
点M , 直角坐标为 x, y , 极坐标为 , .关系为:
x cos y sin
2 x2 y 2 y tan x o x
(3) 极坐标系中平面图形的面积
设由曲线r ( ) 及射线
、 围成一曲边扇 形,求其面积.这里, ( ) 在[ , ]上连续,且 ( ) 0 .
绕 x 轴旋转一周 dx 2、旋转体的体积 绕 y 轴旋转一周 dy 3、平行截面面积为已知的立体的体积.
V
b
a
A( x )dx .
思考题 求曲线 xy 4 , y 1, x 0 所围成的图形 绕 y 轴旋转构成旋转体的体积. 思考题解答
y
交点 (4,1),
2
M , ,M x, y
x cos y sin
2 x2 y 2 y tan x o x
y
X
(2)极坐标和直角坐标互化 把直角坐标中的原点作为极点,x 轴的正半轴作为 极轴。与直角坐标系中取相同的长度单位,建立极坐 标系。
的极坐标M 3, 来表示, 3
与 3, 表示同一点. 3
3
3
o
M 3, 3
x
或 3, M 3, 3 3
y
极坐标与直角坐标的关系
0 x
2
3 h
2
例 10 求星形线 x y a ( a 0) 绕 x 轴旋转 构成旋转体的体积.
解: y
2 3 2 3
2 3
2 3
2 3
P285-习题13
2 3
y
a x ,
2 3 2 3
旋转体的体积
a 2 3
2 y a x
2 3
x [ a , a ]
解:由对称性知总面积=4倍第一象限部分面积
A 4A1
A 4 0
2
4
a cos 2 d 2
4 a sin 2 0 a 2 . 2
0
4
1 2 a cos 2d 2
A1
y x
2 a 2 cos 2
1 2 dA a cos 2 d 2
0
a
d
2a a
3 1 a 2 2 sin sin 2 2 4 0 3 a 2 . 2
1 cos 2 cos 2
2
二、旋转体的体积
旋转体就是由一个平面图形饶这平面内 一条直线旋转一周而成的立体.这直线叫做 旋转轴.
圆柱
圆锥
圆台
一般地,如果旋转体是由连续曲线 y f ( x )、直线 x a 、 x b 及 x 轴所围成的曲边梯形绕 x 轴旋转一 周而成的立体,体积为多少?