九年级数学上第二次月考试题附答案

合集下载

九年级(上)第二次月考数学试卷(含答案)

九年级(上)第二次月考数学试卷(含答案)

九年级(上)第二次月考数学试卷(含答案)一、选择题1.已知关于x 的函数y =x 2+2mx +1,若x >1时,y 随x 的增大而增大,则m 的取值范围是( ) A .m ≥1 B .m ≤1 C .m ≥-1 D .m ≤-1 2.一元二次方程x 2=9的根是( )A .3B .±3C .9D .±93.如图,以AB 为直径的⊙O 上有一点C ,且∠BOC =50°,则∠A 的度数为( )A .65°B .50°C .30°D .25°4.在平面直角坐标系中,点A(0,2)、B(a ,a +2)、C(b ,0)(a >0,b >0),若AB=2且∠ACB 最大时,b 的值为( ) A .226+B .226-+C .242+D .2425.sin30°的值是( ) A .12B .22C 3D .16.方程x 2﹣3x =0的根是( ) A .x =0B .x =3C .10x =,23x =-D .10x =,23x =7.10件产品中有2件次品,从中任意抽取1件,恰好抽到次品的概率是( ) A .12B .13C .14D .158.若关于x 的方程20ax bx c ++=的解为11x =-,23x =,则方程2(1)(1)0a x b x c -+-+=的解为( )A .120,2x x ==B .122,4x x =-=C .120,4x x ==D .122,2x x =-=9.用配方法解方程2890x x ++=,变形后的结果正确的是( ) A .()249x +=-B .()247x +=-C .()2425x +=D .()247x +=10.某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试因此计算其他39人的平均分为90分,方差s 2=41.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是( ) A .平均分不变,方差变大 B .平均分不变,方差变小 C .平均分和方差都不变D .平均分和方差都改变11.如图,在⊙O 中,AB 为直径,圆周角∠ACD=20°,则∠BAD 等于( )A .20°B .40°C .70°D .80°12.如图,AC 是⊙O 的内接正四边形的一边,点B 在弧AC 上,且BC 是⊙O 的内接正六边形的一边.若AB 是⊙O 的内接正n 边形的一边,则n 的值为( )A .6B .8C .10D .1213.二次函数y=ax 2+bx+c 的y 与x 的部分对应值如下表: x…134 …y … 2 4 2 ﹣2…则下列判断中正确的是( ) A .抛物线开口向上 B .抛物线与y 轴交于负半轴C .当x=﹣1时y >0D .方程ax 2+bx+c=0的负根在0与﹣1之间 14.已知⊙O 的半径是6,点O 到直线l 的距离为5,则直线l 与⊙O 的位置关系是 A .相离B .相切C .相交D .无法判断15.已知抛物线与二次函数23y x =-的图像相同,开口方向相同,且顶点坐标为(1,3)-,它对应的函数表达式为( ) A .23(1)3y x =--+ B .23(1)3y x =-+ C .23(1)3y x =+-D .23(1)3y x =-++二、填空题16.若△ABC ∽△A′B′C′,∠A =50°,∠C =110°,则∠B′的度数为_____. 17.如图,已知正六边形内接于O ,若正六边形的边长为2,则图中涂色部分的面积为______.18.如图,四边形ABCD 内接于⊙O ,AB 是⊙O 的直径,过点C 作⊙O 的切线交AB 的延长线于点P ,若∠P =40°,则∠ADC =____°.19.如图,在Rt △ABC 中,BC AC ⊥,CD 是AB 边上的高,已知AB =25,BC =15,则BD =__________.20.抛物线y=(x ﹣2)2﹣3的顶点坐标是____.21.已知点11(,)A x y ,22(,)B x y 在二次函数2(1)1y x =-+的图象上,若121x x >>,则1y __________2y .(填“>”“<”“=”)22.如图,抛物线2143115y x x =--与x 轴交于A 、B 两点,与y 轴交于C 点,⊙B 的圆心为B ,半径是1,点P 是直线AC 上的动点,过点P 作⊙B 的切线,切点是Q ,则切线长PQ 的最小值是__.23.抛物线228y x x m =++与x 轴只有一个公共点,则m 的值为________. 24.设1x 、2x 是关于x 的方程2350x x +-=的两个根,则1212x x x x +-•=__________.25.如图,正方形ABCD 的边长为5,E 、F 分别是BC 、CD 上的两个动点,AE ⊥EF .则AF 的最小值是_____.26.若圆弧所在圆的半径为12,所对的圆心角为60°,则这条弧的长为_____.27.如图,C、D是线段AB的两个黄金分割点,且CD=1,则线段AB的长为_____.28.已知关于x的一元二次方程ax2+bx+5a=0有两个正的相等的实数根,则这两个相等实数根的和为_____.29.甲、乙两个篮球队队员身高的平均数都为2.07米,方差分别是2S甲、2S乙,且22S S甲乙,则队员身高比较整齐的球队是_____.30.如图,AE、BE是△ABC的两个内角的平分线,过点A作AD⊥AE.交BE的延长线于点D.若AD=AB,BE:ED=1:2,则cos∠ABC=_____.三、解答题31.如图,AB是⊙O的直径,AC是⊙O的弦,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC的延长线于点E,连接BD.(1)求证:DE是⊙O的切线;(2)若BD=3,AD=4,则DE=.32.解方程:(1)x2+4x﹣21=0(2)x2﹣7x﹣2=033.从甲、乙两台包装机包装的质量为300g的袋装食品中各抽取10袋,测得其实际质量如下(单位:g)甲:301,300,305,302,303,302,300,300,298,299乙:305,302,300,300,300,300,298,299,301,305(1)分别计算甲、乙这两个样本的平均数和方差;(2)比较这两台包装机包装质量的稳定性.34.如图,某农户计划用长12m的篱笆围成一个“日”字形的生物园饲养两种不同的家禽,生物园的一面靠墙,且墙的可利用长度最长为7m.(1)若生物园的面积为9m2,则这个生物园垂直于墙的一边长为多少?(2)若要使生物园的面积最大,该怎样围?35.如图,直线y=x﹣1与抛物线y=﹣x2+6x﹣5相交于A、D两点.抛物线的顶点为C,连结AC.(1)求A,D两点的坐标;(2)点P为该抛物线上一动点(与点A、D不重合),连接PA、PD.①当点P的横坐标为2时,求△PAD的面积;②当∠PDA=∠CAD时,直接写出点P的坐标.四、压轴题36.在平面直角坐标系xOy中,对于任意三点A,B,C,给出如下定义:若矩形的任何一条边均与某条坐标轴平行,且A,B,C三点都在矩形的内部或边界上,则称该矩形为点A,B,C的外延矩形.点A,B,C的所有外延矩形中,面积最小的矩形称为点A,B,C的最佳外延矩形.例如,图中的矩形,,都是点A,B,C的外延矩形,矩形是点A,B,C的最佳外延矩形.(1)如图1,已知A (-2,0),B (4,3),C (0,). ①若,则点A ,B ,C 的最佳外延矩形的面积为 ;②若点A ,B ,C 的最佳外延矩形的面积为24,则的值为 ; (2)如图2,已知点M (6,0),N (0,8).P (,)是抛物线上一点,求点M ,N ,P 的最佳外延矩形面积的最小值,以及此时点P 的横坐标的取值范围;(3)如图3,已知点D (1,1).E (,)是函数的图象上一点,矩形OFEG 是点O ,D ,E 的一个面积最小的最佳外延矩形,⊙H 是矩形OFEG 的外接圆,请直接写出⊙H 的半径r 的取值范围.37.在长方形ABCD 中,AB =5cm ,BC =6cm ,点P 从点A 开始沿边AB 向终点B 以1/cm s 的速度移动,与此同时,点Q 从点B 开始沿边BC 向终点C 以2/cm s 的速度移动.如果P 、Q 分别从A 、B 同时出发,当点Q 运动到点C 时,两点停止运动.设运动时间为t 秒.(1)填空:______=______,______=______(用含t 的代数式表示); (2)当t 为何值时,PQ 的长度等于5cm ?(3)是否存在t 的值,使得五边形APQCD 的面积等于226cm ?若存在,请求出此时t 的值;若不存在,请说明理由.38.如图,已知矩形ABCD 中,BC =2cm ,AB 3,点E 在边AB 上,点F 在边AD 上,点E 由A 向B 运动,连结EC 、EF ,在运动的过程中,始终保持EC ⊥EF ,△EFG 为等边三角形.(1)求证△AEF ∽△BCE ;(2)设BE 的长为xcm ,AF 的长为ycm ,求y 与x 的函数关系式,并写出线段AF 长的范围;(3)若点H 是EG 的中点,试说明A 、E 、H 、F 四点在同一个圆上,并求在点E 由A 到B运动过程中,点H 移动的距离.39.如图,在正方形ABCD 中,P 是边BC 上的一动点(不与点B ,C 重合),点B 关于直线AP 的对称点为E ,连接AE ,连接DE 并延长交射线AP 于点F ,连接BF(1)若BAP α∠=,直接写出ADF ∠的大小(用含α的式子表示). (2)求证:BF DF ⊥.(3)连接CF ,用等式表示线段AF ,BF ,CF 之间的数量关系,并证明.40.对于线段外一点和这条线段两个端点连线所构成的角叫做这个点关于这条线段的视角.如图1,对于线段AB 及线段AB 外一点C ,我们称∠ACB 为点C 关于线段AB 的视角. 如图2,点Q 在直线l 上运动,当点Q 关于线段AB 的视角最大时,则称这个最大的“视角”为直线l 关于线段AB 的“视角”.(1)如图3,在平面直角坐标系中,A (0,4),B (2,2),点C 坐标为(﹣2,2),点C 关于线段AB 的视角为 度,x 轴关于线段AB 的视角为 度;(2)如图4,点M 是在x 轴上,坐标为(2,0),过点M 作线段EF ⊥x 轴,且EM =MF =1,当直线y =kx (k ≠0)关于线段EF 的视角为90°,求k 的值;(3)如图5,在平面直角坐标系中,P 3,2),Q 3,1),直线y =ax +b (a >0)与x 轴的夹角为60°,且关于线段PQ 的视角为45°,求这条直线的解析式.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】根据函数解析式可知,开口方向向上,在对称轴的右侧y 随x 的增大而增大,在对称轴的左侧,y 随x 的增大而减小. 【详解】解:∵函数的对称轴为x=222b m m a -=-=-, 又∵二次函数开口向上,∴在对称轴的右侧y 随x 的增大而增大, ∵x >1时,y 随x 的增大而增大, ∴-m≤1,即m ≥-1 故选:C . 【点睛】本题考查了二次函数的图形与系数的关系,熟练掌握二次函数的性质是解题的关键.2.B解析:B 【解析】 【分析】两边直接开平方得:3x =±,进而可得答案. 【详解】 解:29x =,两边直接开平方得:3x =±, 则13x =,23x =-. 故选:B . 【点睛】此题主要考查了直接开平方法解一元二次方程,解这类问题一般要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成2(0)x a a =的形式,利用数的开方直接求解.3.D解析:D 【解析】 【分析】根据圆周角定理计算即可. 【详解】解:由圆周角定理得,1252A BOC ∠=∠=︒,故选:D . 【点睛】本题考查的是圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.4.B解析:B 【解析】 【分析】根据圆周角大于对应的圆外角可得当ABC ∆的外接圆与x 轴相切时,ACB ∠有最大值,此时圆心F 的横坐标与C 点的横坐标相同,并且在经过AB 中点且与直线AB 垂直的直线上,根据FB=FC 列出关于b 的方程求解即可. 【详解】解:∵AB=42,A(0,2)、B(a ,a +2) ∴22(22)42a a ++-=, 解得a =4或a =-4(因为a >0,舍去) ∴B(4,6),设直线AB 的解析式为y=kx+2, 将B(4,6)代入可得k =1,所以y=x+2,利用圆周角大于对应的圆外角得当ABC ∆的外接圆与x 轴相切时,ACB ∠有最大值. 如下图,G 为AB 中点,()2,4G ,设过点G 且垂直于AB 的直线:l y x m =-+, 将()2,4G 代入可得6m =,所以6y x =-+.设圆心(),6F b b -+,由FC FB =,可知()()()2226466b b b -+=-+-+-,解得2b =(已舍去负值).故选:B. 【点睛】本题考查圆的综合题,一次函数的应用和已知两点坐标,用勾股定理求两点距离.能结合圆的切线和圆周角定理构建图形找到C 点的位置是解决此题的关键.5.A解析:A 【解析】 【分析】根据特殊角的三角函数值计算即可. 【详解】 解:sin30°=12. 故选:A . 【点睛】本题考查了特殊角的三角函数值,熟记特殊角的三角函数值是解题的关键.6.D解析:D 【解析】 【分析】先将方程左边提公因式x ,解方程即可得答案. 【详解】 x 2﹣3x =0, x (x ﹣3)=0, x 1=0,x 2=3, 故选:D . 【点睛】本题考查解一元二次方程,解一元二次方程的常用方法有:配方法、直接开平方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.7.D解析:D 【解析】 【分析】由于10件产品中有2件次品,所以从10件产品中任意抽取1件,抽中次品的概率是21105=. 【详解】解:()21P 105==次品 . 故选:D .【点睛】本题考查的知识点是用概率公式求事件的概率,根据题目找出全部情况的总数以及符合条件的情况数目是解此题的关键. 8.C解析:C【解析】【分析】设方程2(1)(1)0a x b x c -+-+=中,1t x =-,根据已知方程的解,即可求出关于t 的方程的解,然后根据1t x =-即可求出结论.【详解】解:设方程2(1)(1)0a x b x c -+-+=中,1t x =-则方程变为20at bt c ++=∵关于x 的方程20ax bx c ++=的解为11x =-,23x =,∴关于t 的方程20at bt c ++=的解为11t =-,23t =, ∴对于方程2(1)(1)0a x b x c -+-+=,11x -=-或3解得:10x =,24x =,故选C .【点睛】此题考查的是根据已知方程的解,求新方程的解,掌握换元法是解决此题的关键.9.D解析:D【解析】【分析】先将常数项移到右侧,然后两边同时加上一次项系数一半的平方,配方后进行判断即可.【详解】2890x x ++=,289x x +=-,2228494x x ++=-+,所以()247x +=,故选D.本题考查了配方法解一元二次方程,熟练掌握配方法的一般步骤以及注意事项是解题的关键.10.B解析:B【解析】【分析】根据平均数、方差的定义计算即可.【详解】∵小亮的成绩和其它39人的平均数相同,都是90分,∴40人的平均数是90分,∵39人的方差为41,小亮的成绩是90分,40人的平均分是90分,∴40人的方差为[41×39+(90-90)2]÷40<41,∴方差变小,∴平均分不变,方差变小故选B.【点睛】本题考查了平均数与方差,熟练掌握定义是解题关键.11.C解析:C【解析】【分析】连接OD,根据∠AOD=2∠ACD,求出∠AOD,利用等腰三角形的性质即可解决问题.【详解】连接OD.∵∠ACD=20°,∴∠AOD=2∠ACD=40°.∵OA=OD,∴∠BAD=∠ADO=12(180°﹣40°)=70°.故选C.【点睛】本题考查了圆周角定理、等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,属于中考常考题型.12.D解析:D【分析】连接AO、BO、CO,根据中心角度数=360°÷边数n,分别计算出∠AOC、∠BOC的度数,根据角的和差则有∠AOB=30°,根据边数n=360°÷中心角度数即可求解.【详解】连接AO、BO、CO,∵AC是⊙O内接正四边形的一边,∴∠AOC=360°÷4=90°,∵BC是⊙O内接正六边形的一边,∴∠BOC=360°÷6=60°,∴∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°,∴n=360°÷30°=12;故选:D.【点睛】本题考查正多边形和圆,解题的关键是根据正方形的性质、正六边形的性质求出中心角的度数.13.D解析:D【解析】【分析】根据表中的对应值,求出二次函数2y ax bx c=++的表达式即可求解.【详解】解:选取02(,),14(,),32(,)三点分别代入2y ax bx c=++得24932ca b ca b c=⎧⎪++=⎨⎪++=⎩解得:132abc=-⎧⎪=⎨⎪=⎩∴二次函数表达式为232y x x=-++∵1a=-,抛物线开口向下;∴选项A错误;∵2c=函数图象与y的正半轴相交;∴选项B错误;当x=-1时,2(1)3(1)220y =--+⨯-+=-<;∴选项C 错误;令0y =,得2320x x -++=,解得:132x +=,232x =∵10-,方程20ax bx c ++=的负根在0与-1之间; 故选:D .【点睛】本题考查二次函数图象与性质,掌握性质,利用数形结合思想解题是关键.14.C解析:C【解析】试题分析:根据直线与圆的位置关系来判定:①直线l 和⊙O 相交,则d <r ;②直线l 和⊙O 相切,则d=r ;③直线l 和⊙O 相离,则d >r (d 为直线与圆的距离,r 为圆的半径).因此,∵⊙O 的半径为6,圆心O 到直线l 的距离为5,∴6>5,即:d <r .∴直线l 与⊙O 的位置关系是相交.故选C .15.D解析:D【解析】【分析】先根据抛物线与二次函数23y x =-的图像相同,开口方向相同,确定出二次项系数a 的值,然后再通过顶点坐标即可得出抛物线的表达式.【详解】∵抛物线与二次函数23y x =-的图像相同,开口方向相同, 3a ∴=-∵顶点坐标为(1,3)-∴抛物线的表达式为23(1)3y x =-++故选:D .【点睛】本题主要考查抛物线的顶点式,掌握二次函数表达式中的顶点式是解题的关键. 二、填空题16.20°【解析】【分析】先根据三角形内角和计算出∠B 的度数,然后根据相似三角形的性质得到∠B′的度数.【详解】解:∵∠A=50°,∠C=110°,∴∠B=180°﹣50°﹣110°=20°解析:20°【解析】【分析】先根据三角形内角和计算出∠B的度数,然后根据相似三角形的性质得到∠B′的度数.【详解】解:∵∠A=50°,∠C=110°,∴∠B=180°﹣50°﹣110°=20°,∵△ABC∽△A′B′C′,∴∠B′=∠B=20°.故答案为20°.【点睛】本题考查了相似三角形的性质,如果两个三角形相似,那么它们的对应角相等,对应边成比例,它们对应面积的比等于相似比的平方.17.【解析】【分析】根据圆的性质和正六边形的性质证明△CDA≌△BDO,得出涂色部分即为扇形A OB的面积,根据扇形面积公式求解.【详解】解:连接OA,OB,OC,AB,OA与BC交于D点∵正解析:2 3【解析】【分析】根据圆的性质和正六边形的性质证明△CDA≌△BDO,得出涂色部分即为扇形AOB的面积,根据扇形面积公式求解.【详解】解:连接OA,OB,OC,AB,OA与BC交于D点∵正六边形内接于O,∴∠BOA=∠AOC=60°,OA=OB=OC=4,∴∠BOC=120°,OD⊥BC,BD=CD∴∠OCB=∠OBC=30°,∴OD=1122OB OA DA ,∵∠CDA=∠BDO,∴△CDA≌△BDO,∴S△CDA=S△BDO,∴图中涂色部分的面积等于扇形AOB的面积为:26022 3603ππ⨯=.故答案为:23π.【点睛】本题考查圆的内接正多边形的性质,根据圆的性质结合正六边形的性质将涂色部分转化成扇形面积是解答此题的关键.18.115°【解析】【分析】根据过C点的切线与AB的延长线交于P点,∠P=40°,可以求得∠OCP和∠OBC的度数,又根据圆内接四边形对角互补,可以求得∠D的度数,本题得以解决.【详解】解:连解析:115°【解析】【分析】根据过C点的切线与AB的延长线交于P点,∠P=40°,可以求得∠OCP和∠OBC的度数,又根据圆内接四边形对角互补,可以求得∠D的度数,本题得以解决.【详解】解:连接OC,如右图所示,由题意可得,∠OCP=90°,∠P=40°,∴∠COB=50°,∵OC=OB,∴∠OCB=∠OBC=65°,∵四边形ABCD是圆内接四边形,∴∠D+∠ABC=180°,∴∠D=115°,故答案为:115°.【点睛】本题考查切线的性质、圆内接四边形,解题的关键是明确题意,找出所求问题需要的条件.19.9【解析】【分析】利用两角对应相等两三角形相似证△BCD∽△BAC,根据相似三角形对应边成比例得比例式,代入数值求解即可.【详解】解:∵,,∴∠ACB=∠CDB=90°,∵∠B=∠B,解析:9【解析】【分析】利用两角对应相等两三角形相似证△BCD ∽△BAC ,根据相似三角形对应边成比例得比例式,代入数值求解即可.【详解】解:∵BC AC ⊥,CD AB ⊥,∴∠ACB=∠CDB=90°,∵∠B=∠B,∴△BCD ∽△BAC, ∴BC BD AB BC = , ∴152515BD =, ∴BD=9.故答案为:9.【点睛】本题考查利用相似三角形的性质求线段长,证明两三角形相似注意题中隐含条件,如公共角,对顶角等,利用相似的性质得出比例式求解是解答此题的关键.20.(2,﹣3)【解析】【分析】根据:对于抛物线y=a (x ﹣h )2+k 的顶点坐标是(h,k).抛物线y=(x ﹣2)2﹣3的顶点坐标是(2,﹣3).故答案为(2,﹣3)【点睛】本题解析:(2,﹣3)【解析】【分析】根据:对于抛物线y=a (x ﹣h )2+k 的顶点坐标是(h,k).【详解】抛物线y=(x ﹣2)2﹣3的顶点坐标是(2,﹣3).故答案为(2,﹣3)【点睛】本题考核知识点:抛物线的顶点. 解题关键点:熟记求抛物线顶点坐标的公式.21.【解析】抛物线的对称轴为:x=1,∴当x>1时,y 随x 的增大而增大.∴若x1>x2>1 时,y1>y2 .故答案为>解析:12y y >【解析】抛物线()2y x 11=-+的对称轴为:x=1,∴当x>1时,y 随x 的增大而增大.∴若x 1>x 2>1 时,y 1>y 2 .故答案为> 22.【解析】【分析】先根据解析式求出点A 、B 、C 的坐标,求出直线AC的解析式,设点P 的坐标,根据过点P 作⊙B 的切线,切点是Q 得到PQ 的函数关系式,求出最小值即可.【详解】令中y=0,得x1=【解析】【分析】先根据解析式求出点A 、B 、C 的坐标,求出直线AC 的解析式,设点P 的坐标,根据过点P 作⊙B 的切线,切点是Q 得到PQ 的函数关系式,求出最小值即可.令2143115y x x =--中y=0,得x 1=-3,x 2=53, ∴直线AC 的解析式为31y x =--, 设P (x ,313x ), ∵过点P 作⊙B 的切线,切点是Q ,BQ=1∴PQ 2=PB 2-BQ 2,=(x-53)2+(31x )2-1, =24283753x x , ∵43a =0<, ∴PQ 2有最小值24283475()3326443, ∴PQ 的最小值是26,故答案为:26,【点睛】此题考查二次函数最小值的实际应用,求动线段的最小值,需构建关于此线段的函数解析式,利用二次函数顶点坐标公式求最值,此题找到线段PQ 、BQ 、PB 之间的关系式是解题的关键.23.8【解析】试题分析:由题意可得,即可得到关于m 的方程,解出即可.由题意得,解得考点:本题考查的是二次根式的性质点评:解答本题的关键是熟练掌握当时,抛物线与x 轴有两个公共点;当时,抛物线与x解析:8【解析】试题分析:由题意可得,即可得到关于m 的方程,解出即可. 由题意得,解得考点:本题考查的是二次根式的性质点评:解答本题的关键是熟练掌握当时,抛物线与x 轴有两个公共点;当时,抛物线与x 轴只有一个公共点;时,抛物线与x 轴没有公共点. 24.2【解析】【分析】根据根与系数的关系确定和,然后代入计算即可.【详解】解:∵∴=-3, =-5∴-3-(-5)=2故答案为2.【点睛】本题主要考查了根与系数的关系,牢记对于(a≠解析:2【解析】【分析】根据根与系数的关系确定12x x +和12x x •,然后代入计算即可.【详解】解:∵2350x x +-=∴12x x +=-3, 12x x •=-5∴1212x x x x +-•=-3-(-5)=2故答案为2.【点睛】本题主要考查了根与系数的关系,牢记对于20ax bx c ++=(a≠0),则有:12b x x a +=-,12c x x a•=是解答本题的关键. 25.【解析】【分析】设BE =x ,CF =y ,则EC =5﹣x ,构建二次函数了,利用二次函数的性质求出CF 的最大值,求出DF 的最小值即可解决问题.【详解】解:设BE =x ,CF =y ,则EC =5﹣x ,解析:254【分析】设BE=x,CF=y,则EC=5﹣x,构建二次函数了,利用二次函数的性质求出CF的最大值,求出DF的最小值即可解决问题.【详解】解:设BE=x,CF=y,则EC=5﹣x,∵AE⊥EF,∴∠AEF=90°,∴∠AEB+∠FEC=90°,而∠AEB+∠BAE=90°,∴∠BAE=∠FEC,∴Rt△ABE∽Rt△ECF,∴ABEC=BECF,∴55x-=xy,∴y=﹣15x2+x=﹣15(x﹣52)2+54,∵﹣15<0,∴x=52时,y有最大值54,∴CF的最大值为54,∴DF的最小值为5﹣54=154,∴AF的最小值=22AD DF+=221554⎛⎫+ ⎪⎝⎭=254,故答案为254.【点睛】本题考查了几何动点问题与二次函数、相似三角形的综合问题,综合性较强,解题的关键是找出相似三角形,列出比例关系,转化为二次函数,从而求出AF的最小值.【解析】【分析】直接利用弧长公式计算即可求解.【详解】l ==4π,故答案为:4π.【点睛】本题考查弧长计算公式,解题的关键是掌握:弧长l =(n 是弧所对应的圆心角度数)解析:4π【解析】【分析】直接利用弧长公式计算即可求解.【详解】l =6012180π⨯=4π, 故答案为:4π.【点睛】 本题考查弧长计算公式,解题的关键是掌握:弧长l =180n r π(n 是弧所对应的圆心角度数) 27.2+【解析】【分析】设线段AB =x ,根据黄金分割点的定义可知AD =AB ,BC =AB ,再根据CD =AB ﹣AD ﹣BC 可列关于x 的方程,解方程即可【详解】∵线段AB =x ,点C 、D 是AB 黄金分割点解析:【解析】【分析】设线段AB =x ,根据黄金分割点的定义可知AD =352AB ,BC =352AB ,再根据CD=AB ﹣AD ﹣BC 可列关于x 的方程,解方程即可【详解】∵线段AB =x ,点C 、D 是AB 黄金分割点,∴较小线段AD =BC =32x -,则CD =AB ﹣AD ﹣BC =x ﹣x =1,解得:x =故答案为:【点睛】 本题考查黄金分割的知识,解题的关键是掌握黄金分割中,较短的线段=原线段的352倍.28.2【解析】【分析】根据根的判别式,令,可得,解方程求出b =﹣2a ,再把b 代入原方程,根据韦达定理:即可.【详解】当关于x 的一元二次方程ax2+bx+5a =0有两个正的相等的实数根时, ,即解析:【解析】【分析】根据根的判别式,令=0∆,可得2220=0b a -,解方程求出b =﹣,再把b 代入原方程,根据韦达定理:12b x x a+=-即可. 【详解】当关于x 的一元二次方程ax 2+bx +5a =0有两个正的相等的实数根时, =0∆,即2220=0b a -,解得b =﹣a 或b =(舍去),原方程可化为ax 2﹣+5a =0,则这两个相等实数根的和为故答案为:【点睛】本题考查一元二次方程根的判别式和韦达定理,解题的关键是熟练掌握根的判别式和韦达定理。

九年级(上)第二次月考数学试卷(含答案)

九年级(上)第二次月考数学试卷(含答案)

九年级(上)第二次月考数学试卷(含答案) 一、选择题1.下列关于x 的一元二次方程,有两个不相等的实数根的方程的是( )A .x 2+1=0B .x 2+2x +1=0C .x 2+2x +3=0D .x 2+2x -3=0 2.如图,CD 为O 的直径,弦AB CD ⊥于点E ,2DE =,8AB =,则O 的半径为( )A .5B .8C .3D .103.已知二次函数y =ax 2+bx +c (a <0<b )的图像与x 轴只有一个交点,下列结论:①x <0时,y 随x 增大而增大;②a +b +c <0;③关于x 的方程ax 2+bx +c +2=0有两个不相等的实数根.其中所有正确结论的序号是( )A .①②B .②③C .①③D .①②③4.如图,OA 、OB 是⊙O 的半径,C 是⊙O 上一点.若∠OAC =16°,∠OBC =54°,则∠AOB 的大小是( )A .70°B .72°C .74°D .76° 5.在Rt △ABC 中,AB =6,BC =8,则这个三角形的内切圆的半径是( )A .5B .2C .5或2D .2或7-1 6.在Rt ABC ∆中,90C ∠=︒,3AC =,=1BC ,则sin A 的值为( )A .10B .310C .13D .10 7.如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,下列说法中不正确...的是( )A .12DE BC =B .AD AE AB AC = C .△ADE ∽△ABCD .:1:2ADE ABC S S =8.下列说法中,不正确的是( ) A .圆既是轴对称图形又是中心对称图形 B .圆有无数条对称轴C .圆的每一条直径都是它的对称轴D .圆的对称中心是它的圆心 9.如图,已知等边△ABC 的边长为4,以AB 为直径的圆交BC 于点F ,CF 为半径作圆,D 是⊙C 上一动点,E 是BD 的中点,当AE 最大时,BD 的长为( )A .23B .25C .4D .610.某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x ,则根据题意可列方程为( ) A .144(1﹣x )2=100 B .100(1﹣x )2=144 C .144(1+x )2=100 D .100(1+x )2=14411.如图,分别以等边三角形ABC 的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为( )A .3π+B .3π-C .23π-D .223π-12.如图,如果从半径为6cm 的圆形纸片剪去13圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的底面半径为( )A .2cmB .4cmC .6cmD .8cm13.如图所示的网格是正方形网格,则sin A 的值为( )A .12B .22C .35D .45 14.已知抛物线与二次函数23y x =-的图像相同,开口方向相同,且顶点坐标为(1,3)-,它对应的函数表达式为( )A .23(1)3y x =--+B .23(1)3y x =-+C .23(1)3y x =+-D .23(1)3y x =-++ 15.二次函数y=ax 2+bx+c (a≠0)的图象如图,给出下列四个结论:①4ac ﹣b 2<0;②4a+c <2b ;③3b+2c <0;④m (am+b )+b <a (m≠﹣1),其中正确结论的个数是( )A .4个B .3个C .2个D .1个二、填空题16.如图,将△ABC 绕点C 顺时针旋转90°得到△EDC ,若点A 、D 、E 在同一条直线上,∠ACD =70°,则∠EDC 的度数是_____.17.飞机着陆后滑行的距离s (单位:m )关于滑行的时间t (单位:s )的函数解析式是2200.5s t t =-,飞机着陆后滑行______m 才能停下来.18.若一个圆锥的主视图是腰长为5,底边长为6的等腰三角形,则该圆锥的侧面积是____________.19.如图,四边形ABCD 内接于⊙O ,AD ∥BC ,直线EF 是⊙O 的切线,B 是切点.若∠C =80°,∠ADB =54°,则∠CBF =____°.20.关于x 的方程(m ﹣2)x 2﹣2x +1=0是一元二次方程,则m 满足的条件是_____.21.把边长分别为1和2的两个正方形按如图所示的方式放置,则图中阴影部分的面积是_____.22.已知点11(,)A x y ,22(,)B x y 在二次函数2(1)1y x =-+的图象上,若121x x >>,则1y __________2y .(填“>”“<”“=”)23.在△ABC 中,∠C =90°,cosA =35,则tanA 等于 . 24.已知扇形的圆心角为90°,弧长等于一个半径为5cm 的圆的周长,用这个扇形恰好围成一个圆锥的侧面(接缝忽略不计).则该圆锥的高为__________cm .25.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径2r cm =,扇形的圆心角120θ=,则该圆锥的母线长l 为___cm .26.已知一个圆锥底面圆的半径为6cm ,高为8cm ,则圆锥的侧面积为_____cm 2.(结果保留π)27.如图,五边形 ABCDE 是⊙O 的内接正五边形, AF 是⊙O 的直径,则∠ BDF 的度数是___________°.28.“上升数”是一个数中右边数字比左边数字大的自然数(如:34,568,2469等).任取一个两位数,是“上升数”的概率是_________ .29.在某市中考体考前,某初三学生对自己某次实心球训练的录像进行分析,发现实心球飞行高度y (米)与水平距离x (米)之间的关系为21251233y x x =-++,由此可知该生此次实心球训练的成绩为_______米.30.若二次函数24y x x =-的图像在x 轴下方的部分沿x 轴翻折到x 轴上方,图像的其余部分保持不变,翻折后的图像与原图像x 轴上方的部分组成一个形如“W ”的新图像,若直线y =-2x +b 与该新图像有两个交点,则实数b 的取值范围是__________ 三、解答题31.在如图所示的方格纸中,每个小方格都是边长为1个单位长度的正方形,△ABC 的顶点及点O 都在格点上(每个小方格的顶点叫做格点).(1)以点O 为位似中心,在网格区域内画出△A ′B ′C ′,使△A ′B ′C ′与△ABC 位似(A ′、B ′、C ′分别为A 、B 、C 的对应点),且位似比为2:1;(2)△A ′B ′C ′的面积为 个平方单位;(3)若网格中有一格点D ′(异于点C ′),且△A ′B ′D ′的面积等于△A ′B ′C ′的面积,请在图中标出所有符合条件的点D ′.(如果这样的点D ′不止一个,请用D 1′、D 2′、…、D n ′标出)32.如图,在正方形ABCD 中,AB =4,动点P 从点A 出发,以每秒2个单位的速度,沿线段AB 方向匀速运动,到达点B 停止.连接DP 交AC 于点E ,以DP 为直径作⊙O 交AC 于点F ,连接DF 、PF .(1)求证:△DPF 为等腰直角三角形;(2)若点P 的运动时间t 秒.①当t 为何值时,点E 恰好为AC 的一个三等分点;②将△EFP 沿PF 翻折,得到△QFP ,当点Q 恰好落在BC 上时,求t 的值.33.如果一个直角三角形的两条直角边的长相差2cm ,面积是242cm ,那么这个三角形的两条直角边分别是多少?34.在2017年“KFC ”篮球赛进校园活动中,某校甲、乙两队进行决赛,比赛规则规定:两队之间进行3局比赛,3局比赛必须全部打完,只要赢满2局的队为获胜队,假如甲、乙两队之间每局比赛输赢的机会相同,且乙队已经赢得了第1局比赛,那么甲队获胜的概率是多少?(请用“画树状图”或“列表”等方法写出分析过程)35.如图,在直角三角形ABC中,∠C=90°,点D是AC边上一点,过点D作DE⊥BD,交AB于点E,若BD=10,tan∠ABD=12,cos∠DBC=45,求DC和AB的长.四、压轴题36.如图, AB是⊙O的直径,点D、E在⊙O上,连接AE、ED、DA,连接BD并延长至点C,使得DAC AED∠=∠.(1)求证: AC是⊙O的切线;(2)若点E是BC的中点, AE与BC交于点F,①求证: CA CF=;②若⊙O的半径为3,BF=2,求AC的长.37.如图,在Rt△ABC中,∠A=90°,0是BC边上一点,以O为圆心的半圆与AB边相切于点D,与BC边交于点E、F,连接OD,已知BD=3,tan∠BOD=34,CF=83.(1)求⊙O的半径OD;(2)求证:AC是⊙O的切线;(3)求图中两阴影部分面积的和.38.如图,在正方形ABCD中,P是边BC上的一动点(不与点B,C重合),点B关于直线AP的对称点为E,连接AE,连接DE并延长交射线AP于点F,连接BF(1)若BAP α∠=,直接写出ADF ∠的大小(用含α的式子表示).(2)求证:BF DF ⊥.(3)连接CF ,用等式表示线段AF ,BF ,CF 之间的数量关系,并证明.39.如图,已知在矩形ABCD 中,AB =2,BC =23.点P ,Q 分别是BC ,AD 边上的一个动点,连结BQ ,以P 为圆心,PB 长为半径的⊙P 交线段BQ 于点E ,连结PD . (1)若DQ =3且四边形BPDQ 是平行四边形时,求出⊙P 的弦BE 的长;(2)在点P ,Q 运动的过程中,当四边形BPDQ 是菱形时,求出⊙P 的弦BE 的长,并计算此时菱形与圆重叠部分的面积.40.如图,抛物线y =﹣(x +1)(x ﹣3)与x 轴分别交于点A 、B (点A 在B 的右侧),与y 轴交于点C ,⊙P 是△ABC 的外接圆.(1)直接写出点A 、B 、C 的坐标及抛物线的对称轴;(2)求⊙P 的半径;(3)点D 在抛物线的对称轴上,且∠BDC >90°,求点D 纵坐标的取值范围;(4)E 是线段CO 上的一个动点,将线段AE 绕点A 逆时针旋转45°得线段AF ,求线段OF 的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】要判断所给方程是有两个不相等的实数根,只要找出方程的判别式,根据判别式的正负情况即可作出判断.有两个不相等的实数根的方程,即判别式的值大于0的一元二次方程.【详解】A、△=0-4×1×1=-4<0,没有实数根;B、△=22-4×1×1=0,有两个相等的实数根;C、△=22-4×1×3=-8<0,没有实数根;D、△=22-4×1×(-3)=16>0,有两个不相等的实数根,故选D.【点睛】本题考查了根的判别式,注意掌握一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.2.A解析:A【解析】【分析】作辅助线,连接OA,根据垂径定理得出AE=BE=4,设圆的半径为r,再利用勾股定理求解即可.【详解】解:如图,连接OA,设圆的半径为r,则OE=r-2,,∵弦AB CD∴AE=BE=4,由勾股定理得出:()22242r r =+-,解得:r=5,故答案为:A.【点睛】本题考查的知识点主要是垂径定理、勾股定理及其应用问题;解题的关键是作辅助线,灵活运用勾股定理等几何知识点来分析、判断或解答. 3.C解析:C【解析】【分析】①根据对称轴及增减性进行判断;②根据函数在x=1处的函数值判断;③利用抛物线与直线y=-2有两个交点进行判断.【详解】解:∵a <0<b ,∴二次函数的对称轴为x=2b a ->0,在y 轴右边,且开口向下, ∴x <0时,y 随x 增大而增大;故①正确;根据二次函数的系数,可得图像大致如下,由于对称轴x=2b a-的值未知, ∴当x=1时,y=a+b+c 的值无法判断,故②不正确;由图像可知,y==ax 2+bx +c ≤0,∴二次函数与直线y=-2有两个不同的交点,∴方程ax 2+bx +c =-2有两个不相等的实数根.故③正确.故选C.【点睛】本题考查了二次函数的图像的性质,二次函数的图像与系数的关系,二次函数与方程的关系,借助图像解决问题是关键.4.D解析:D【解析】【分析】连接OC,根据等腰三角形的性质得到∠OAC=∠OCA=16°;∠OBC=∠OCB=54°求出∠ACB 的度数,然后根据同圆中同弧所对的圆周角等于圆心角的一半求解.【详解】解:连接OC∵OA=OC,OB=OC∴∠OAC=∠OCA=16°;∠OBC=∠OCB=54°∴∠ACB=∠OCB-∠OCA=54°-16°=38°∴∠AOB=2∠ACB=76°故选:D【点睛】本题考查的是等腰三角形的性质及同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半,掌握相关性质定理是本题的解题关键.5.D解析:D【解析】【分析】分AC为斜边和BC为斜边两种情况讨论.根据切线定理得过切点的半径垂直于三角形各边,利用面积法列式求半径长.【详解】第一情况:当AC为斜边时,如图,设⊙O是Rt△ABC的内切圆,切点分别为D,E,F,连接OC,OA,OB,∴OD⊥AC, OE⊥BC,OF⊥AB,且OD=OE=OF=r,在Rt△ABC中,AB=6,BC=8,由勾股定理得,2210=+= ,AC AB BCS S S S ,∵=++ABC AOC BOC AOB∴11112222AB BC AB OF BC OE AC OD , ∴11116868102222r r r , ∴r=2.第二情况:当BC 为斜边时,如图,设⊙O 是Rt △ABC 的内切圆,切点分别为D,E,F,连接OC,OA,OB,∴OD ⊥BC, OE ⊥AC,OF ⊥AB,且OD=OE=OF=r,在Rt △ABC 中,AB =6,BC =8,由勾股定理得,2227ACBC AB , ∵=++ABC AOC BOC AOB SS S S , ∴11112222AB AC AB OF BC OD AC OE , ∴111162768272222r r r , ∴r=71- .故选:D.【点睛】本题考查了三角形内切圆半径的求法及勾股定理,依据圆的切线性质是解答此题的关键.等面积法是求高度等线段长的常用手段.6.A解析:A【解析】【分析】先根据勾股定理求出斜边的长,再根据正弦的定义解答即可.【详解】解:在Rt ABC ∆中,∵90C ∠=︒,3AC =,=1BC ,∴AB=∴sin10BCAAB===.故选:A.【点睛】本题考查了勾股定理和正弦的定义,属于基本题型,熟练掌握基本知识是解题关键. 7.D解析:D【解析】∵在△ABC中,点D、E分别是AB、AC的中点,∴DE∥BC,DE=12BC,∴△ADE∽△ABC,AD AEAB AC=,∴21()4ADEABCS DES BC==.由此可知:A、B、C三个选项中的结论正确,D选项中结论错误.故选D.8.C解析:C【解析】【分析】圆有无数条对称轴,但圆的对称轴是直线,故C圆的每一条直线都是它的对称轴的说法是错误的【详解】本题不正确的选C,理由:圆有无数条对称轴,其对称轴都是直线,故任何一条直径都是它的对称轴的说法是错误的,正确的说法应该是圆有无数条对称轴,任何一条直径所在的直线都是它的对称轴故选C【点睛】此题主要考察对称轴图形和中心对称图形,难度不大9.B解析:B【解析】【分析】点E在以F为圆心的圆上运到,要使AE最大,则AE过F,根据等腰三角形的性质和圆周角定理证得F是BC的中点,从而得到EF为△BCD的中位线,根据平行线的性质证得CD⊥BC,根据勾股定理即可求得结论.【详解】解:点D在⊙C上运动时,点E在以F为圆心的圆上运到,要使AE最大,则AE过F,连接CD,∵△ABC是等边三角形,AB是直径,∴EF⊥BC,∴F是BC的中点,∵E为BD的中点,∴EF为△BCD的中位线,∴CD∥EF,∴CD⊥BC,BC=4,CD=2,故2216425BC CD+=+=故选:B.【点睛】本题主要考查等边三角形的性质,圆周角定理,三角形中位线的性质以及勾股定理,熟练并正确的作出辅助圆是解题的关键.10.D解析:D【解析】试题分析:2013年的产量=2011年的产量×(1+年平均增长率)2,把相关数值代入即可.解:2012年的产量为100(1+x),2013年的产量为100(1+x)(1+x)=100(1+x)2,即所列的方程为100(1+x)2=144,故选D.点评:考查列一元二次方程;得到2013年产量的等量关系是解决本题的关键.11.D解析:D【解析】【分析】莱洛三角形的面积是由三块相同的扇形叠加而成,其面积=三块扇形的面积相加,再减去两个等边三角形的面积,分别求出即可.【详解】过A作AD⊥BC于D,∵△ABC 是等边三角形,∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°,∵AD ⊥BC ,∴BD=CD=1,33∴△ABC 的面积为12BC•AD=1232⨯3 S 扇形BAC =2602360π⨯=23π, ∴莱洛三角形的面积S=3×23π﹣3﹣3, 故选D .【点睛】本题考查了等边三角形的性质和扇形的面积计算,能根据图形得出莱洛三角形的面积=三块扇形的面积相加、再减去两个等边三角形的面积是解此题的关键. 12.B解析:B【解析】【分析】因为圆锥的高,底面半径,母线构成直角三角形,首先求得留下的扇形的弧长,利用勾股定理求圆锥的高即可.【详解】解:∵从半径为6cm 的圆形纸片剪去13圆周的一个扇形, ∴剩下的扇形的角度=360°×23=240°, ∴留下的扇形的弧长=24061880ππ⨯=, ∴圆锥的底面半径248r ππ==cm ; 故选:B.【点睛】此题主要考查了主要考查了圆锥的性质,要知道(1)圆锥的高,底面半径,母线构成直角三角形,(2)此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长. 13.C【解析】 【分析】 设正方形网格中的小正方形的边长为1,连接格点BC ,AD ,过C 作CE ⊥AB 于E ,解直角三角形即可得到结论.【详解】解:设正方形网格中的小正方形的边长为1,连接格点BC ,AD ,过C 作CE ⊥AB 于E ,∵224225AC BC =+==,BC =22,AD =2232AC CD +=, ∵S △ABC =12AB •CE =12BC •AD , ∴CE =22326525BC AD AB ⨯==, ∴6535525CE A sin CAB C ∠===, 故选:C .【点睛】本题考查了解直角三角形的问题,掌握解直角三角形的方法以及锐角三角函数的定义是解题的关键.14.D解析:D【解析】【分析】先根据抛物线与二次函数23y x =-的图像相同,开口方向相同,确定出二次项系数a 的值,然后再通过顶点坐标即可得出抛物线的表达式.【详解】∵抛物线与二次函数23y x =-的图像相同,开口方向相同, 3a ∴=-∵顶点坐标为(1,3)-∴抛物线的表达式为23(1)3y x =-++故选:D .本题主要考查抛物线的顶点式,掌握二次函数表达式中的顶点式是解题的关键.15.B解析:B【解析】【分析】【详解】解:∵抛物线和x轴有两个交点,∴b2﹣4ac>0,∴4ac﹣b2<0,∴①正确;∵对称轴是直线x﹣1,和x轴的一个交点在点(0,0)和点(1,0)之间,∴抛物线和x轴的另一个交点在(﹣3,0)和(﹣2,0)之间,∴把(﹣2,0)代入抛物线得:y=4a﹣2b+c>0,∴4a+c>2b,∴②错误;∵把(1,0)代入抛物线得:y=a+b+c<0,∴2a+2b+2c<0,∵b=2a,∴3b,2c<0,∴③正确;∵抛物线的对称轴是直线x=﹣1,∴y=a﹣b+c的值最大,即把(m,0)(m≠0)代入得:y=am2+bm+c<a﹣b+c,∴am2+bm+b<a,即m(am+b)+b<a,∴④正确;即正确的有3个,故选B.考点:二次函数图象与系数的关系二、填空题16.115°【解析】【分析】根据∠EDC=180°﹣∠E﹣∠DCE,想办法求出∠E,∠DCE即可.【详解】由题意可知:CA=CE,∠ACE=90°,∴∠E=∠CAE=45°,∵∠ACD=7解析:115°【解析】根据∠EDC =180°﹣∠E ﹣∠DCE ,想办法求出∠E ,∠DCE 即可.【详解】由题意可知:CA =CE ,∠ACE =90°,∴∠E =∠CAE =45°,∵∠ACD =70°,∴∠DCE =20°,∴∠EDC =180°﹣∠E ﹣∠DCE =180°﹣45°﹣20°=115°,故答案为115°.【点睛】本题考查了旋转的性质,等腰直角三角形的性质,三角形的内角和定理等知识,解题的关键是灵活运用所学知识,问题,属于中考常考题型.17.200【解析】【分析】要求飞机从滑行到停止的路程就,即求出函数的最大值即可.【详解】解:所以当t=20时,该函数有最大值200.故答案为200.【点睛】本题主要考查了二次函数的应用解析:200【解析】【分析】要求飞机从滑行到停止的路程就,即求出函数的最大值即可.【详解】解:()()222200.50.5404002000.520200s t t t t t =-=--++=--+ 所以当t=20时,该函数有最大值200.故答案为200.本题主要考查了二次函数的应用,掌握二次函数求最值的方法,即公式法或配方法是解题关键.18.15π.【解析】【分析】根据圆锥的主视图得到圆锥的底面圆的半径为3,母线长为5,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解析:15π.【解析】【分析】根据圆锥的主视图得到圆锥的底面圆的半径为3,母线长为5,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【详解】解:根据题意得圆锥的底面圆的半径为3,母线长为5,所以这个圆锥的侧面积=12×5×2π×3=15π.【点睛】本题考查圆锥侧面积的计算,掌握公式,准确计算是本题的解题关键.19.46°【解析】【分析】连接OB,OC,根据切线的性质可知∠OBF=90°,根据AD∥BC,可得∠DBC=∠AD B=54°,然后利用三角形内角和求得∠BDC=46°,然后利用同弧所对的圆心角是圆解析:46°【解析】【分析】连接OB,OC,根据切线的性质可知∠OBF=90°,根据AD∥BC,可得∠DBC=∠ADB=54°,然后利用三角形内角和求得∠BDC=46°,然后利用同弧所对的圆心角是圆周角的2倍,求得∠BOC=92°,然后利用等腰三角形的性质求得∠OBC的度数,从而使问题得解.【详解】解:连接OB,OC,∵直线EF是⊙O的切线,B是切点∴∠OBF=90°∵AD∥BC∴∠DBC=∠ADB=54°又∵∠D CB=80°∴∠BDC=180°-∠DBC -∠D C B=46°∴∠BOC=2∠BDC =92°又∵OB=OC∴∠OBC=1(18092)44 2-=∴∠CBF=∠OBF-∠OBC=90-44=46°故答案为:46°【点睛】本题考查切线的性质,三角形内角和定理,等腰三角形的性质,根据题意添加辅助线正确推理论证是本题的解题关键.20.【解析】【分析】根据一元二次方程的定义ax2+bx+c=0(a≠0),列含m的不等式求解即可.【详解】解:∵关于x的方程(m﹣2)x2﹣2x+1=0是一元二次方程,∴m-2≠0,∴m≠解析:2m≠【解析】【分析】根据一元二次方程的定义ax2+bx+c=0(a≠0),列含m的不等式求解即可.【详解】解:∵关于x的方程(m﹣2)x2﹣2x+1=0是一元二次方程,∴m-2≠0,∴m≠2.故答案为:m≠2.【点睛】本题考查了一元二次方程的概念,满足二次项系数不为0是解答此题的关键.21.【解析】【分析】由正方形的性质易证△ABC∽△FEC,可设BC=x,只需求出BC即可求出图中阴影部分的面积.【详解】如图所示:设BC=x,则CE=1﹣x,∵AB∥EF,∴△ABC∽△解析:1 6【解析】【分析】由正方形的性质易证△ABC∽△FEC,可设BC=x,只需求出BC即可求出图中阴影部分的面积.【详解】如图所示:设BC=x,则CE=1﹣x,∵AB∥EF,∴△ABC∽△FEC∴ABEF=BCCE,∴12=x1x解得x=13,∴阴影部分面积为:S△ABC=12×13×1=16,故答案为:16.【点睛】本题主要考查正方形的性质及三角形的相似,本题要充分利用正方形的特殊性质.利用比例的性质,直角三角形的性质等知识点的理解即可解答.22.【解析】抛物线的对称轴为:x=1,∴当x>1时,y 随x 的增大而增大.∴若x1>x2>1 时,y1>y2 .故答案为>解析:12y y >【解析】抛物线()2y x 11=-+的对称轴为:x=1,∴当x>1时,y 随x 的增大而增大.∴若x 1>x 2>1 时,y 1>y 2 .故答案为> 23..【解析】试题分析:∵在△ABC 中,∠C =90°,cosA =,∴.∴可设.∴根据勾股定理可得.∴.考点:1.锐角三角函数定义;2.勾股定理. 解析:43. 【解析】 试题分析:∵在△ABC 中,∠C =90°,cosA =35,∴35AC AB =. ∴可设35AC k AB k ==,.∴根据勾股定理可得4BC k =. ∴44tanA 33BC k AC k ===. 考点:1.锐角三角函数定义;2.勾股定理.24.【解析】【分析】利用弧长公式求该扇形的半径,圆锥的轴截面为等腰三角形,其中底边为10,腰为母线即扇形的半径,根据勾股定理求圆锥的高.【详解】解:设扇形半径为R ,根据弧长公式得,∴R解析:【解析】【分析】利用弧长公式求该扇形的半径,圆锥的轴截面为等腰三角形,其中底边为10,腰为母线即扇形的半径,根据勾股定理求圆锥的高.【详解】解:设扇形半径为R ,根据弧长公式得, 90=25180R∴R=20, 225515 .故答案为:【点睛】 本题考查弧长公式,及圆锥的高与母线、底面半径之间的关系,底面周长等于扇形的弧长这个等量关系和勾股定理是解答此题的关键.25.【解析】【分析】易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.【详解】圆锥的底面周长cm ,设圆锥的母线长为,则: ,解得,故答案为.【点睛】本解析:【解析】【分析】易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.【详解】圆锥的底面周长224ππ=⨯=cm ,设圆锥的母线长为R ,则:1204180R ππ⨯=, 解得6R =,故答案为6.【点睛】本题考查了圆锥的计算,用到的知识点为:圆锥的侧面展开图的弧长等于底面周长;弧长公式为: 180n r π. 26.60π【解析】试题分析:先根据勾股定理求得圆锥的母线长,再根据圆锥的侧面积公式求解即可.由题意得圆锥的母线长∴圆锥的侧面积.考点:勾股定理,圆锥的侧面积点评:解题的关键是熟练掌握圆锥的侧解析:60π【解析】试题分析:先根据勾股定理求得圆锥的母线长,再根据圆锥的侧面积公式求解即可. 由题意得圆锥的母线长∴圆锥的侧面积. 考点:勾股定理,圆锥的侧面积点评:解题的关键是熟练掌握圆锥的侧面积公式:圆锥的侧面积底面半径×母线. 27.54【解析】【分析】连接AD ,根据圆周角定理得到∠ADF=90°,根据五边形的内角和得到∠ABC=∠C=108°,求得∠ABD=72°,由圆周角定理得到∠F=∠ABD=72°,求得∠FAD=1解析:54【解析】【分析】连接AD ,根据圆周角定理得到∠ADF=90°,根据五边形的内角和得到∠ABC=∠C=108°,求得∠ABD=72°,由圆周角定理得到∠F=∠ABD=72°,求得∠FAD=18°,于是得到结论.【详解】连接AD ,∵AF 是⊙O 的直径,∴∠ADF=90°,∵五边形ABCDE是⊙O的内接正五边形,∴∠ABC=∠C=108°,∴∠ABD=72°,∴∠F=∠ABD=72°,∴∠FAD=18°,∴∠CDF=∠DAF=18°,∴∠BDF=36°+18°=54°,故答案为54.【点睛】本题考查正多边形与圆,圆周角定理等知识,解题的关键灵活运用所学知识解决问题.28.4【解析】【分析】先列举出所有上升数,再根据概率公式解答即可.【详解】解:两位数一共有99-10+1=90个,上升数为:共8+7+6+5+4+3+2+1=36个.概率为36÷90=解析:4【解析】【分析】先列举出所有上升数,再根据概率公式解答即可.【详解】解:两位数一共有99-10+1=90个,上升数为:共8+7+6+5+4+3+2+1=36个.概率为36÷90=0.4.故答案为:0.4.29.10【解析】【分析】根据铅球落地时,高度,把实际问题可理解为当时,求x 的值即可.【详解】解:当时,,解得,(舍去),.故答案为10.【点睛】本题考查了二次函数的实际应用,解析式中自解析:10【解析】【分析】根据铅球落地时,高度0y =,把实际问题可理解为当0y =时,求x 的值即可.【详解】解:当0y =时,212501233y x x =-++=, 解得,2x =-(舍去),10x =.故答案为10.【点睛】本题考查了二次函数的实际应用,解析式中自变量与函数表达的实际意义;结合题意,选取函数或自变量的特殊值,列出方程求解是解题关键.30.【解析】【分析】当直线y=-2x+b 处于直线m 的位置时,此时直线和新图象只有一个交点A ,当直线处于直线n 的位置时,此时直线与新图象有三个交点,当直线y=-2x+b 处于直线m 、n 之间时,与该新图解析:18b -<<【解析】【分析】当直线y=-2x+b 处于直线m 的位置时,此时直线和新图象只有一个交点A ,当直线处于直线n 的位置时,此时直线与新图象有三个交点,当直线y=-2x+b 处于直线m 、n 之间时,与该新图象有两个公共点,即可求解.【详解】解:设y=x 2-4x 与x 轴的另外一个交点为B ,令y=0,则x=0或4,过点B (4,0), 由函数的对称轴,二次函数y=x 2-4x 翻折后的表达式为:y=-x 2+4x ,当直线y=-2x+b处于直线m的位置时,此时直线和新图象只有一个交点A,当直线处于直线n的位置时,此时直线n过点B(4,0)与新图象有三个交点,当直线y=-2x+b处于直线m、n之间时,与该新图象有两个公共点,当直线处于直线m的位置:联立y=-2x+b与y=x2-4x并整理:x2-2x-b=0,则△=4+4b=0,解得:b=-1;当直线过点B时,将点B的坐标代入直线表达式得:0=-8+b,解得:b=8,故-1<b<8;故答案为:-1<b<8.【点睛】本题考查的是二次函数综合运用,涉及到函数与x轴交点、几何变换、一次函数基本知识等内容,本题的关键是确定点A、B两个临界点,进而求解.三、解答题31.(1)详见解析;(2)10;(3)详见解析【解析】【分析】(1)依据点O为位似中心,且位似比为2:1,即可得到△A′B′C′;(2)依据割补法进行计算,即可得出△A′B′C′的面积;(3)依据△A′B′D′的面积等于△A′B′C′的面积,即可得到所有符合条件的点D′.【详解】解:(1)如图所示,△A′B′C′即为所求;(2)△A′B′C′的面积为4×6﹣12×2×4﹣12×2×4﹣12×2×6=24﹣4﹣4﹣6=10;故答案为:10;(3)如图所示,所有符合条件的点D′有5个.【点睛】此题主要考查位似图形的作图,解题的关键是熟知位似图形的性质及网格的特点. 32.(1)详见解析;(2)①1;51.【解析】【分析】(1)要证明三角形△DPF为等腰直角三角形,只要证明∠DFP=90°,∠DPF=∠PDF=45°即可,根据直径所对的圆周角是90°和同弧所对的圆周角相等,可以证明∠DFP=90°,∠DPF=∠PDF=45°,从而可以证明结论成立;(2)①根据题意,可知分两种情况,然后利用分类讨论的方法,分别计算出相应的t的值即可,注意点P从A出发到B停止,t≤4÷2=2;②根据题意,画出相应的图形,然后利用三角形相似,勾股定理,即可求得t的值.【详解】证明:(1)∵四边形ABCD是正方形,AC是对角线,∴∠DAC=45°,∵在⊙O中,DF所对的圆周角是∠DAF和∠DPF,∴∠DAF=∠DPF,∴∠DPF=45°,又∵DP是⊙O的直径,∴∠DFP=90°,∴∠FDP=∠DPF=45°,∴△DFP是等腰直角三角形;(2)①当AE:EC=1:2时,∵AB∥CD,∴∠DCE=∠PAE,∠CDE=∠APE,∴△DCE∽△PAE,∴DC CE=,PA AE∴42=,21t解得,t=1;当AE:EC=2:1时,∵AB ∥CD ,∴∠DCE =∠PAE ,∠CDE =∠APE ,∴△DCE ∽△PAE , ∴DC CE PA AE =, ∴4122t =, 解得,t =4,∵点P 从点A 到B ,t 的最大值是4÷2=2,∴当t =4时不合题意,舍去;由上可得,当t 为1时,点E 恰好为AC 的一个三等分点;②如右图所示,∵∠DPF =90°,∠DPF =∠OPF ,∴∠OPF =90°,∴∠DPA +∠QPB =90°,∵∠DPA +∠PDA =90°,∴∠PDA =∠QPB ,∵点Q 落在BC 上,∴∠DAP =∠B =90°,∴△DAP ∽△PBQ , ∴DA DP PB PQ=, ∵DA =AB =4,AP =2t ,∠DAP =90°,∴DP=PB =4﹣2t ,设PQ =a ,则PE =a ,DE =DP ﹣a =a ,∵△AEP ∽△CED , ∴AP PE CD DE=,即24t = 解得,a, ∴PQ,∴442t =-,。

江苏省南通市2023-2024学年九年级上学期第二次月考数学试卷(含答案)

江苏省南通市2023-2024学年九年级上学期第二次月考数学试卷(含答案)

江苏省南通市2023-2024学年九年级上学期第二次月考数学试卷一、选择题(本大题共10小题,每小题3分,共计30分,在每小题给出的四个选项中恰有一项是符合题目要求的)1.下列各点中,在反比例函数的图象上的是( )4y x =A. B. C. D.(14)--,(14)-,(2)-,2(2),-22.将抛物线向右平移2 个单位长度,再向下平移5 个单位长度,平移后的抛物线的2y x =解析式为( )A. B. C. D.2(2)5y x =+-2(2)5y x =++2(2)5y x =--2(2)5y x =-+3.如图,O 的半径为10,弦AB=16,点 M 是弦 AB 上的动点且点 M 不与点A 、B 重⊙合,则OM 的长不可能是( )A.5B.6C.8D.94.如图,等腰直角三角板ABC 的斜边AB 与量角器的直径重合,点D 是量角器上 120° 刻度线的外端点,连接CD 交AB 于点E ,则∠CEB 的度数是( )A.100°B.105°C.110°D.120°5.正方形网格中,如图放置,则=( )AOB ∠sin AOB ∠C. D.1226.如图,直线,直线m 、n 分别与直线a ,b ,c 相交于点A ,B ,C 和点D ,E ,F ,a ∥b ∥c 若AB =2,AC =5,DE =3,则EF =( )A.2.5B.4C.4.5D.7.57.已知点,,都在反比例函数的图象上,则,A (−4,y 1)B (−2,y 2)C (3,y 3)(0)ky k x =>y 1,的大小关系为( )y 2y 3 A. B. C. D.y 3<y 2<y 1y 2<y 3<y 1y 3<y 1<y 2y 2<y 1<y 38.如图,点D 在△ABC 的边AC 上,添加一个条件,不能判断△ABC 与△BDC 相似的是( )A.∠CBD =∠AB.C.∠CBA =∠C DBD.BC CD AC AB =BC CD AC BC=9.如图,∠B 的平分线 BE 与 BC 边上的中线 AD 互相垂直,并且 BE =AD =4,则BC 值为()A.7B.C. 6D.10.如图,菱形OABC 的一边OA 在x 轴的负半轴上,O 是坐标原点,A 点坐标为,50-(,)对角线 AC 和 OB 相交于点D ,且AC OB =40.若反比例函数的图象经过 ∙(0)k y x x =<点D ,并与BC 的延长线交于点E ,则值等于()CDE S ∆A. 2 B.1.5 C.1 D.0.5二、(本大题共8小题,第11~12每小题3分,13~18每小题4分,共30分)11.抛物线y =2(x +1)2 +3的顶点坐标是.12.在Rt △ABC 中,∠C =90°,AC =5,BC =4,则tanA=.13.正八边形的中心角是 度.14.圆锥的底面半径是3,母线长为4,则圆锥的侧面积为.15.如图,△ABC 和△DEF 是以点O 为位似中心的位似图形,若 OA ∶AD =2∶3,则△ABC 与DEF 的面积比是 .16.如图,有一个测量小玻璃管口径的量具ABC ,AB 的长为18 mm ,AC 被分为60 等份.如果小玻璃管口径DE正好对应量具上20 等份处(DE ∥AB ),那么小玻璃管口径DE = mm.17. 已知,,若 m ≤n ,则实数 a 的23236m n a +=++22324m n a +=++值为.18. 线段AB =,M 为AB 的中点,动点 P 到点 M 的距离是1,连接 PB ,线段 PB绕点P 逆 时针旋转 90° 得到线段 PC ,连接 AC ,则线段 AC 长度的最小值是.三、解答题(本大题共8小题,共90分.请在答题卡指定区域内作答,解答题应写出文字说明、证明过程或演算步骤)(1)计算:tan45°﹣sin30°cos60°﹣cos 245°;(2)如图,在Rt △ABC 中,∠C =90°,AC ,BC ,解这个直角三角形.20.(本小题满分10分)如图,是三角形的外接圆,是的直径,AD ⊥BC 于点E .O ABC AD O (1)求证:;BAD CAD ∠=∠(2)若长为8,,求的半径长.BC 2DE =O 21.(本小题满分10分)如图,在平面直角坐标系 xOy 中,直线 y =2x +b 经过点 A (-2,0)与 y 轴交于点 B ,与反比例函数的图象交于点 C (m ,6),过 B 作 BD ⊥y 轴,交反比例函数(0)k y x x =>的图象于点D .连接AD 、CD .(0)k y x x=>(1)b =,k =,不等式 >2x +b (x >0)的解集是;k x(2)求△ACD 的面积.如图,在△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D,DE⊥BD,交AB于点E,(1) 求证:△ADE∽△ABD;(2)若AB=10,BE=3AE,求线段AD长.23.(本小题满分12分)如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D,(1)求证:AC平分∠BAD;(2)若∠BAD=60°,AB=4,求图中阴影部分的面积.24.(本小题满分12分)某商品进货价为每件40 元,将该商品每件的售价定为50 元时,每星期可销售250 件.现在计划提高该商品的售价增加利润,但不超过58 元.市场调查反映:若该商品每件的售价在50元基础上每上涨1元,其每星期的销售量减少10 件.设该商品每件的售价上涨x元(x为整数且x≥0)时,每星期的销售量为y 件.(1)求y与x之间的函数解析式;(2)当该商品每件的售价定为多少元时,销售该商品每星期获得的利润最大?最大利润是多少?(3)若该商品每星期的销售利润不低于3000 元,求商品售价上涨x元的取值范围.在矩形ABCD 中,AB <BC ,AB =6,E 是射线CD 上一点,点C 关于BE 的对称点F 恰好落在射线DA 上.如图,当点 E 在CD 边上时,①若BC =10,DF 的长为;②若AF ·FD =9时,求 DF 的长;(2)作∠ABF 的平分线交射线 DA 于点M ,当 时,求 DF 的长.12MF BC =26.(本小题满分13分)在平面直角坐标系中,如果一个点的纵坐标比横坐标大k ,则称该点为“k 级差值点”.例如,(1,4)为“3级差值点” ,(﹣3,2)为“5级差值点”.(1) 点(x ,y )是“4级差值点”,则y 与x 的函数关系式是;(2) 若反比例函数的图象上只有一个“k 级差值点”(﹣3≤ k ≤2),t =4m +2k +4,求t 的取m y x=值范围;(3) 已知直线l : y =nx +3与抛物线y =a (x ﹣h )²+h +3交于A ,B 两点,且AB ≥3.若 k ≠3时,2直线 l 上无“k 级差值点”,求a 的取值范围.答案一、选择题1. A2. C3.A4.B4.B5.B6.C7.D8.B9.D 10.C二填空题、11. (-1,3)12.4 513. 4514. 12π15. 4∶2516.1218.三、解答题(本大题共8小题,共90分.请在答题卡指定区域内作答,解答题应写出文字说明、证明过程或演算步骤)19.(本小题满分10分)(1)计算:tan45°﹣sin30°cos60°﹣cos 245°;解:原式= (2)分211122-⨯-…………………………………………………………………… 4分11142=--…………………………………………………………………… 5分14=(2)解:在在Rt △ABC 中,∠C =90°………………………………………………………… 7分∴∠A =60°…………………………………………………………………… 8分∠B =90°-∠A =90°-60°=30°………………………………………………… 9分 (10)分2AB AC ==20.(本小题满分10分)解:(1)∵AD 是的 ⊙O 直径∵AD ⊥BC∴弧BD =弧CD ,…………………………………… 2分∴∠BAD =∠CAD …………………………………… 4分C BAtan BC A AC ==(2) 连接OC∵AD 是的 ⊙O 直径∵AD ⊥BC∴CE =BE =BC…………………………………… 5分12∵BC =8∴CE =4…………………………… 6分在Rt △OEC 中,由勾股定理得,222OE EC OC +=设圆的半径长为r ,∵DE =2∴…………………8分222(2)4r r -+=∴5r =∴⊙O 的半径长为5…………………10分21.(本小题满分10分)(1) b =4,k =6,0<x<1…………………6分 (2)在y =2x +4中,令x =0,则y =4,∴B (0,4) ,在中,令y =4则x =1.56(0)y x x=>∴ D (1.5,4),∴BD =1.5…………………8分∴S △ACD =S △ABD +S △BCD ==…………………10分111.54 1.56422⨯⨯+⨯⨯-()9222.(本小题满分10分)(1)证明:∵BD 是∠ABC 的平分线∴∠ABD =∠DBC……………………………1分∵DE ⊥BD∴∠BDE =90°∵∠C =90°∴∠ADE + ∠BDC =90°,∠CBD +∠BDC =90°∴∠CBD = ∠ADE ……………………………………3分∴∠ADE = ∠ABD ……………………………………4分又∵∠A =∠A∴△ADE ∽△ABD ………………………………5分(2)解:∵AB =10,BE =3AE∴AE =2.5,BE =7.5………………………………6分由(1)得△ADE ∽△ABD ,∴………………………………8分AD AE AB AD∴AD 2=AB ·AE =10×2.5=25∴AD =5∴线段AD 长为5.………………………………10分23. (本小题满分12分)(1)证明:如图1,连接OC ,∵CD 为⊙O 切线,∴OC ⊥CD………………………………1分∵AD ⊥CD∴OC // AD ………………………………2分∴∠OCA =∠CAD , ………………………………3分又∵OA =OC∴∠OCA =∠OAC ………………………………4分∴∠CAD =∠OAC ,………………………………5分∴AC 平分∠DAB . ………………………………6分(2)解:如图所示,过点O 作OE ⊥AC 于点E ,则AE =EC =AC ,12∵∠BAD =60°,AC 平分∠DAB∴∠CAB =30°,∠COB =2∠CAB =60°,………………………………8分在Rt △AOE 中,AO =AB =2,12∴OE =OA =1,AE 12=∴AC =2AE =………………………………10分∴AOC BOCS S S ∆=+阴影扇形=2160212360π⨯⨯⨯+……………………………12分23π24.(本小题满分12分)解:(1)由题意可得, y =250-10x=﹣10x+250,y 与x 之间的函数解析式是y =﹣10x +250;……………………………2分(2)设当该商品每件的售价上涨x 元时,销售该商品每星期获得的利润为w 元.由题意可得:w=……………………………4分(5040)(10250)x x +--+=2101502500x x -++=210(7.5)3062.5x --+∵,0≤x ≤25且x 为整数100-<∴当x =7或8时,w 取得最大值3060,此时50+x =57或58.……………………6分答:当该商品每件的售价为57或58元时,每星期获得的利润最大,最大利润为3060元.……………………………7分(3)由题意得:……………………………8分21015025003000x x -++=解得……………………………10分12510x x ==,当x =5或10时,此时50+x =55或60又∵售价不超过58元∴5≤x ≤8且x 为整数…………………………12分25.(本小题满分13分)(1) ①DF 的长为 2 …………………………2分②解:∵四边形ABCD 是矩形∴∠BCD =∠A =∠ABC =∠D = 90°,CD =AB =6由对称可知∠BFE =∠BCD =90°, BF =BC∴∠AFB +∠DFE =90°,∠DEF +∠DFE =90°,∴∠AFB =∠DEF又:∠D =∠A =90°∴△FAB ∽△EDF . ………………………4分∴………………………5分AFBADE FD =∴AB ·DE =AF .DF =9.又∵AB =6,∴DE =……………………………………………6分32∴CE =CD -DE =6 -=………………………7分3292(2)分两种情况讨论.①当点F 在线段 AD 上时,如图(1),过点M 作 MN ⊥BF 于点N ,则∠MNF =∠A =90°.又∵∠AFB =∠NFM∴△FMN ∽△FBA∴MN MF FNAB BF AF==又∵,BF =BC12MF BC =∴12MNMFFNAB BF AF ===∴MN =3,AF =2FN …………………………………………8分∵BM 平分∠ABF ,∠BNM =∠A =90°,∴AM = MN =3.∴AM +MF =2FN∴13()22BN FN FN++=∴13(6)22FN FN++=∴FN =4…………………………………………9分∴AD =BF =BC =6+4=10∴AF =8∴DF =AD - AF =10-8=2…………………………………10分②当点F 在线段 DA 的延长线上时如图(2),过点M 作 MN ⊥BF 于点 P .同①可得AM =MN =AB =3,BN =AB =6,BC = AD =10,12MF =BC =5,12∴AF =8,∴DF =18.综上可知,DF 的长为2或18.…………………………………13分26.(本小题满分13分)26.(1)…………………………………3分4y x =+(2)解:由题意得:mx kx =+∴20x kx m +-=∵图象上只有一个“k 级差值点”∴方程 有两个相等的实数根20x kx m +-=∴△=0∴240k m +=∴…………………………………4分24m k =-∵424t m k =++∴…………………………………5分224t k k =-++=2(1)5k --+当k =1时,t 有最大值5,当t =-3时,t 有最小值-11-11≤t ≤5…………………………………7分(3)由题意得若 k =3时,直线 l 上有“k 级差值点”∴y =x +3∴n =1…………………………………8分∴x +3= a (x -h )²+h +3∴x 1=h ,x 2=…………………………………9分1h a+∵AB ≥利用两点间距离公式或根据够勾股定理得出≥3即≥3………………………………11分12x x -1a ∴或,即………………………………13分103a <≤103a >≥-11,033a a ≥≥-≠。

初三上册数学第二次月考试卷及答案

初三上册数学第二次月考试卷及答案

初三上册数学第二次月考试卷一.选择题(共13小题)1.若x0是方程ax2+2x+c=0(a≠0)的一个根,设M=1﹣ac,N=(ax0+1)2,则M与N的大小关系正确的为()A.M>N B.M=N C.M<N D.不确定2.若a,b是方程x2+2x﹣2016=0的两根,则a2+3a+b=()A.2016 B.2015 C.2014 D.20123.一次函数y=ax+c(a≠0)与二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.4.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若点A(﹣3,y1)、点B(﹣,y2)、点C(,y3)在该函数图象上,则y1<y3<y2;(5)若方程a(x+1)(x ﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.其中正确的结论有()A.2个B.3个C.4个D.5个5.把一副三角板按如图放置,其中∠ABC=∠DEB=90°,∠A=45°,∠D=30°,斜边AC=BD=10,若将三角板DEB绕点B逆时针旋转45°得到△D′E′B,则点A在△D′E′B的()A.内部 B.外部 C.边上 D.以上都有可能6.如图是我国几家银行的标志,其中即是轴对称图形又是中心对称图形的有()A.2个B.3个C.4个D.5个7.如图,已知AC是⊙O的直径,点B在圆周上(不与A、C重合),点D在AC的延长线上,连接BD交⊙O于点E,若∠AOB=3∠ADB,则()A.DE=EB B.DE=EB C.DE=DO D.DE=OB8.如图,在边长为1的小正方形组成的4×4网格中,网格线的交点称为格点.已知A、B 是两格点,在格点中任意放置点C,恰好能使△ABC的面积为1的概率为()A.B.C.D.9.如图,在x轴正半轴上依次截取OA1=A1A2=A2A3=…=A n﹣1A n(n为正整数),过点A1、A2、A3、…、A n分别作x轴的垂线,与反比例函数y=(x>0)交于点P1、P2、P3、…、P n,连接P1P2、P2P3、…、P n﹣1P n,过点P2、P3、…、P n分别向P1A1、P2A2、…、P n﹣1A n﹣1作垂线段,构成的一系列直角三角形(见图中阴影部分)的面积和是()A.B. C.D.10.函数y=2x2+4x﹣5中,当﹣3≤x<2时,则y值的取值范围是()A.﹣3≤y≤1 B.﹣7≤y≤1 C.﹣7≤y≤11 D.﹣7≤y<1111.a,b,c为常数,且(a﹣c)2>a2+c2,则关于x的方程ax2+bx+c=0根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.无实数根 D.有一根为012.如图,圆锥的底面半径r为6cm,高h为8cm,则圆锥的侧面积为()A.30πcm2B.48πcm2C.60πcm2D.80πcm213.某校校园内有一个大正方形花坛,如图甲所示,它由四个边长为3米的小正方形组成,且每个小正方形的种植方案相同.其中的一个小正方形ABCD如图乙所示,DG=1米,AE=AF=x米,在五边形EFBCG区域上种植花卉,则大正方形花坛种植花卉的面积y与x 的函数图象大致是()A.B.C.D.二.填空题(共4小题)14.如图,二次函数y=ax2+mc(a≠0)的图象经过正方形ABOC的三个顶点,且ac=﹣2,则m的值为.15.如图,点E是正方形ABCD内一点,连结AE、BE、DE.若AE=2,BE=,∠AED=135°,则正方形ABCD的面积为.16.如图,在⊙O中,AB为直径,点C为圆上一点,将劣弧沿弦AC翻折交AB于点D,连结CD.若点D与圆心O不重合,∠BAC=25°,则∠DCA的度数为度.17.如图,点A,B分别在函数y=(k1>0)与y=(k2<0)的图象上,线段AB的中点M在y轴上.若△AOB的面积为2,则k1﹣k2的值是.三.解答题(共13小题)18.随着经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,汽车消费成为新亮点.抽样调查显示,截止2008年底全市汽车拥有量为14.4万辆.己知2006年底全市汽车拥有量为10万辆.(1)求2006年底至2008年底我市汽车拥有量的年平均增长率;(2)为保护城市环境,要求我市到2010年底汽车拥有量不超过15.464万辆,据估计从2008年底起,此后每年报废的汽车数量是上年底汽车拥有量的10%,那么每年新增汽车数量最多不超过多少辆?(假定每年新增汽车数量相同)19.解下列方程:(1)2x2﹣4x﹣5=0.(2)x2﹣4x+1=0.(3)(y﹣1)2+2y(1﹣y)=0.20.为备战2016年里约奥运会,中国女排的姑娘们刻苦训练,为国争光,如图,已知排球场的长度OD为18米,位于球场中线处球网的高度AB为2.43米,一队员站在点O处发球,排球从点O的正上方1.8米的C点向正前方飞出,当排球运行至离点O的水平距离OE为7米时,到达最高点G建立如图所示的平面直角坐标系.(1)当球上升的最大高度为3.2米时,求排球飞行的高度y(单位:米)与水平距离x(单位:米)的函数关系式.(不要求写自变量x的取值范围).(2)在(1)的条件下,对方距球网0.5米的点F处有一队员,他起跳后的最大高度为3.1米,问这次她是否可以拦网成功?请通过计算说明.(3)若队员发球既要过球网,又不出边界,问排球飞行的最大高度h的取值范围是多少?(排球压线属于没出界)21.如图1,已知一次函数y=x+3的图象与x轴、y轴分别交于A、B两点,抛物线y=﹣x2+bx+c 过A、B两点,且与x轴交于另一点C.(1)求b、c的值;(2)如图1,点D为AC的中点,点E在线段BD上,且BE=2ED,连接CE并延长交抛物线于点M,求点M的坐标;(3)将直线AB绕点A按逆时针方向旋转15°后交y轴于点G,连接CG,如图2,P为△ACG内一点,连接PA、PC、PG,分别以AP、AG为边,在他们的左侧作等边△APR,等边△AGQ,连接QR①求证:PG=RQ;②求PA+PC+PG的最小值,并求出当PA+PC+PG取得最小值时点P的坐标.22.关于x的一元二次方程4x2+4(m﹣1)x+m2=0(1)当m在什么范围取值时,方程有两个实数根?(2)设方程有两个实数根x1,x2,问m为何值时,x12+x22=17?(3)若方程有两个实数根x1,x2,问x1和x2能否同号?若能同号,请求出相应m的取值范围;若不能同号,请说明理由.23.如图,AB是⊙O的直径,∠BAC=90°,四边形EBOC是平行四边形,EB交⊙O于点D,连接CD并延长交AB的延长线于点F.(1)求证:CF是⊙O的切线;(2)若∠F=30°,EB=4,求图中阴影部分的面积(结果保留根号和π)24.有四张正面分别标有数字1,2,3,4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.(1)随机抽取一张卡片,求抽到数字“2”的概率;(2)随机抽取一张卡片,然后不放回,再随机抽取一张卡片,请用列表或画树状图的方法求出第一次抽到数字“1”且第二次抽到数字“2”的概率.25.如图,在正方形ABCD中,E、F是对角线BD上两点,且∠EAF=45°,将△ADF绕点A顺时针旋转90°后,得到△ABQ,连接EQ,求证:(1)EA是∠QED的平分线;(2)EF2=BE2+DF2.26.如图,已知一次函数y1=kx+b的图象与反比例函数y2=的图象交于点A(﹣4,m),且与y轴交于点B,第一象限内点C在反比例函数y2=的图象上,且以点C为圆心的圆与x轴,y轴分别相切于点D,B(1)求m的值;(2)求一次函数的表达式;(3)根据图象,当y1<y2<0时,写出x的取值范围.27.已知二次函数.(1)求出该函数图象的顶点坐标,对称轴,图象与x轴、y轴的交点坐标;(2)x在什么范围内时,y随x的增大而增大?当x在什么范围内时,y随x的增大而减小?(3)当x在什么范围内时,y>0?28.如图抛物线y=ax2+bx+3与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C,顶点为D,连接AC、CD、AD.(1)求该二次函数的解析式;(2)求△ACD的面积;(3)若点Q在抛物线的对称轴上,抛物线上是否存在点P,使得以A、B、Q、P四点为顶点的四边形为平行四边形?若存在,求出满足条件的点P的坐标;若不存在,请说明理由.29.如图,△ABC中,AB=AC=2,∠BAC=45°,△AEF是由△ABC绕点A按逆时针方向旋转得到的,连接BE、CF相交于点D.(1)求证:BE=CF;(2)当四边形ABDF为菱形时,求CD的长.30.如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD 的垂直平分线交BC于点E,交BD于点F,连接DE.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若AC=6,BC=8,OA=2,求线段DE的长.2016年12月03日1302729921的初中数学组卷参考答案一.选择题(共13小题)1.B;2.C;3.D;4.B;5.C;6.A;7.D;8.C;9.A;10.D;11.B;12.C;13.A;二.填空题(共4小题)14.1;15.11+2;16.40;17.4;三.解答题(共13小题)18.;19.;20.;21.;22.;23.;24.;25.;26.;27.;28.;29.;30.;。

九年级上册第二次月考数学试题 (含答案) (精选5套试题) (1)

九年级上册第二次月考数学试题 (含答案)  (精选5套试题) (1)

九年级上学期第二次月考数学试卷一、选择题(每小题3分,共30分)1.下列关于x的方程:①ax2+bx+c=0;②3(x﹣9)2﹣(x+1)2=1;③x+3=;④(a2+a+1)x2﹣a=0;⑤=x﹣1,其中一元二次方程的个数是()A.1 B.2 C.3 D.42.用配方法解一元二次方程x2﹣4x=5时,此方程可变形为()A.(x+2)2=1 B.(x﹣2)2=1 C.(x+2)2=9 D.(x﹣2)2=9 3.下面图形中是中心对称但不是轴对称图形的是()A.平行四边形B.长方形C.菱形D.正方形4.菱形具有而矩形不具有的性质是()A.对角相等B.四边相等C.对角线互相平分D.四角相等5.目前我国建立了比较完善的经济困难学生资助体系.某校去年上半年发放给每个经济困难学生389元,今年上半年发放了438元,设每半年发放的资助金额的平均增长率为x,则下面列出的方程中正确的是()A.438(1+x)2=389 B.389(1+x)2=438C.389(1+2x)2=438 D.438(1+2x)2=3896.如图,菱形ABCD的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD的周长是()A.24 B.16 C.4D.27.已知:如图,在矩形ABCD中,E,F,G,H分别为边AB,BC,CD,DA的中点.若AB=2,AD=4,则图中阴影部分的面积为()A.3 B.4 C.6 D.88.三角形的两边长分别为2和6,第三边是方程x2﹣10x+21=0的解,则第三边的长为()A.7 B.3 C.7或3 D.无法确定9.下列说法错误的是()A.一组对边平行且一组对角相等的四边形是平行四边形B.每组邻边都相等的四边形是菱形C.对角线互相垂直的平行四边形是正方形D.四个角都相等的四边形是矩形10.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A.12 B.24 C.12D.16二、填空题(每小题3分,共27分)11.将方程(x+1)2=2x化成一般形式为,其二次项是,一次项是,常数项是.12.若一元二次方程ax2﹣bx﹣2016=0有一根为x=﹣1,则a+b=.13.已知四边形ABCD中,∠A=∠B=∠C=90°,若添加一个条件即可判定该四边形是正方形,那么这个条件可以是.14.若关于x的一元二次方程mx2+3x﹣4=0有实数根,则m.15.如图,在矩形ABCD中,对角线AC与BD相交于O点,且AB=OA=2cm,则BD的长为cm,BC的长为cm.16.如图,四边形ABCD是正方形,延长AB到E,使AE=AC,则∠BCE的度数是度.17.菱形两条对角线长度比为1:,则菱形较小的内角的度数为度.18.已知菱形ABCD的边长为6,∠A=60°,如果点P是菱形内一点,且PB=PD=2,那么AP的长为.19.如图:矩形ABCD的对角线AC=10,BC=8,则图中五个小矩形的周长之和为.三、解答题(共43分)20.解下列方程:(1)x2﹣18=7x(用配方法解)(2)4x(x﹣1)=1(用配方法解)(3)2x2﹣4x﹣1=0 (用公式法解)(4)(2﹣3x)+(3x﹣2)2=0 (用因式法解)21.如图,在△ABC中,AD平分∠BAC,DE∥AC,DF∥A B.求证:四边形AEDF是菱形.22.关于x的方程kx2+(k+2)x+=0有两个不相等的实数根;(1)求k的取值范围;(2)是否存在实数k,使方程的两个实数根的倒数和等于0?若存在,求出k的值;若不存在,请说明理由.23.如图,△ABC中,AB=AC,AD是∠BAC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.24.某商场在“五•一”节里实行让利销售,全部商品一律按九折销售.这样每天所获得的利润恰是销售收入的,如果第一天的销售收入是4万元,并且每天的销售收入都有增长,第三天的利润是1.25万元.(1)求第三天的销售收入是多少万元?(2)求第二天和第三天销售收入平均每天的增长率是多少?四.附加题:(附加题20分)25.分别把带有指针的圆形转盘A、B分成4等份、3等份的扇形区域,并在每一个小区域内标上数字(如图所示).欢欢、乐乐两个人玩转盘游戏,游戏规则是:同时转动两个转盘,当转盘停止时,若指针所指两区域的数字之积为奇数,则欢欢胜;若指针所指两区域的数字之积为偶数,则乐乐胜;若有指针落在分割线上,则无效,需重新转动转盘.(1)试用列表或画树状图的方法,求欢欢获胜的概率;(2)请问这个游戏规则对欢欢、乐乐双方公平吗?试说明理由.26.如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t 秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.参考答案与试题解析一、选择题(每小题3分,共30分)1.下列关于x的方程:①ax2+bx+c=0;②3(x﹣9)2﹣(x+1)2=1;③x+3=;④(a2+a+1)x2﹣a=0;⑤=x﹣1,其中一元二次方程的个数是()A.1 B.2 C.3 D.4【考点】一元二次方程的定义.【分析】根据一元二次方程的定义:未知数的最高次数是2;二次项系数不为0;是整式方程;含有一个未知数.【解答】解:①当a=0时,ax2+bx+c=0是一元一次方程;②3(x﹣9)2﹣(x+1)2=1是一元二次方程;③x+3=是分式方程;④(a2+a+1)x2﹣a=0是一元二次方程;⑤=x﹣1是无理方程,故选:B.2.用配方法解一元二次方程x2﹣4x=5时,此方程可变形为()A.(x+2)2=1 B.(x﹣2)2=1 C.(x+2)2=9 D.(x﹣2)2=9【考点】解一元二次方程-配方法.【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.【解答】解:∵x2﹣4x=5,∴x2﹣4x+4=5+4,∴(x﹣2)2=9.故选D.3.下面图形中是中心对称但不是轴对称图形的是()A.平行四边形B.长方形C.菱形 D.正方形【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、平行四边形是中心对称但不是轴对称图形,故本选项正确;B、长方形是中心对称也是轴对称图形,故本选项错误;C、菱形是中心对称也是轴对称图形,故本选项错误;D、正方形是中心对称也是轴对称图形,故本选项错误.故选A.4.菱形具有而矩形不具有的性质是()A.对角相等 B.四边相等C.对角线互相平分D.四角相等【考点】矩形的性质;菱形的性质.【分析】菱形和矩形都是平行四边形,具有平行四边形的所有性质,菱形还具有独特的性质:四边相等,对角线垂直;矩形具有独特的性质:对角线相等,邻边互相垂直.【解答】解:A、对角相等,菱形和矩形都具有的性质,故A错误;B、四边相等,菱形的性质,矩形不具有的性质,故B正确;C、对角线互相平分,菱形和矩形都具有的性质,故C错误;D、四角相等,矩形的性质,菱形不具有的性质,故D错误;故选:B.5.目前我国建立了比较完善的经济困难学生资助体系.某校去年上半年发放给每个经济困难学生389元,今年上半年发放了438元,设每半年发放的资助金额的平均增长率为x,则下面列出的方程中正确的是()A.438(1+x)2=389 B.389(1+x)2=438 C.389(1+2x)2=438 D.438(1+2x)2=389 【考点】由实际问题抽象出一元二次方程.【分析】先用含x的代数式表示去年下半年发放给每个经济困难学生的钱数,再表示出今年上半年发放的钱数,令其等于438即可列出方程.【解答】解:设每半年发放的资助金额的平均增长率为x,则去年下半年发放给每个经济困难学生389(1+x)元,今年上半年发放给每个经济困难学生389(1+x)2元,由题意,得:389(1+x)2=438.故选B.6.如图,菱形ABCD的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD的周长是()A.24 B.16 C.4D.2【考点】菱形的性质;勾股定理.【分析】由菱形ABCD的两条对角线相交于O,AC=6,BD=4,即可得AC⊥BD,求得OA 与OB的长,然后利用勾股定理,求得AB的长,继而求得答案.【解答】解:∵四边形ABCD是菱形,AC=6,BD=4,∴AC⊥BD,OA=AC=3,OB=BD=2,AB=BC=CD=AD,∴在Rt△AOB中,AB==,∴菱形的周长是:4AB=4.故选:C.7.已知:如图,在矩形ABCD中,E,F,G,H分别为边AB,BC,CD,DA的中点.若AB=2,AD=4,则图中阴影部分的面积为()A.3 B.4 C.6 D.8【考点】矩形的性质;三角形中位线定理.【分析】阴影部分的面积等于矩形面积减去四个直角三角形的面积.【解答】解:矩形的面积=2×4=8;S=×1×2=1;△AEF∴阴影部分的面积=8﹣1×4=4.故选B.8.三角形的两边长分别为2和6,第三边是方程x2﹣10x+21=0的解,则第三边的长为()A.7 B.3 C.7或3 D.无法确定【考点】解一元二次方程-因式分解法;三角形三边关系.【分析】将已知的方程x2﹣10x+21=0左边分解因式,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程,求出一次方程的解得到原方程的解为3或7,利用三角形的两边之和大于第三边进行判断,得到满足题意的第三边的长.【解答】解:x2﹣10x+21=0,因式分解得:(x﹣3)(x﹣7)=0,解得:x1=3,x2=7,∵三角形的第三边是x2﹣10x+21=0的解,∴三角形的第三边为3或7,当三角形第三边为3时,2+3<6,不能构成三角形,舍去;当三角形第三边为7时,三角形三边分别为2,6,7,能构成三角形,则第三边的长为7.故选A9.下列说法错误的是()A.一组对边平行且一组对角相等的四边形是平行四边形B.每组邻边都相等的四边形是菱形C.对角线互相垂直的平行四边形是正方形D.四个角都相等的四边形是矩形【考点】多边形.【分析】分别利用平行四边形、矩形、菱形、正方形的判定方法进而得出即可.【解答】解;A、一组对边平行且一组对角相等的四边形是平行四边形,首先由两直线平行,同旁内角互补及等角的补角相等得出另一组对角相等,然后根据两组对角分别相等的四边形是平行四边形可知是个真命题,正确,不合题意;B、每组邻边都相等的四边形是菱形,正确,不合题意;C、对角线互相垂直的平行四边形是菱形,故此选项错误,符合题意;D、四个角都相等的四边形是矩形,正确,不合题意;故选:C.10.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A.12 B.24 C.12D.16【考点】翻折变换(折叠问题);矩形的性质.【分析】根据平行线的性质和折叠的性质易证得△EFB′是等边三角形,继而可得△A′B′E中,B′E=2A′E,则可求得B′E的长,然后由勾股定理求得A′B′的长,继而求得答案.【解答】解:在矩形ABCD中,∵AD∥BC,∴∠DEF=∠EFB=60°,∵把矩形ABCD沿EF翻折点B恰好落在AD边的B′处,∴∠EFB=∠EFB′=60°,∠B=∠A′B′F=90°,∠A=∠A′=90°,AE=A′E=2,AB=A′B′,在△EFB′中,∵∠DEF=∠EFB=∠EB′F=60°∴△EFB′是等边三角形,Rt△A′EB′中,∵∠A′B′E=90°﹣60°=30°,∴B′E=2A′E,而A′E=2,∴B′E=4,∴A′B′=2,即AB=2,∵AE=2,DE=6,∴AD=AE+DE=2+6=8,∴矩形ABCD的面积=AB•AD=2×8=16.故答案为:16.二、填空题(每小题3分,共27分)11.将方程(x+1)2=2x化成一般形式为x2+1=0,其二次项是x2,一次项是0,常数项是1.【考点】一元二次方程的一般形式.【分析】根据完全平方公式,移项、合并同类项,可得答案.【解答】解:(x+1)2=2x化成一般形式是x2+1=0,其二次项是x2,一次项0,常数项为1,故答案为:x2+1=0,x2,0,112.若一元二次方程ax2﹣bx﹣2016=0有一根为x=﹣1,则a+b=2016.【考点】一元二次方程的解.【分析】由方程有一根为﹣1,将x=﹣1代入方程,整理后即可得到a+b的值.【解答】解:把x=﹣1代入一元二次方程ax2﹣bx﹣2016=0得:a+b﹣2015=0,即a+b=2016.故答案是:2016.13.已知四边形ABCD中,∠A=∠B=∠C=90°,若添加一个条件即可判定该四边形是正方形,那么这个条件可以是AB=AD或AC⊥BD等.【考点】正方形的判定;矩形的判定与性质.【分析】由已知可得四边形ABCD是矩形,则可根据有一组邻边相等或对角线互相垂直的矩形是正方形添加条件.【解答】解:由∠A=∠B=∠C=90°可知四边形ABCD是矩形,根据根据有一组邻边相等或对角线互相垂直的矩形是正方形,得到应该添加的条件为:AB=AD或AC⊥BD等.故答案为:AB=AD或AC⊥BD等.14.若关于x的一元二次方程mx2+3x﹣4=0有实数根,则m≥且m≠0.【考点】根的判别式;一元二次方程的定义.【分析】根据一元二次方程的定义和△的意义得到m≠0且△≥0,即32﹣4×m×(﹣4)≥0,求出两个不等式的公共部分即可.【解答】解:∵关于x的一元二次方程mx2+3x﹣4=0有实数根,∴m≠0且△≥0,即32﹣4×m×(﹣4)≥0,解得m≥﹣,∴m的取值范围为m≥﹣且m≠0.故答案为:≥﹣且m≠0.15.如图,在矩形ABCD中,对角线AC与BD相交于O点,且AB=OA=2cm,则BD的长为4cm,BC的长为2cm.【考点】矩形的性质;三角形内角和定理;等边三角形的判定与性质;勾股定理.【分析】根据矩形的性质得到OA=OC,OB=OD,AC=BD,∠ABC=90°,推出BD=AC=2OA=4,OA=OB=AB=2,得出等边△OAB,求出∠ACB=30°,根据勾股定理即可求出B C.【解答】解:∵矩形ABCD,∴OA=OC,OB=OD,AC=BD,∠ABC=90°,∴OA=OB,∵AB=OA=2,∴BD=AC=2OA=4,OA=OB=AB=2,∴△OAB是等边三角形,∴∠BAC=60°,∴∠ACB=90°﹣60°=30°,由勾股定理得:BC===2.故答案为:4,2.16.如图,四边形ABCD是正方形,延长AB到E,使AE=AC,则∠BCE的度数是22.5度.【考点】等腰三角形的性质;三角形内角和定理;正方形的性质.【分析】根据正方形的性质,易知∠CAE=∠ACB=45°;等腰△CAE中,根据三角形内角和定理可求得∠ACE的度数,进而可由∠BCE=∠ACE﹣∠ACB得出∠BCE的度数.【解答】解:∵四边形ABCD是正方形,∴∠CAB=∠BCA=45°;△ACE中,AC=AE,则:∠ACE=∠AEC==67.5°;∴∠BCE=∠ACE﹣∠ACB=22.5°.故答案为22.5.17.菱形两条对角线长度比为1:,则菱形较小的内角的度数为60度.【考点】菱形的性质;解直角三角形.【分析】根据已知可得到菱形的较小的内角的一半的度数,从而就不难求得较小内角的度数.【解答】解:因菱形的对角线互相垂直平分,且每一条对角线平分一组对角,可得菱形较小的内角的一半的正切值为1:,则菱形较小的内角的一半为30°,则菱形较小的内角的度数为60°.18.已知菱形ABCD的边长为6,∠A=60°,如果点P是菱形内一点,且PB=PD=2,那么AP的长为或.【考点】菱形的性质.【分析】根据题意得,应分P与A在BD的同侧与异侧两种情况进行讨论.【解答】解:当P与A在BD的异侧时:连接AP交BD于M,∵AD=AB,DP=BP,∴AP⊥BD(到线段两端距离相等的点在垂直平分线上),在直角△ABM中,∠BAM=30°,∴AM=AB•cos30°=3,BM=AB•sin30°=3,∴PM==,∴AP=AM+PM=4;当P与A在BD的同侧时:连接AP并延长AP交BD于点MAP=AM﹣PM=2;当P与M重合时,PD=PB=3,与PB=PD=2矛盾,舍去.AP的长为4或2.故答案为4或2.19.如图:矩形ABCD的对角线AC=10,BC=8,则图中五个小矩形的周长之和为28.【考点】平移的性质.【分析】运用平移个观点,五个小矩形的上边之和等于AD,下边之和等于BC,同理,它们的左边之和等于AB,右边之和等于CD,可知五个小矩形的周长之和为矩形ABCD的周长.【解答】解:由勾股定理,得AB==6,将五个小矩形的所有上边平移至AD,所有下边平移至BC,所有左边平移至AB,所有右边平移至CD,∴五个小矩形的周长之和=2(AB+BC)=2×(6+8)=28.故答案为:28.三、解答题(共43分)20.解下列方程:(1)x2﹣18=7x(用配方法解)(2)4x(x﹣1)=1(用配方法解)(3)2x2﹣4x﹣1=0 (用公式法解)(4)(2﹣3x)+(3x﹣2)2=0 (用因式法解)【考点】解一元二次方程-因式分解法;解一元二次方程-直接开平方法;解一元二次方程-配方法;解一元二次方程-公式法.【分析】(1)移项后配方,开方,即可得出两个一元一次方程,求出方程的解即可;(2)整理后配方,开方,即可得出两个一元一次方程,求出方程的解即可;(3)求出b2﹣4ac的值,再代入公式求出即可;(4)先分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:(1)x2﹣18=7x,x2﹣7x=18,x2﹣7x+()2=18+()2,(x﹣)2=,x﹣=,x1=9,x2=﹣2;(2)4x(x﹣1)=1,4x2﹣4x+1=1+1,(2x﹣1)2=2,2x﹣1=,x1=,x2=;(3)2x2﹣4x﹣1=0,b2﹣4ac=(﹣4)2﹣4×2×(﹣1)=24,x=,x1=,x2=;(4)(2﹣3x)+(3x﹣2)2=0,(2﹣3x)(1+2﹣3x)=0,2﹣3x=0,1+2﹣3x=0,x1=,x2=1.21.如图,在△ABC中,AD平分∠BAC,DE∥AC,DF∥A B.求证:四边形AEDF是菱形.【考点】菱形的判定.【分析】由已知易得四边形AEDF是平行四边形,由角平分线和平行线的定义可得∠F AD=∠FDA,∴AF=DF,∴四边形AEDF是菱形.【解答】证明:∵AD是△ABC的角平分线,∴∠EAD=∠F AD,∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∠EAD=∠ADF,∴∠F AD=∠FDA∴AF=DF,∴四边形AEDF是菱形.22.关于x的方程kx2+(k+2)x+=0有两个不相等的实数根;(1)求k的取值范围;(2)是否存在实数k,使方程的两个实数根的倒数和等于0?若存在,求出k的值;若不存在,请说明理由.【考点】根的判别式;根与系数的关系.【分析】(1)由于x的方程kx2+(k+2)x+=0有两个不相等的实数根,由此可以得到判别式是正数,这样就可以得到关于k的不等式,解不等式即可求解;(2)不存在符合条件的实数k.设方程kx2+(k+2)x+=0的两根分别为x1、x2,由根与系数关系有:x1+x2=﹣,x1•x2=,又+=,然后把前面的等式代入其中即可求k,然后利用(1)即可判定结果【解答】解:(1)由△=[(k+2)]2﹣4×k•>0,∴k>﹣1又∵k≠0,∴k的取值范围是k>﹣1,且k≠0;(2)不存在符合条件的实数k理由:设方程kx2+(k+2)x+=0的两根分别为x1、x2,由根与系数关系有:x1+x2=﹣,x1•x2=,又∵+==0,∴=0,解得k=﹣2,由(1)知,k=﹣2时,△<0,原方程无实解,∴不存在符合条件的k的值.23.如图,△ABC中,AB=AC,AD是∠BAC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.【考点】矩形的判定;正方形的判定.【分析】(1)利用平行四边形的判定首先得出四边形AEBD是平行四边形,进而由等腰三角形的性质得出∠ADB=90°,即可得出答案;(2)利用等腰直角三角形的性质得出AD=BD=CD,进而利用正方形的判定得出即可.【解答】(1)证明:∵点O为AB的中点,连接DO并延长到点E,使OE=OD,∴四边形AEBD是平行四边形,∵AB=AC,AD是∠BAC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴平行四边形AEBD是矩形;(2)当∠BAC=90°时,理由:∵∠BAC=90°,AB=AC,AD是∠BAC的角平分线,∴AD=BD=CD,∵由(1)得四边形AEBD是矩形,∴矩形AEBD是正方形.24.某商场在“五•一”节里实行让利销售,全部商品一律按九折销售.这样每天所获得的利润恰是销售收入的,如果第一天的销售收入是4万元,并且每天的销售收入都有增长,第三天的利润是1.25万元.(1)求第三天的销售收入是多少万元?(2)求第二天和第三天销售收入平均每天的增长率是多少?【考点】一元二次方程的应用.【分析】(1)直接根据这样每天所获得的利润恰是销售收入的进行计算;(2)设第二天和第三天销售收入平均每天的增长率是m,则根据第一天的4万元增长到6.25万元列方程求解.【解答】解:(1)1.25÷=6.25(万元)所以第三天的销售收入是6.25万元;(2)设第二天和第三天销售收入平均每天的增长率是m,则4(1+m)2=6.25.解得m1=25%,m2=﹣2.25%(不合题意舍去).答:第二天和第三天销售收入平均每天的增长率约是25%.四.附加题:(附加题20分)25.分别把带有指针的圆形转盘A、B分成4等份、3等份的扇形区域,并在每一个小区域内标上数字(如图所示).欢欢、乐乐两个人玩转盘游戏,游戏规则是:同时转动两个转盘,当转盘停止时,若指针所指两区域的数字之积为奇数,则欢欢胜;若指针所指两区域的数字之积为偶数,则乐乐胜;若有指针落在分割线上,则无效,需重新转动转盘.(1)试用列表或画树状图的方法,求欢欢获胜的概率;(2)请问这个游戏规则对欢欢、乐乐双方公平吗?试说明理由.【考点】游戏公平性;列表法与树状图法.【分析】(1)列举出所有情况,看指针所指两区域的数字之积为奇数的情况占总情况的多少即可求得欢欢胜的概率;(2)由(1)进而求得乐乐胜的概率,比较两个概率即可.【解答】解:(1)共有12种情况,积为奇数的情况有6种情况,所以欢欢胜的概率是=;(2)由(1)得乐乐胜的概率为1﹣=,两人获胜的概率相同,所以游戏公平.26.如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t 秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.【考点】相似形综合题.【分析】(1)利用t表示出CD以及AE的长,然后在直角△CDF中,利用直角三角形的性质求得DF的长,即可证明;(2)易证四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,据此即可列方程求得t的值;(3)分两种情况讨论即可求解.【解答】(1)证明:∵直角△ABC中,∠C=90°﹣∠A=30°.∵CD=4t,AE=2t,又∵在直角△CDF中,∠C=30°,∴DF=CD=2t,∴DF=AE;解:(2)∵DF∥AB,DF=AE,∴四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,即60﹣4t=2t,解得:t=10,即当t=10时,▱AEFD是菱形;(3)当t=时△DEF是直角三角形(∠EDF=90°);当t=12时,△DEF是直角三角形(∠DEF=90°).理由如下:当∠EDF=90°时,DE∥B C.∴∠ADE=∠C=30°∴AD=2AE∵CD=4t,∴DF=2t=AE,∴AD=4t,∴4t+4t=60,∴t=时,∠EDF=90°.当∠DEF=90°时,DE⊥EF,∵四边形AEFD是平行四边形,∴AD∥EF,∴DE⊥AD,∴△ADE是直角三角形,∠ADE=90°,∵∠A=60°,∴∠DEA=30°,∴AD=AE,AD=AC﹣CD=60﹣4t,AE=DF=CD=2t,∴60﹣4t=t,解得t=12.综上所述,当t=时△DEF是直角三角形(∠EDF=90°);当t=12时,△DEF是直角三角形(∠DEF=90°).北师大版九年级上学期第二次月考数学试卷一、精心选一选,相信你一定能选对!(每题3分,共36分)1.如图,在平行四边形ABCD中,AB=2,BC=3,∠ABC、∠BCD的平分线分别交AD于点E、F,则EF的长是()A.3 B.2C.1.5D.12.如图,EF过▱ABCD对角线的交点O,并交AD于E,交BC于F,若AB=4,BC=5,OE=1.5,则四边形EFCD的周长是()A.16 B.14 C.12 D.103.平行四边形一边长为10,那么它的对角线长度和可以为()A.8和12B.20和30 C.6和8 D.4和64.不能判定四边形ABCD为平行四边形的题设是()A.AB平行且等于CD B.∠A=∠C,∠B=∠DC.AB=AD,BC=CD D.AB=CD,AD=BC5.下面性质中菱形有而矩形没有的是()A.邻角互补B.内角和为360°C.对角线相等D.对角线互相垂直6.正方形具有而菱形不一定具有的性质是()A.对角线相等B.对角线互相垂直平分C.对角线平分一组对角D.四条边相等7.顺次连接任意四边形四边中点所得的四边形一定是()A.平行四边形B.矩形C.菱形D.正方形8.下列各图中,不是中心对称图形的是()A.B.C.D.9.下列命题中,真命题是()A.有两边相等的平行四边形是菱形B.有一个角是直角的四边形是直角梯形C.四个角相等的菱形是正方形D.两条对角线相等的四边形是矩形10.如图,四边形ABCD为矩形纸片,把纸片ABCD折叠,使点B恰好落在CD边的中点E 处,折痕为AF,若CD=6,则AF等于()A.B.C.D.811.如图,在平行四边形ABCD中,点E、F分别在边AB、CD上移动,且AE=CF,则四边形不可能是()A.平行四边形B.矩形C.菱形D.梯形12.如图,菱形ABCD的对角线交于点O,AC=8cm,BD=6cm,则菱形的高为()A.cm B.cm C.cm D.cm二、细心填一填,相信你填得又快又准!(每题4分,共20分)13.▱ABCD中,∠A=50°,则∠B=,∠C=,∠D.14.已知菱形两条对角线的长分别为5cm和8cm,则这个菱形的面积是cm2.15.矩形一个角的平分线分矩形一边为1cm和3cm两部分,则这个矩形的面积为cm2.16.对角线长为2的正方形的周长为,面积为.17.等腰梯形的上、下底分别是3cm和5cm,一个角是135°,则等腰梯形的面积为.三、用心做一做,培养你的综合运用能力,相信你是最棒的18.如图,E、F是平行四边形ABCD对角线AC上的两点,且AE=CF.求证:△ADF≌△CBE.19.已知:如图,平行四边形ABCD的对角线AC、BD相交于点O,E、F是直线AC上的两点,并且AE=CF.求证:四边形BFDE是平行四边形.20.已知:如图中,AD是∠A的角平分线,DE∥AC,DF∥A B.求证:四边形AEDF是菱形.21.如图,已知E是▱ABCD中BC边的中点,连接AE并延长AE交DC的延长线于点F.(1)求证:△ABE≌△FCE.(2)连接AC、BF,若∠AEC=2∠ABC,求证:四边形ABFC为矩形.22.证明:等腰梯形上底的中点与下底两端点的距离相等.23.如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥B D.求证:四边形OCED是菱形.24.等腰梯形ABCD中,AD∥BC,AB=CD,DE⊥BC与E,AE=BE,BF⊥AE与F,线段BF与图中的哪一条线段相等?先写出您的猜想,再加以证明.25.如图,△ABC中,点O为AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的外角平分线CF于点F,交∠ACB内角平分线CE于E.(1)试说明EO=FO;(2)当点O运动到何处时,四边形AECF是矩形并证明你的结论;(3)若AC边上存在点O,使四边形AECF是正方形,猜想△ABC的形状并证明你的结论.参考答案与试题解析一、精心选一选,相信你一定能选对!(每题3分,共36分)1.如图,在平行四边形ABCD中,AB=2,BC=3,∠ABC、∠BCD的平分线分别交AD于点E、F,则EF的长是()A.3 B.2 C. 1.5D.1考点:平行四边形的性质;角平分线的定义;等腰三角形的判定与性质.专题:数形结合.分析:根据平行四边形的性质可知∠DFC=∠FCB,又因为CF平分∠BCD,所以∠DCF=∠FCB,则∠DFC=∠DCF,则DF=DC,同理可证AE=AB,那么EF就可表示为AE+FD﹣BC=2AB﹣BC,继而可得出答案.解答:解:∵平行四边形ABCD,∴∠DFC=∠FCB,又CF平分∠BCD,∴∠DCF=∠FCB,∴∠DFC=∠DCF,∴DF=DC,同理可证:AE=AB,∴2AB﹣BC=AE+FD﹣BC=EF=1cm.故选D.点评:本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题,难度不大,关键是解题技巧的掌握.2.如图,EF过▱ABCD对角线的交点O,并交AD于E,交BC于F,若AB=4,BC=5,OE=1.5,则四边形EFCD的周长是()A.16 B.14 C.12 D.10考点:平行四边形的性质.分析:先利用平行四边形的性质求出AB、CD、BC、AD的值,可利用全等的性质得到△AEO ≌△CFO,即可求出四边形的周长.解答:解:已知AB=4,BC=5,OE=1.5,根据平行四边形的性质,AB=CD=4,BC=AD=5,在△AEO和△CFO中OA=OC,∠OAE=∠OCF,∠AOE=∠COF,所以△AEO≌△CFO,OE=OF=1.5,则EFCD的周长=ED+CD+CF+EF=(DE+CF)+AB+EF=5+4+3=12.则EFCD的周长是12.故选C.点评:本题考查平行四边形的性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.3.平行四边形一边长为10,那么它的对角线长度和可以为()A.8和12 B.20和30 C.6和8 D.4和6考点:平行四边形的性质;三角形三边关系.分析:平行四边形的长为10的一边,与两条对角线的一半构成的三角形的另两边应满足三角形的三边关系,即两边之和大于第三边,两边之差小于第三边.根据这个结论可以判断选择哪一个.。

人教版九年级(上第二次月考数学试卷(解析版)

人教版九年级(上第二次月考数学试卷(解析版)

人教版九年级(上)第二次月考数学试卷一、选择题(每小题3分,共36分)1.方程x2=3x的解为()A.x=3B.x=0C.x1=0,x2=﹣3D.x1=0,x2=32.长度为下列各组数据的线段(单位:cm)中,成比例的是()A.1,2,3,4B.6,5,10,15C.3,2,6,4D.15,3,4,103.已知,则的值是()A.B.C.D.4.如图所示,小正方形的边长均为1,则下列选项中阴影部分的三角形与△ABC相似的是()A.B.C.D.5.在一个不透明的袋子里装有红球、黄球共20个,这些球除颜色外都相同.小明通过多次试验发现,摸出红球的频率稳定在0.25左右,则袋子中红球的个数最有可能是()A.5B.10C.12D.156.如图,已知在△ABC中,P为AB上一点,连接CP,以下条件中不能判定△ACP∽△ABC的是()A.∠ACP=∠B B.∠APC=∠ACB C.D.7.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有实数根,则k的取值范围是()A.k>B.k≥C.k>且k≠1D.k≥且k≠18.如图,在四边形ABCD中,顺次连接各边上的中点,得到四边形EFGH.要使得四边形EFGH为矩形,对角线AC、BD要满足()A.AC=BD B.AC=BD或AC⊥BDC.AC⊥BD D.AC和BD相互平分9.放假了,小明与小颖两家准备从红荷湿地、台儿庄古城、莲青山中选择一景点游玩,小明与小颖通过抽签方式确定景点,则两家抽到同一景点的概率是()A.B.C.D.10.如图,已知AB∥CD∥EF,它们依次交直线l1、l2于点A、D、F和点B、C、E,如果AD:DF=3:1,BE=10,那么CE等于()A.B.C.D.11.△ABC中,DE∥BC,且AD:DB=2:3,那么S△ADE:S四边形DBCE等于()A.2:3B.4:21C.2:5D.4:912.如图,在平行四边形ABCD中,∠BAC=90°,AB=AC,过点A作边BC的垂线AF交DC的延长线于点E,点F是垂足,连接BE、DF,DF交AC于点O.则下列结论:①四边形ABEC是正方形;②CO:BE=1:3;③DE=BC;④S四边形OCEF=S△AOD,正确的个数是()A.1B.2C.3D.4二、填空题(每小题3分,共12分)13.若(b+d+f≠0),则=.14.已知线段AB=10,C为AB的黄金分割点(AC>BC),则AC=.15.在一次会议上,每两人都只握一次手,如果一共握手55次,则参加会议的人数为.16.如图,平面直角坐标系中A(4,0),B(0,3),C是AB的中点,M在折线AOB上,直线CM截三角形与三角形ABO相似,M的坐标是.三、解答题(共72分)17.已知:如图,△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)以点B为位似中心,在网格内画出△A1B1C1,使△A1B1C1与△ABC位似,且位似比为2:1,点C1的坐标是;(2)△A1B1C1的面积是平方单位.18.解下列方程:(1)2x2+5x=7(公式法);(2)2x2+6x+3=0(配方法).19.求证:不论k取什么实数,方程x2﹣(k+6)x+4(k﹣3)=0一定有两个不相等的实数根.20.数学实践小组的同学利用太阳光下形成的影子测量大树的高度.在同一时刻下,他们测得身高为1.5米的同学立正站立时的影长为2米,大树的影子分别落在水平地面和台阶上.已知大树在地面的影长为2.4米,台阶的高度均为0.3米,宽度均为0.5米.求大树的高度AB.21.如图,△ABC中,BD是角平分线,过D作DE∥AB交BC于点E,AB=5cm,BE=3cm,求EC的长.22.已知:如图,在▱ABCD中,点E是BC的中点,连接AE并延长交DC的延长线于点F,连接BF.(1)求证:△ABE≌△FCE;(2)若AF=AD,求证:四边形ABFC是矩形.23.如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:四边形ADCF是菱形;(2)若AC=12,AB=16,求菱形ADCF的面积.24.如图,一块材料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm,把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是多少?25.商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施,经调查发现,每件商品每降价1元,商场平均每天可多售出2件.(1)设每件商品降价x元,则商场日销售量增加件,每件商品,盈利元(用含x的代数式表示);(2)在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000元?26.目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了m人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.(1)根据图中信息求出m=,n=;(2)请你帮助他们将这两个统计图补全;(3)根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可“微信”这一新生事物?(4)已知A、B两位同学都最认可“微信”,C同学最认可“支付宝”,D同学最认可“网购”.从这四名同学中抽取两名同学,请你通过树状图或表格,求出这两位同学最认可的新生事物不一样的概率.27.现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?28.如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)根据题意知:BP=,BQ=.(用含t的代数式表示)(2)运动几秒时,△BPQ与△ABC相似?(3)连接AQ、CP,若AQ⊥CP,求t的值.参考答案与试题解析一.选择题(共12小题)1.方程x2=3x的解为()A.x=3B.x=0C.x1=0,x2=﹣3D.x1=0,x2=3【分析】因式分解法求解可得.【解答】解:∵x2﹣3x=0,∴x(x﹣3)=0,则x=0或x﹣3=0,解得:x=0或x=3,故选:D.2.长度为下列各组数据的线段(单位:cm)中,成比例的是()A.1,2,3,4B.6,5,10,15C.3,2,6,4D.15,3,4,10【分析】根据如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段,对每一项进行分析即可.【解答】解:A、1×4≠2×3,故本选项错误;B、5×15≠6×10,故本选项错误;C、2×6=3×4,故选项正确;D、3×15≠4×10,故选项错误.故选:C.3.已知,则的值是()A.B.C.D.【分析】根据等式的性质,可用b表示a,根据分式的性质,可得答案.【解答】解:由,得a=b,==﹣,故选:D.4.如图所示,小正方形的边长均为1,则下列选项中阴影部分的三角形与△ABC相似的是()A.B.C.D.【分析】根据网格中的数据求出AB,AC,BC的长,求出三边之比,利用三边对应成比例的两三角形相似判断即可.【解答】解:根据题意得:AB==,AC=2,BC==,∴BC:AC:AB=1::,A、三边之比为1::,图中的三角形(阴影部分)与△ABC相似;B、三边之比::3,图中的三角形(阴影部分)与△ABC不相似;C、三边之比为1::2,图中的三角形(阴影部分)与△ABC不相似;D、三边之比为2::,图中的三角形(阴影部分)与△ABC不相似.故选:A.5.在一个不透明的袋子里装有红球、黄球共20个,这些球除颜色外都相同.小明通过多次试验发现,摸出红球的频率稳定在0.25左右,则袋子中红球的个数最有可能是()A.5B.10C.12D.15【分析】设袋子中红球有x个,根据摸出红球的频率稳定在0.25左右列出关于x的方程,求出x的值,从而得出答案.【解答】解:设袋子中红球有x个,根据题意,得:=0.25,解得x=5,∴袋子中红球的个数最有可能是5个,故选:A.6.如图,已知在△ABC中,P为AB上一点,连接CP,以下条件中不能判定△ACP∽△ABC的是()A.∠ACP=∠B B.∠APC=∠ACB C.D.【分析】A、加一公共角,根据两角对应相等的两个三角形相似可以得结论;B、加一公共角,根据两角对应相等的两个三角形相似可以得结论;C、其夹角不相等,所以不能判定相似;D、其夹角是公共角,根据两边的比相等,且夹角相等,两三角形相似.【解答】解:A、∵∠A=∠A,∠ACP=∠B,∴△ACP∽△ABC,所以此选项的条件可以判定△ACP∽△ABC;B、∵∠A=∠A,∠APC=∠ACB,∴△ACP∽△ABC,所以此选项的条件可以判定△ACP∽△ABC;C、∵,当∠ACP=∠B时,△ACP∽△ABC,所以此选项的条件不能判定△ACP∽△ABC;D、∵,又∠A=∠A,∴△ACP∽△ABC,所以此选项的条件可以判定△ACP∽△ABC,本题选择不能判定△ACP∽△ABC的条件,故选:C.7.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有实数根,则k的取值范围是()A.k>B.k≥C.k>且k≠1D.k≥且k≠1【分析】根据根的判别式和一元二次方程的定义可得4﹣4(k﹣1)(﹣2)=8k﹣4≥0且k≠1,求出k的取值范围即可.【解答】解:∵关于x的一元二次方程(k﹣1)x2+2x﹣2=0有实数根,∴△≥0且k≠1,∴△=4﹣4(k﹣1)(﹣2)=8k﹣4≥0且k≠1,∴k≥且k≠1,故选:D.8.如图,在四边形ABCD中,顺次连接各边上的中点,得到四边形EFGH.要使得四边形EFGH为矩形,对角线AC、BD要满足()A.AC=BD B.AC=BD或AC⊥BDC.AC⊥BD D.AC和BD相互平分【分析】根据题意画出相应的图形,如图所示,由四边形EFGH为矩形,根据矩形的四个角为直角得到∠FEH =90°,又EF为三角形ABD的中位线,根据中位线定理得到EF与DB平行,根据两直线平行,同旁内角互补得到∠EMO=90°,同理根据三角形中位线定理得到EH与AC平行,再根据两直线平行,同旁内角互补得到∠AOD=90°,根据垂直定义得到AC与BD垂直.【解答】证明:如图,∵四边形EFGH是矩形,∴∠FEH=90°,又∵点E、F、分别是AD、AB边的中点,∴EF是三角形ABD的中位线,∴EF∥BD,∴∠FEH=∠OMH=90°,又∵点E、H分别是AD、CD各边的中点,∴EH是三角形ACD的中位线,∴EH∥AC,∴∠OMH=∠COB=90°,即AC⊥BD.故选:C.9.放假了,小明与小颖两家准备从红荷湿地、台儿庄古城、莲青山中选择一景点游玩,小明与小颖通过抽签方式确定景点,则两家抽到同一景点的概率是()A.B.C.D.【分析】首先用A,B,C分别表示红荷湿地、台儿庄古城、莲青山,然后画出树状图,再由树状图求得所有等可能的结果与两家抽到同一景点的情况,继而求得答案.【解答】解:用A,B,C分别表示红荷湿地、台儿庄古城、莲青山,画树状图得:∵共有9种等可能的结果,两家抽到同一景点的有3种情况,∴两家抽到同一景点的概率是:=.故选:A.10.如图,已知AB∥CD∥EF,它们依次交直线l1、l2于点A、D、F和点B、C、E,如果AD:DF=3:1,BE=10,那么CE等于()A.B.C.D.【分析】根据平行线分线段成比例定理得到==3,则BC=3CE,然后利用BC+CE=BE=10可计算出CE的长.【解答】解:∵AB∥CD∥EF,∴==3,∴BC=3CE,∵BC+CE=BE,∴3CE+CE=10,∴CE=.故选:C.11.△ABC中,DE∥BC,且AD:DB=2:3,那么S△ADE:S四边形DBCE等于()A.2:3B.4:21C.2:5D.4:9【分析】根据相似三角形的判定和性质定理即可得到结论.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴S△ADE:S△ABC=()2,∵AD:DB=2:3,∴S△ADE:S△ABC=()2=,∴S△ADE:S四边形DBCE=,故选:B.12.如图,在平行四边形ABCD中,∠BAC=90°,AB=AC,过点A作边BC的垂线AF交DC的延长线于点E,点F是垂足,连接BE、DF,DF交AC于点O.则下列结论:①四边形ABEC是正方形;②CO:BE=1:3;③DE=BC;④S四边形OCEF=S△AOD,正确的个数是()A.1B.2C.3D.4【分析】①先证明△ABF≌△ECF,得AB=EC,再得四边形ABEC为平行四边形,进而由∠BAC=90°,得四边形ABCD是正方形,便可判断正误;②由△OCF∽△OAD,得OC:OA=1:2,进而得OC:BE的值,便可判断正误;③根据BC=AB,DE=2AB进行推理说明便可;④由△OCF与△OAD的面积关系和△OCF与△AOF的面积关系,便可得四边形OCEF的面积与△AOD的面积关系.【解答】解:①∵∠BAC=90°,AB=AC,∴BF=CF,∵四边形ABCD是平行四边形,∵∠AFB=∠CFE,∴△ABF≌△ECF(AAS),∴AB=CE,∴四边形ABEC是平行四边形,∵∠BAC=90°,AB=AC,∴四边形ABEC是正方形,故此题结论正确;②∵CF∥AD,∴△OCF∽△OAD,∴OC:OA=CF:AD=CF:BC=1:2,∴OC:AC=1:3,∵AC=BE,∴OC:BE=1:3,故此小题结论正确;③∵AB=CD=EC,∴DE=2AB,∵AB=AC,∠BAC=90°,∴AB=BC,∴DE=2×,故此小题结论正确;④∵△OCF∽△OAD,∴,∴,∵OC:AC=1:3,∴3S△OCF=S△ACF,∵S△ACF=S△CEF,∴,∴,故此小题结论正确.故选:D.二.填空题(共4小题)13.若(b+d+f≠0),则=.【分析】直接根据等比性质求解.【解答】解:∵,故答案为.14.已知线段AB=10,C为AB的黄金分割点(AC>BC),则AC=5﹣5.【分析】根据黄金分割点的定义,知AC为较长线段;则AC=AB,代入数据即可得出AC的值.【解答】解:由于C为线段AB=10的黄金分割点,且AC>BC,AC为较长线段;则AC=10×=5﹣5.15.在一次会议上,每两人都只握一次手,如果一共握手55次,则参加会议的人数为11.【分析】设参加会议有x人,每个人都与其他(x﹣1)人握手,共握手次数为x(x﹣1),根据题意列方程即可.【解答】解:设参加会议有x人,依题意得:x(x﹣1)=55,整理得:x2﹣x﹣110=0,解得x1=11,x2=﹣10,(舍去),答:参加这次会议的有11人.故答案为:11.16.如图,平面直角坐标系中A(4,0),B(0,3),C是AB的中点,M在折线AOB上,直线CM截三角形与三角形ABO相似,M的坐标是(0,)或(2,0)或(,0).【分析】根据勾股定理求出AB,分点M在OB上、点M在OA上两种情况,根据相似三角形的性质计算,得到答案.【解答】解:∵A(4,0),B(0,3),∴OA=4,OB=3,由勾股定理得,AB==5,当点M在OB上,△BMC∽△BOA时,=,∵C是AB的中点,∴OM=OB﹣BM=,∴点M的坐标为(0,);当点M在OA上,△AM′C∽△AOB时,==,∴AM′=2,∴OM′=OA﹣AM′=2,∴点M的坐标为(2,0);当点M在OA上,△AM′′C∽△ABO时,=,即=,解得,AM′′=,∴OM′′=4﹣=,∴点M的坐标为(,0);综上所述,直线CM截三角形与三角形ABO相似,M的坐标是(0,)或(2,0)或(,0).三.解答题17.已知:如图,△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)以点B为位似中心,在网格内画出△A1B1C1,使△A1B1C1与△ABC位似,且位似比为2:1,点C1的坐标是(1,0);(2)△A1B1C1的面积是10平方单位.(2)利用梯形面积减去周围三角形面积求出△A1B1C1的面积.【解答】解:(1)如图所示:△A1B1C1即为所求,点C1的坐标是(1,0);故答案为:(1,0);(2))△A1B1C1的面积是:(2+4)×6﹣×2×4﹣×2×4=10.故答案为:10.18.解下列方程:(1)2x2+5x=7(公式法);(2)2x2+6x+3=0(配方法).【分析】(1)方程利用公式法求出解即可;(2)方程利用配方法求出解即可.【解答】解:(1)方程整理得:2x2+5x﹣7=0,这里a=2,b=5,c=﹣7,∵△=b2﹣4ac=25+56=81>0,∴x==,即x1=1,x2=﹣;(2)方程整理得:x2+3x=﹣,配方得:x2+3x+=,即(x+)2=,开方得:x+=±,解得:x1=﹣+,x2=﹣﹣.19.求证:不论k取什么实数,方程x2﹣(k+6)x+4(k﹣3)=0一定有两个不相等的实数根.0即可.【解答】证明:∵△=(k+6)2﹣4×1×4(k﹣3)=(k﹣2)2+80,而(k﹣2)2≥0,∴(k﹣2)2+80>0,即△>0,所以不论k取什么实数,方程x2﹣(k+6)x+4(k﹣3)=0一定有两个不相等的实数根.20.数学实践小组的同学利用太阳光下形成的影子测量大树的高度.在同一时刻下,他们测得身高为1.5米的同学立正站立时的影长为2米,大树的影子分别落在水平地面和台阶上.已知大树在地面的影长为2.4米,台阶的高度均为0.3米,宽度均为0.5米.求大树的高度AB.【分析】延长DH交BC于点M,延长AD交BC于N,构造相似三角形,利用相似三角形对应边成比例求解.【解答】解:延长DH交BC于点M,延长AD交BC于N.∴BM=3.4,DM=0.9.由,可得MN=1.2.∴BN=3.4+1.2=4.6.由,可得AB=3.45.所以,大树的高度为3.45米.21.如图,△ABC中,BD是角平分线,过D作DE∥AB交BC于点E,AB=5cm,BE=3cm,求EC的长.【分析】根据平行线和角平分线,可以证明△CDE∽△CAB,DE=BE,根据相似三角形的对应边的比相等,就可以求出EC的长.【解答】解:∵BD平分∠ABC,∴∠ABD=∠DBC.∵DE∥AB,∴∠ABD=∠BDE,∴∠DBC=∠BDE,∴DE=BE=3cm.∵DE∥AB,∴△CDE∽△CAB,∴=,即=,解得EC=4.5cm.22.已知:如图,在▱ABCD中,点E是BC的中点,连接AE并延长交DC的延长线于点F,连接BF.(1)求证:△ABE≌△FCE;(2)若AF=AD,求证:四边形ABFC是矩形.【分析】(1)根据平行四边形性质得出AB∥DC,推出∠1=∠2,根据AAS证两三角形全等即可;(2)根据全等得出AB=CF,根据AB∥CF得出平行四边形ABFC,推出BC=AF,根据矩形的判定推出即可.【解答】证明:(1)如图.∵四边形ABCD是平行四边形,∴AB∥DC即AB∥DF,∴∠1=∠2,在△ABE和△FCE中,,∴△ABE≌△FCE(AAS).(2)∵△ABE≌△FCE,∴AB=FC,∵AB∥FC,∴四边形ABFC是平行四边形,∴AD=BC,∵AF=AD,∴AF=BC,∴四边形ABFC是矩形.23.如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:四边形ADCF是菱形;(2)若AC=12,AB=16,求菱形ADCF的面积.【分析】(1)先证明△AEF≌△DEB(AAS),得AF=DB,根据一组对边平行且相等可得四边形ADCF是平行四边形,由直角三角形斜边中线的性质得:AD=CD,根据菱形的判定即可证明四边形ADCF是菱形;(2)先根据菱形和三角形的面积可得:菱形ADCF的面积=直角三角形ABC的面积,即可解答.【解答】(1)证明:∵E是AD的中点,∴AE=DE,∵AF∥BC,∵,∴△AEF≌△DEB(AAS),∴AF=DB,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,∴AD=CD=BC,∴四边形ADCF是菱形;(2)解:设AF到CD的距离为h,∵AF∥BC,AF=BD=CD,∠BAC=90°,∴S菱形ADCF=CD•h=BC•h=S△ABC=AB•AC=×12×16=96.24.如图,一块材料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm,把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是多少?【分析】根据正方形的对边平行得到BC∥EF,利用“平行于三角形的一边的直线截其它两边或其它两边的延长线,得到的三角形与原三角形相似”,设正方形零件的边长为xmm,则KD=EF=xmm,AK=(80﹣x)mm,根据相似三角形的性质得到比例式,解方程即可得到结果.【解答】解:∵四边形EGHF为正方形,∴BC∥EF,∴△AEF∽△ABC;设正方形零件的边长为xmm,则KD=EF=xmm,AK=(80﹣x)mm,∵AD⊥BC,∴=,∴=,解得:x=48.答:正方形零件的边长为48mm.25.商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施,经调查发现,每件商品每降价1元,商场平均每天可多售出2件.(1)设每件商品降价x元,则商场日销售量增加2x件,每件商品,盈利(50﹣x)元(用含x的代数式表示);(2)在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000元?【分析】(1)分别表示出增加的件数和盈利的金额即可;(2)日盈利=每件商品盈利的钱数×(原来每天销售的商品件数30+2×降价的钱数),把相关数值代入求解即可.【解答】解:(1)设每件商品降价x元,则商场日销售量增加2x件,每件商品,盈利(50﹣x)元,故答案为:2x,(50﹣x).(2)由题意得:(50﹣x)(30+2x)=2000,化简得:x2﹣35x+250=0,解得:x1=10,x2=25,∵该商场为了尽快减少库存,则x=10不合题意,舍去,∴x=25,答:每件商品降价25元,商场日盈利可达2000元;26.目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了m人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.(2)请你帮助他们将这两个统计图补全;(3)根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可“微信”这一新生事物?(4)已知A、B两位同学都最认可“微信”,C同学最认可“支付宝”,D同学最认可“网购”.从这四名同学中抽取两名同学,请你通过树状图或表格,求出这两位同学最认可的新生事物不一样的概率.【分析】(1)由共享单车人数及其百分比求得总人数m,用支付宝人数除以总人数可得其百分比n的值;(2)总人数乘以网购人数的百分比可得其人数,用微信人数除以总人数求得其百分比即可补全两个图形;(3)总人数乘以样本中微信人数所占百分比可得答案;(4)列表得出所有等可能结果,从中找到这两位同学最认可的新生事物不一样的结果数,根据概率公式计算可得.【解答】解:(1)∵被调查的总人数m=10÷10%=100人,∴支付宝的人数所占百分比n%=×100%=35%,即n=35,故答案为:100、35;(2)网购人数为100×15%=15人,微信对应的百分比为×100%=40%,补全图形如下:(3)估算全校2000名学生中,最认可“微信”这一新生事物的人数为2000×40%=800(人);答:大约有800人最认可“微信”这一新生事物.(4)列表如下:共有12种等可能情况,这两位同学最认可的新生事物不一样的有10种;所以这两位同学最认可的新生事物不一样的概率为P==.27.现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?【分析】(1)设该快递公司投递总件数的月平均增长率为x,根据“今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同”建立方程,解方程即可;(2)首先求出今年6月份的快递投递任务,再求出21名快递投递业务员能完成的快递投递任务,比较得出该公司不能完成今年6月份的快递投递任务,进而求出至少需要增加业务员的人数.【解答】解:(1)设该快递公司投递总件数的月平均增长率为x,根据题意得10(1+x)2=12.1,解得x1=0.1,x2=﹣2.1(不合题意舍去).答:该快递公司投递总件数的月平均增长率为10%;(2)今年6月份的快递投递任务是12.1×(1+10%)=13.31(万件).∵平均每人每月最多可投递0.6万件,∴21名快递投递业务员能完成的快递投递任务是:0.6×21=12.6<13.31,∴该公司现有的21名快递投递业务员不能完成今年6月份的快递投递任务∴需要增加业务员(13.31﹣12.6)÷0.6=1≈2(人).答:该公司现有的21名快递投递业务员不能完成今年6月份的快递投递任务,至少需要增加2名业务员.28.如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)根据题意知:BP=5tcm,BQ=(8﹣4t)cm.(用含t的代数式表示)(2)运动几秒时,△BPQ与△ABC相似?(3)连接AQ、CP,若AQ⊥CP,求t的值.【分析】(1)根据题意列式即可;(2)根据勾股定理即可得到结论;分两种情况:①当△BPQ∽△BAC时,BP:BA=BQ:BC;当△BPQ∽△BCA 时,BP:BC=BQ:BA,再根据BP=5t,QC=4t,AB=10cm,BC=8cm,代入计算即可;(3)过P作PM⊥BC于点M,AQ,CP交于点N,则有PB=5t,PM=3t,MC=8﹣4t,根据△ACQ∽△CMP,得出AC:CM=CQ:MP,代入计算即可.【解答】解:(1)根据题意知:BP=5tcm,BQ=8﹣4tcm,故答案为:5tcm,(8﹣4t)cm;(2)∵∠ACB=90°,AC=6cm,BC=8cm,∴AB===10(cm);分两种情况讨论:①当△BPQ∽△BAC时,,∵BP=5t,QC=4t,AB=10,BC=8,∴,解得,t=1,②当△BPQ∽△BCA时,,∴=,解得,t=;∴t=1或时,△BPQ∽△BCA;(3)过P作PM⊥BC于点M,AQ,CP交于点N,如图所示,则PB=5t,PM=3t,MC=8﹣4t,∵∠NAC+∠NCA=90°,∠PCM+∠NCA=90°,∴∠NAC=∠PCM,∵∠ACQ=∠PMC,∴△ACQ∽△CMP,∴=,∴=,解得t=.。

九年级数学上学期第二次月考试题(含解析)

九年级数学上学期第二次月考试题(含解析)

九年级数学上学期第二次月考试题(含解析)一.选择题(每小题3分,共45分)1.抛物线y=(x﹣2)2+3的顶点坐标是( )A.(2,3)B.(﹣2,3)C.(2,﹣3)D.(﹣2,﹣3)2.抛物线y=3(x﹣1)2+2的对称轴是( )A.x=1 B.x=﹣1 C.x=2 D.x=﹣23.在Rt△ABC中,∠C=90°,a=1,c=4,则sinA的值是( )A.B.C.D.4.在Rt△ABC中,∠C=90°,已知a和A,则下列关系中正确的是( )A.c=asinA B.c= C.c=acosA D.c=5.如果反比例函数在每个象限内,y随x的增大而减小,那么它的图象分布在( )A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限6.已知反比例函数y=的图象在第二、四象限,则a的取值范围是( )A.a≤2B.a≥2C.a<2 D.a>27.sin45°+cos45°的值等于( )A.B.C.D.18.在Rt△ABC中,∠C=90°,tanA=3,AC=10,则S△ABC等于( )A.3 B.300 C.D.1509.把抛物线y=x2+bx+c的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式为y=x2﹣3x+5,则( )A.b=3,c=7 B.b=6,c=3 C.b=﹣9,c=﹣5 D.b=﹣9,c=21 10.小敏在某次投篮中,球的运动线路是抛物线y=﹣x2+3.5的一部分(如图),若命中篮圈中心,则他与篮底的距离l是( )A.3.5m B.4m C.4.5m D.4.6m11.函数y=ax+b和y=ax2+bx+c在同一直角坐标系内的图象大致是( )A.B.C.D.12.反比例函数y=(k≠0)的图象经过点(2,5),若点(1,n)在反比例函数的图象上,则n等于( )A.10 B.5 C.2 D.113.某反比例函数的图象经过点(﹣2,3),则此函数图象也经过点( )A.(2,﹣3)B.(﹣3,﹣3)C.(2,3)D.(﹣4,6)14.在正方形网格中,△ABC的位置如图所示,则cosB的值为( )A.B.C.D.15.如图,已知正方形ABCD的边长为4,E是BC边上的一个动点,AE⊥EF,EF交DC于F,设BE=x,FC=y,则当点E从点B运动到点C 时,y关于x的函数图象是( )A.B.C.D.二、填空题(每小题3分,共18分)16.在Rt△ABC中,∠C=90°,a=2,b=3,则cosA=__________,sinB=__________,tanB=__________.17.某坡面的坡度为1:,则坡角α是__________度.18.如图所示的抛物线是二次函数y=ax2﹣3x+a2﹣1的图象,那么a 的值是__________.19.已知二次函数y=﹣x2+2x+m的部分图象如图所示,则关于x的一元二次方程﹣x2+2x+m=0的解为__________.20.双曲线y=与y=在第一象限内的图象如图,作一条平行于y轴的直线分别交双曲线于A、B两点,连接OA、OB,则△AOB的面积为__________.21.抛物线y=﹣(x﹣L)(x﹣3﹣k)+L与抛物线y=(x﹣3)2+4关于原点对称,则L+k=__________.三、解答题(共57分)22.计算:(1)tan30°sin60°+cos230°﹣sin245°tan45°;(2).23.(1)已知抛物线经过A(﹣2,4)、B(1,4)、C(﹣4,﹣6)三点,求抛物线的解析式.(2)二次函数的图象过点(3,0),(2,﹣3)两点,对称轴为x=1,求这个二次函数解析式.24.如图,正比例函数与反比例函数的图象相交于A、B两点,过B作BC⊥x轴,垂足为C,且△BOC的面积等于4.(1)求k的值;(2)求A、B两点的坐标;(3)在x轴的正半轴上是否存在一点P,使得△POA为直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.25.用一根长40m的篱笆围成一个矩形场地,长和宽分别为多少时,面积最大?26.如图,在旧城改造中,要拆除一建筑物AB,在地面上事先划定以B为圆心,半径与AB等长的圆形危险区.现在从离点B 24m远的建筑物CD的顶端C测得点A的仰角为45°,点B的俯角为30°,问离点B 35m处的一保护文物是否在危险区内?27.某商场以每件42元的价钱购进一种服装,根据试销得知:这种服装每天的销售量t(件),与每件的销售价x(元/件)可看成是一次函数关系:t=﹣3x+204(1)写出商场卖这种服装每天的销售利润y(元)与每件的销售价x (元)之间的函数关系式(每天的销售利润是指所卖出服装的销售价与购进价的差);(2)通过对所得函数关系式进行配方,指出:商场要想每天获得最大的销售利润,每件的销售价定为多少最为合适;最大销售利润为多少?28.已知:二次函数y=x2+bx+c的图象与x轴交于A,B两点,其中A 点坐标为(﹣3,0),与y轴交于点C,点D(﹣2,﹣3)在抛物线上.(1)求抛物线的解析式;(2)抛物线的对称轴上有一动点P,求出PA+PD的最小值;(3)点G抛物线上的动点,在x轴上是否存在点E,使B、D、E、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的E点坐标;如果不存在,请说明理由.2015-2016学年济南实验中学九年级(上)第二次月考数学试卷一.选择题(每小题3分,共45分)1.抛物线y=(x﹣2)2+3的顶点坐标是( )A.(2,3)B.(﹣2,3)C.(2,﹣3)D.(﹣2,﹣3)【考点】二次函数的性质.【分析】已知解析式为顶点式,可直接根据顶点式的坐标特点,求顶点坐标,从而得出对称轴.【解答】解:y=(x﹣2)2+3是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2,3).故选:C.【点评】此题主要考查了二次函数的性质,关键是熟记:顶点式y=a (x﹣h)2+k,顶点坐标是(h,k),对称轴是x=h.2.抛物线y=3(x﹣1)2+2的对称轴是( )A.x=1 B.x=﹣1 C.x=2 D.x=﹣2【考点】二次函数的性质.【分析】此题直接根据抛物线的顶点式的特殊形式即可得对称轴方程.【解答】解:∵y=3(x﹣1)2+2,∴对称轴为x=1.故选A.【点评】此题主要考查了求抛物线对称轴的方法.3.在Rt△ABC中,∠C=90°,a=1,c=4,则sinA的值是( )A.B.C.D.【考点】锐角三角函数的定义.【专题】计算题.【分析】由三角函数的定义,在直角三角形中,正弦等于对边比斜边易得答案.【解答】解:根据题意,由三角函数的定义可得sinA=,则sinA=;故选B.【点评】本题考查锐角三角函数的概念:在直角三角形中,正弦等于对边比斜边;余弦等于邻边比斜边;正切等于对边比邻边.4.在Rt△ABC中,∠C=90°,已知a和A,则下列关系中正确的是( )A.c=asinA B.c= C.c=acosA D.c=【考点】解直角三角形.【专题】计算题.【分析】正确计算sinA、cosA即可求得a、c的关系,即可解题.【解答】解:直角三角形中,sinA=,cosA=,∴可以求得c=,故B选项正确,故选 B.【点评】本题考查了直角三角形中三角函数值的计算,正确计算∠A的正弦值是解题的关键.5.如果反比例函数在每个象限内,y随x的增大而减小,那么它的图象分布在( )A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限【考点】反比例函数的图象.【分析】此题应根据反比例函数的图象并结合其增减性进行解答.【解答】解:根据反比例函数的性质,如果反比例函数在每个象限内,y随x的增大而减小,则其在第一、三象限.故选B.【点评】本题考查反比例函数的图形性质:当k>0时,在每个象限内y随x的增大而减小.6.已知反比例函数y=的图象在第二、四象限,则a的取值范围是( )A.a≤2B.a≥2C.a<2 D.a>2【考点】反比例函数的性质;解一元一次不等式.【专题】计算题.【分析】本题考查反比例函数的图象和性质,此图象位于二、四象限,则根据k<0求解.【解答】解:反比例函数y=的图象在第二、四象限,根据反比例函数的图象和性质,a﹣2<0,则a<2.故选C.【点评】本题考查了反比例函数的性质:①、当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②、当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.7.sin45°+cos45°的值等于( )A.B.C.D.1【考点】特殊角的三角函数值.【分析】根据sin45°=,cos45°=计算.【解答】解:∵sin45°=,cos45°=,∴sin45°+cos45°=+=.故选A.【点评】本题考查特殊角三角函数值的计算,特殊角三角函数值计算在中考中经常出现,题型以选择题、填空题为主.8.在Rt△ABC中,∠C=90°,tanA=3,AC=10,则S△ABC等于( )A.3 B.300 C.D.150【考点】解直角三角形.【专题】计算题.【分析】tanA==3,已知AC,即可求得BC的长从而求出面积.【解答】解:∵tanA==3,∴BC=AC•tanA=10×3=30,∴S△ABC=AC•BC=×10×30=150,故选:D.【点评】本题主要考查了解直角三角形,关键是三角函数的应用,已知直角三角形的一个锐角,及其中一条直角边,就可以求出另外的直角边.9.把抛物线y=x2+bx+c的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式为y=x2﹣3x+5,则( )A.b=3,c=7 B.b=6,c=3 C.b=﹣9,c=﹣5 D.b=﹣9,c=21【考点】二次函数图象与几何变换.【专题】压轴题.【分析】可逆向求解,将y=x2﹣3x+5向上平移2个单位,再向左平移3个单位,所得抛物线即为y=x2+bx+c,进而可判断出b、c的值.【解答】解:y=x2﹣3x+5=(x﹣)2+,将其向上平移2个单位,得:y=(x﹣)2+.再向左平移3个单位,得:y=(x+)2+=x2+3x+7.因此b=3,c=7.故选A.【点评】主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.10.小敏在某次投篮中,球的运动线路是抛物线y=﹣x2+3.5的一部分(如图),若命中篮圈中心,则他与篮底的距离l是( )A.3.5m B.4m C.4.5m D.4.6m【考点】二次函数的应用.【分析】当y=3.05时,求出对应的横坐标,与2.5m相加即可.【解答】解:当y=3.05时,﹣x2+3.5=3.05,解得x1=﹣1.5(舍去),x2=1.5,∴l=2.5+1.5=4m.故选B.【点评】本题考查了二次函数的实际应用.此题为数学建模题,熟悉函数二次函数与x轴的交点是解题的关键.11.函数y=ax+b和y=ax2+bx+c在同一直角坐标系内的图象大致是( )A.B.C.D.【考点】二次函数的图象;一次函数的图象.【分析】根据a、b的符号,针对二次函数、一次函数的图象位置,开口方向,分类讨论,逐一排除.【解答】解:当a>0时,二次函数的图象开口向上,一次函数的图象经过一、三或一、二、三或一、三、四象限,故A、D不正确;由B、C中二次函数的图象可知,对称轴x=﹣>0,且a>0,则b<0,但B中,一次函数a>0,b>0,排除B.故选:C.【点评】应该识记一次函数y=kx+b在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.12.反比例函数y=(k≠0)的图象经过点(2,5),若点(1,n)在反比例函数的图象上,则n等于( )A.10 B.5 C.2 D.1【考点】反比例函数图象上点的坐标特征.【专题】常规题型.【分析】将点(2,5)代入y=即可求出k的值,再根据k=xy解答即可.【解答】解:∵反比例函数的图象上有一点(2,5),∴k=2×5=10,又点(1,n)在反比例函数的图象上,∴10=1×n,解得:n=10.故选A.【点评】本题考查了反比例函数图象上点的坐标特征,只要点在函数的图象上,则一定满足函数的解析式.反之,只要满足函数解析式就一定在函数的图象上.13.某反比例函数的图象经过点(﹣2,3),则此函数图象也经过点( )A .(2,﹣3)B .(﹣3,﹣3)C .(2,3)D .(﹣4,6)【考点】反比例函数图象上点的坐标特征.【分析】将(﹣2,3)代入y=即可求出k 的值,再根据k=xy 解答即可.【解答】解:设反比例函数解析式为y=,将点(﹣2,3)代入解析式得k=﹣2×3=﹣6,符合题意的点只有点A :k=2×(﹣3)=﹣6.故选A .【点评】本题考查了反比例函数图象上点的坐标特征,只要点在函数的图象上,则一定满足函数的解析式.反之,只要满足函数解析式就一定在函数的图象上.14.在正方形网格中,△ABC 的位置如图所示,则cosB 的值为( )A .B .C .D .【考点】勾股定理;锐角三角函数的定义.【专题】压轴题;网格型.【分析】先设小正方形的边长为1,然后找个与∠B 有关的RT△ABD,算出AB 的长,再求出BD 的长,即可求出余弦值.【解答】解:设小正方形的边长为1,则AB=4,BD=4,∴cos∠B==.故选B .【点评】本题考查了锐角三角函数的定义以及勾股定理的知识,此题比较简单,关键是找出与角B 有关的直角三角形.15.如图,已知正方形ABCD 的边长为4,E 是BC 边上的一个动点,AE⊥EF,EF 交DC 于F ,设BE=x ,FC=y ,则当点E 从点B 运动到点C 时,y 关于x 的函数图象是( )A .B .C .D .【考点】动点问题的函数图象.【专题】压轴题.【分析】通过设出BE=x,FC=y,且△AEF为直角三角形,运用勾股定理得出y与x的关系,再判断出函数图象.【解答】解:设BE=x,FC=y,则AE2=x2+42,EF2=(4﹣x)2+y2,AF2=(4﹣y)2+42.又∵△AEF为直角三角形,∴AE2+EF2=AF2.即x2+42+(4﹣x)2+y2=(4﹣y)2+42,化简得:,再化为,很明显,函数对应A选项.故选:A.【点评】此题为动点函数问题,关键列出动点的函数关系,再判断选项.二、填空题(每小题3分,共18分)16.在Rt△ABC中,∠C=90°,a=2,b=3,则cosA=,sinB=,tanB=.【考点】锐角三角函数的定义.【分析】先根据勾股定理求出c的长,再运用锐角三角函数的定义求解.【解答】解:∵在Rt△ABC中,∠C=90°,a=2,b=3,∴由勾股定理得:c==,即coaA===,sinB===,tanB==.【点评】本题考查的是勾股定理及锐角三角函数的定义,属较简单题目.17.某坡面的坡度为1:,则坡角α是30度.【考点】解直角三角形的应用-坡度坡角问题.【分析】坡度等于坡角的正切值.根据特殊角的三角函数值解答.【解答】解:∵坡度为1:,∴tanα=,∴α=30°.故答案为:30.【点评】本题主要考查了坡度的定义,需要理解坡度与坡角之间的关系.18.如图所示的抛物线是二次函数y=ax2﹣3x+a2﹣1的图象,那么a 的值是﹣1.【考点】二次函数的图象.【分析】由图象可知,抛物线经过原点(0,0),二次函数y=ax2﹣3x+a2﹣1与y轴交点纵坐标为a2﹣1,所以a2﹣1=0,解得a的值.再图象开口向下,a<0确定a的值.【解答】解:由图象可知,抛物线经过原点(0,0),所以a2﹣1=0,解得a=±1,∵图象开口向下,a<0,∴a=﹣1.【点评】主要考查了从图象上把握有用的条件,准确选择数量关系解得a的值,简单的图象最少能反映出2个条件:开口向下a<0;经过原点a2﹣1=0,利用这两个条件即可求出a的值.19.已知二次函数y=﹣x2+2x+m的部分图象如图所示,则关于x的一元二次方程﹣x2+2x+m=0的解为x1=﹣1或x2=3.【考点】抛物线与x轴的交点.【分析】由二次函数y=﹣x2+2x+m的部分图象可以得到抛物线的对称轴和抛物线与x轴的一个交点坐标,然后可以求出另一个交点坐标,再利用抛物线与x轴交点的横坐标与相应的一元二次方程的根的关系即可得到关于x的一元二次方程﹣x2+2x+m=0的解.【解答】解:依题意得二次函数y=﹣x2+2x+m的对称轴为x=1,与x轴的一个交点为(3,0),∴抛物线与x轴的另一个交点横坐标为1﹣(3﹣1)=﹣1,∴交点坐标为(﹣1,0)∴当x=﹣1或x=3时,函数值y=0,即﹣x2+2x+m=0,∴关于x的一元二次方程﹣x2+2x+m=0的解为x1=﹣1或x2=3.故答案为:x1=﹣1或x2=3.【点评】本题考查的是关于二次函数与一元二次方程,在解题过程中,充分利用二次函数图象,根据图象提取有用条件来解答,这样可以降低题的难度,从而提高解题效率.20.双曲线y=与y=在第一象限内的图象如图,作一条平行于y轴的直线分别交双曲线于A、B两点,连接OA、OB,则△AOB的面积为.【考点】反比例函数系数k的几何意义.【分析】如果设直线AB与x轴交于点C,那么△AOB的面积=△AOC的面积﹣△COB的面积.根据反比例函数的比例系数k的几何意义,知△AOC的面积=1,△COB的面积=,从而求出结果.【解答】解:设直线AB与x轴交于点C.∵AB∥y轴,∴AC⊥x轴,BC⊥x轴.∵点A在双曲线y=y=的图象上,∴△AOC的面积=×2=1.点B在双曲线y=的图象上,∴△COB的面积=×1=.∴△AOB的面积=△AOC的面积﹣△COB的面积=1﹣=.故答案是:.【点评】本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.本知识点是中考的重要考点,同学们应高度关注.21.抛物线y=﹣(x﹣L)(x﹣3﹣k)+L与抛物线y=(x﹣3)2+4关于原点对称,则L+k=﹣9.【考点】二次函数图象与几何变换.【分析】利用函数的性质.【解答】解:整理抛物线y=﹣(x﹣L)(x﹣3﹣k)+L,得:y=﹣x2+(3+k+L)x﹣2L﹣Lk;整理抛物线y=(x﹣3)2+4得y=x2﹣6x+13.∵两抛物线关于原点对称,∴y=(x﹣3)2+4关于原点对称的函数的解析式是Ly=﹣(x+3)2﹣4,即y=﹣x2﹣6x﹣13.∴3+k+L=﹣6那么k+L=﹣9.故答案是:﹣9.【点评】解决本题的关键是理解两个函数中x,y都互为相反数,代入后让相应的系数相等.三、解答题(共57分)22.计算:(1)tan30°sin60°+cos230°﹣sin245°tan45°;(2).【考点】特殊角的三角函数值.【专题】计算题.【分析】本题涉及特殊角的三角函数值、二次根式化简.在计算时,需要针对每种情况分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:(1)原式=×+()2﹣()2×1,=+﹣=.(2)原式=+﹣3×()2+1﹣1,=+4﹣=2.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握二次根式的运算.23.(1)已知抛物线经过A(﹣2,4)、B(1,4)、C(﹣4,﹣6)三点,求抛物线的解析式.(2)二次函数的图象过点(3,0),(2,﹣3)两点,对称轴为x=1,求这个二次函数解析式.【考点】待定系数法求二次函数解析式.【专题】计算题.【分析】(1)设一般式y=ax2+bx+c,然后把A、B、C三点坐标代入得到关于a、b、c的三元一次方程组,再解方程组即可;(2)利用抛物线的对称性得到抛物线与x轴的另一个交点为(﹣1,0),则可设交点式y=a(x+1)(x﹣3),然后把(2,﹣3)代入求出a的值即可.【解答】解:(1)设抛物线的解析式为y=ax2+bx+c,根据题意得,解得a=﹣1,b=﹣1,c=6,所以抛物线的解析式为y=﹣x2﹣x+6;(2)∵抛物线的对称轴为直线x=1,而抛物线与x轴的一个交点为(3,0),∴抛物线与x轴的另一个交点为(﹣1,0),设抛物线解析式为y=a(x+1)(x﹣3),把(2,﹣3)代入得a•3•(﹣1)=﹣3,解得a=1,所以抛物线解析式为y=(x+1)(x﹣3),即y=x2﹣2x﹣3.【点评】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.24.如图,正比例函数与反比例函数的图象相交于A、B两点,过B作BC⊥x轴,垂足为C,且△BOC的面积等于4.(1)求k的值;(2)求A、B两点的坐标;(3)在x轴的正半轴上是否存在一点P,使得△POA为直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.【考点】反比例函数综合题.【专题】压轴题;开放型.【分析】(1)用B点坐标表示△BOC的面积建立关系式求k;(2)解由函数解析式组成的方程组;(3)存在.分别以OA为斜边和直角边分类讨论.【解答】解:(1)设点B(x,y),则BC=|y|=﹣y,CO=|x|=﹣x,∵B(x,y)在反比例函数的图象上,∴xy=k,因△BOC的面积等于4,,∴k=8;(2)∵k=8,所以反比例函数的解析式为,解方程组:,得:x1=4,y1=2;x2=﹣4,y2=﹣2,∴点A(4,2),B(﹣4,﹣2);(3)存在.当AP⊥x轴时,如图(1)点P(4,0),当AP⊥AO时,如图(2)设P(m,0),过点A作AD⊥x轴于D,由A(4,2)得AD=2,DO=4,PD=m﹣4,在Rt△ADO中,AO2=AD2+DO2=20,在Rt△ADP中,AP2=AD2+DP2=4+(m﹣4)2,在Rt△AOP中,PO2=AO2+AP2,即:20+[4+(m﹣4)2]=m2,解得m=5,所以P(5,0),综上,在x轴上存在点P(4,0)或P(5,0),使得△POA为直角三角形.【点评】注意点的坐标与线段长度的联系;分类讨论思想的应用,培养严谨的思维习惯.25.用一根长40m的篱笆围成一个矩形场地,长和宽分别为多少时,面积最大?【考点】二次函数的最值.【分析】设长方形的长为xm,表示出宽,然后根据长方形的面积公式列式整理,再根据二次函数的最值问题解答.【解答】解:设长方形的长为xm,则宽为m,长方形的面积=x=﹣x2+20x=﹣(x﹣10)2+100,所以,当x=10m时,面积最大,最大面积为100m2,此时宽为20﹣10=10m,答:长和宽分别为10m、10m时,面积最大.【点评】本题考查了二次函数的最值,用长表示出宽然后列出面积的表达式是解题的关键,整理成顶点式形式求解更简便.26.如图,在旧城改造中,要拆除一建筑物AB,在地面上事先划定以B为圆心,半径与AB等长的圆形危险区.现在从离点B 24m远的建筑物CD的顶端C测得点A的仰角为45°,点B的俯角为30°,问离点B 35m处的一保护文物是否在危险区内?【考点】解直角三角形的应用-仰角俯角问题.【分析】首先分析图形:根据题意构造直角三角形;本题涉及多个直角三角形,应利用其公共边构造等量关系,进而可求出答案.【解答】解:在Rt△AEC中,∠ACE=45°,则CE=EA,∵DB=CE=21m,∴DB=EA=21m,在Rt△CEB中,∠BCE=30°,则tan30°=,即BE=EC•tan30°=24×=8cm,∴AB=AE+EB=24+8m,24+8>35,则文物在危险区内.【点评】本题考查仰角与俯角的定义,要求学生能借助仰角与俯角构造直角三角形并解直角三角形.解此题的关键是掌握数形结合思想与方程思想的应用.27.某商场以每件42元的价钱购进一种服装,根据试销得知:这种服装每天的销售量t(件),与每件的销售价x(元/件)可看成是一次函数关系:t=﹣3x+204(1)写出商场卖这种服装每天的销售利润y(元)与每件的销售价x (元)之间的函数关系式(每天的销售利润是指所卖出服装的销售价与购进价的差);(2)通过对所得函数关系式进行配方,指出:商场要想每天获得最大的销售利润,每件的销售价定为多少最为合适;最大销售利润为多少?【考点】二次函数的应用.【分析】(1)商场的利润是由每件商品的利润乘每天的销售的数量所决定.在这个问题中,每件服装的利润为(x﹣42),而销售的件数是(﹣3x+204),由销售利润y=(售价﹣成本)×销售量,那么就能得到一个y与x之间的函数关系,这个函数是二次函数.(2)要求销售的最大利润,就是要求这个二次函数的最大值.【解答】解:(1)由题意,销售利润y(元)与每件的销售价x (元)之间的函数关系为y=(x﹣42)(﹣3x+204),即y=﹣3x2+330x﹣8568.故商场卖这种服装每天的销售利润y(元)与每件的销售价x(元)之间的函数关系式为y=﹣3x2+330x﹣8568;(2)配方,得y=﹣3(x﹣55)2+507.故当每件的销售价为55元时,可取得最大利润,每天最大销售利润为507元.【点评】本题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题.注意利用二次函数求最值时,关键是应用一次函数的性质;即由函数y随x的变化,结合自变量的取值范围确定最值.28.已知:二次函数y=x2+bx+c的图象与x轴交于A,B两点,其中A 点坐标为(﹣3,0),与y轴交于点C,点D(﹣2,﹣3)在抛物线上.(1)求抛物线的解析式;(2)抛物线的对称轴上有一动点P,求出PA+PD的最小值;(3)点G抛物线上的动点,在x轴上是否存在点E,使B、D、E、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的E点坐标;如果不存在,请说明理由.【考点】二次函数综合题.【专题】代数几何综合题.【分析】(1)将A、D的坐标代入抛物线的解析式中,即可求得待定系数的值.(2)根据抛物线的解析式即可得到其对称轴及B点的坐标,由于A、B 关于抛物线对称轴对称,连接BD,BD与抛物线对称轴的交点即为所求的P点,那么PA+PD的最小值即为BD的长,根据B、D的坐标,即可用勾股定理(或坐标系两点间的距离公式)求出BD的长,也就求得了PA+PD的最小值.(3)此题可分作两种情况考虑:①BE∥DG;根据抛物线的解析式可求得C点坐标,可得C、D关于抛物线对称轴对称,即C、D的纵坐标相同,所以CD∥x轴,那么C点就是符合条件的G点,易求得CD的长,根据平行四边形的性质知BE=CD,由此可得到BE的长,将B点坐标向左或向右平移CD个单位即可得到两个符合条件的E点坐标;②BD∥EG;根据平行四边形的性质知,此时G、D的纵坐标互为相反数,由此可求得G点的纵坐标,将其代入抛物线的解析式中即可求得G 点的坐标;那么将G点的横坐标减去3(B、D横坐标差的绝对值),即可得到两个符合条件的E点坐标;综上所述,符合条件的E点坐标应该有4个.【解答】解:(1)将A(﹣3,0),D(﹣2,﹣3)代入y=x2+bx+c,得:,解得:;∴抛物线的解析式为:y=x2+2x﹣3.(2)由:y=x2+2x﹣3得:对称轴为:,令y=0,则:x2+2x﹣3=0,∴x1=﹣3,x2=1,∴点B坐标为(1,0),而点A与点B关于x=﹣1对称,∴连接BD与对称轴的交点即为所求的P点.过点D作DF⊥x轴于点F,则:DF=3,BF=1﹣(﹣2)=3,在Rt△BDF中,BD=,∵PA=PB,∴PA+PD=PB+PD=BD=,即PA+PD的最小值为.(3)存在符合条件的点E,①在y=x2+2x﹣3中,令x=0,则有:y=﹣3,故点C坐标为(0,﹣3),∴CD∥x轴,∴在x轴上截取BE1=BE2=CD=2,得BCDE1和BDCE2,此时:点C与点G重合,E1(﹣1,0),E2(3,0).②∵BF=DF=3,∠DFB=90°,∴∠FBD=45°,当G3E3∥BD且相等时,有G3E3DB,作G3N⊥x轴于点N,∵∠G3E3B=∠FBD=45°,∠G3NE3=90°,G3E3=BD=,∴G3N=E3N=3;将y=3代入y=x2+2x﹣3得:,∴E3的坐标为:,即,同理可得:,综上所述:存在这样的点E,所有满足条件的E点坐标为:E1(﹣1,0),E2(3,0),E3,.【点评】此题考查了二次函数解析式的确定、轴对称的性质以及平行四边形的判定和性质;要特别注意的是(3)题中,由于没有明确BD 是平行四边形的边还是对角线,所以一定要分类讨论,以免漏解.。

九年级上学期第二次月考数学试题 (含答案) (精选5套试题) (1)

九年级上学期第二次月考数学试题 (含答案)  (精选5套试题) (1)

九年级上学期第二次月考数学试卷一、选择题(每小题3分,共24分)1.下列方程中,一元二次方程有()①3x2+x=20;②2x2﹣3xy+4=0;③;④x2=1;⑤A.2个B.3个C.4个D.5个2.若方程(x﹣4)2=a有实数解,则a的取值范围是()A.a≤0B.a≥0C.a>0 D.无法确定3.用配方法解一元二次方程x2+6x+7=0,则方程可化为()A.(x+3)2=9 B.(x﹣3)2=2 C.(x+3)2=2D.(x﹣3)2=74.关于x的方程(a﹣2)x2+x+2a=0是一元二次方程的条件是()A.a≠0B.a≠2C.a≠D.a≠﹣35.(3分)(2015秋•银川校级月考)一元二次方程x2﹣3x+1=0的根的情况()A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.以上答案都不对6.关于x的方程(3m2+1)x2+2mx﹣1=0的一个根是1,则m的值是()A.0 B.﹣C.D.0或,7.已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为()A.50°B.80°C.50°或80°D.40°或65°8.小芳妈妈要给一幅长为60cm,宽为40cm的矩形十字绣的四周装裱一条宽度相同的金色边框制成一幅矩形挂图,使整幅挂图面积是3400cm2.设金色边框的宽度为x cm,则x满足的方程是()A.x2+50x﹣1400=0 B.x2﹣65x﹣250=0C.x2﹣30x﹣1400=0 D.x2+50x﹣250=0二、填空题(每小题3分,共24分)9.分解因式x3﹣xy2的结果是.10.一元二次方程﹣2x2=6x+3的一次项系数为:.11.x2﹣4x+=(x﹣)2.12.三角形两边长是3和4,第三边的长是方程x2﹣5x+6=0的根,则该三角形周长为.13.方程是一元二次方程,则m=.14.请写出一个一元二次方程使它有一个根为3,.15.如图,已知AC=FE,BC=DE,点A、D、B、F在一条直线上,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是.16.一次会议上,每两个参加会议的人都相互握了一次手,经统计所有人共握了66次手,设这次到会的有x人,则可列方程为.三.解答题(共72分)17.(30分)解方程:①x2﹣2x=3②2(x﹣1)2=6③3x2﹣2=2x④5x(3x+2)=4(3x+2)⑤4x2﹣6x﹣2=2x+1⑥(3x﹣11)(x﹣2)=2.18.(6分)解不等式组:.19.(6分)如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点O.求证:∠A=∠D.20.(6分)制造一种产品,原来每件成本100元,由于连续两次降低成本,现在成本是81元,平均每次降低成本的百分数是多少?21.(8分)学校准备一边靠墙,另三边用木板围成一个面积为130㎡的长方形健身房,木板长33m,墙长15m,那么健身房的长和宽各是多少米,才能使木板正好合适?22.(8分)某超市销售一批羽绒服,平均每天可售出20件,每件盈利40元,为扩大销售增加盈利,超市决定适当降价.如果每件羽绒服降价1元,平均每天可多售出2件.如果超市平均每天要盈利1200元,每件羽绒服应降价多少元?此时的销售量是多少?23.(8分)在Rt△ACB中,∠C=90°,点P、Q同时由A、B两点出发分别沿AC、BC方向向点C匀速移动,点P的速度是2m/s,点Q的速度是1m/s.其中一点到终点,另一点也随之停止移动.(1)几秒后△PCQ为等腰三角形?(2)几秒后四边形ABQP的面积为Rt△ACB面积的三分之一?参考答案与试题解析一、选择题(每小题3分,共24分)1.下列方程中,一元二次方程有()①3x2+x=20;②2x2﹣3xy+4=0;③;④x2=1;⑤A.2个B.3个C.4个D.5个考点:一元二次方程的定义.分析:本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.解答:解:①符合一元二次方程定义,正确;②方程含有两个未知数,错误;③不是整式方程,错误;④符合一元二次方程定义,正确;⑤符合一元二次方程定义,正确.故选B.点评:判断一个方程是否是一元二次方程时,首先判断方程是整式方程,若是整式方程,再把方程进行化简,化简后是含有一个未知数,并且未知数的最高次数是2,在判断时,一定要注意二次项系数不是0.2.若方程(x﹣4)2=a有实数解,则a的取值范围是()A.a≤0B.a≥0C.a>0 D.无法确定考点:解一元二次方程-直接开平方法.专题:计算题.分析:利用直接开平方法解方程,然后根据二次根式的被开方数的非负数列出关于a的不等式方程,然后求得a的取值范围.解答:解:∵方程(x﹣4)2=a有实数解,∴x﹣4=±,∴a≥0;故选B.点评:本题考查了解一元二次方程﹣﹣直接开平方法.用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.解答该题时,还利用了二次根式有意义的条件这一知识点.3.用配方法解一元二次方程x2+6x+7=0,则方程可化为()A.(x+3)2=9 B.(x﹣3)2=2 C.(x+3)2=2 D.(x﹣3)2=7考点:解一元二次方程-配方法.分析:把左边配成完全平方式,右边化为常数.解答:解:由原方程,得x2+6x+32=﹣7+32,即(x+3)2=2,故选:C.点评:本题考查了配方法解一元二次方程.用配方法解一元二次方程的步骤:(1)形如x2+px+q=0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可.(2)形如ax2+bx+c=0型,方程两边同时除以二次项系数,即化成x2+px+q=0,然后配方.4.关于x的方程(a﹣2)x2+x+2a=0是一元二次方程的条件是()A.a≠0B.a≠2C.a≠D.a≠﹣3考点:一元二次方程的定义.分析:根据一元二次方程的定义可得a﹣2≠0,再解即可.解答:解:由题意得:a﹣2≠0,解得:a≠2.故选:B.点评:此题主要考查了一元二次方程的定义,关键是掌握一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.5.一元二次方程x2﹣3x+1=0的根的情况()A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.以上答案都不对考点:根的判别式.分析:首先确定a=1,b=﹣3,c=1,然后求出△=b2﹣4ac的值,进而作出判断.解答:解:∵a=1,b=﹣3,c=1,∴△=(﹣3)2﹣4×1×1=5>0,∴一元二次方程x2﹣3x+1=0两个不相等的实数根;故选B.点评:此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数;(3)△<0⇔方程没有实数根.6.关于x的方程(3m2+1)x2+2mx﹣1=0的一个根是1,则m的值是()A.0 B.﹣C.D.0或,考点:一元二次方程的解.分析:一元二次方程的根就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.解答:解:把1代入方程得3m2+1+2m﹣1=0,解得m=0或,故选:D.点评:本题的关键是把x的值代入原方程,得到一个关于待定系数的一元二次方程,然后求解.7.已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为()A.50°B.80°C.50°或80° D.40°或65°考点:等腰三角形的性质.分析:先知有两种情况(顶角是50°和底角是50°时),由等边对等角求出底角的度数,用三角形的内角和定理即可求出顶角的度数.解答:解:如图所示,△ABC中,AB=A C.有两种情况:①顶角∠A=50°;②当底角是50°时,∵AB=AC,∴∠B=∠C=50°,∵∠A+∠B+∠C=180°,∴∠A=180°﹣50°﹣50°=80°,∴这个等腰三角形的顶角为50°和80°.故选:C.点评:本题考查了等腰三角形的性质和三角形的内角和定理的理解和掌握,能对有的问题正确地进行分类讨论是解答此题的关键.8.小芳妈妈要给一幅长为60cm,宽为40cm的矩形十字绣的四周装裱一条宽度相同的金色边框制成一幅矩形挂图,使整幅挂图面积是3400cm2.设金色边框的宽度为x cm,则x满足的方程是()A.x2+50x﹣1400=0 B.x2﹣65x﹣250=0C.x2﹣30x﹣1400=0 D.x2+50x﹣250=0考点:由实际问题抽象出一元二次方程.专题:几何图形问题.分析:设金色边框的宽度为x cm,先求出装裱之后的长和宽,然后根据面积为3400列方程.解答:解:设金色边框的宽度为x cm,由题意得,(60+2x)(40+2x)=3400,整理得:x2+50x﹣250=0.故选D.点评:本题考查了由实际问题抽象出一元二次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.二、填空题(每小题3分,共24分)9.分解因式x3﹣xy2的结果是x(x+y)(x﹣y).考点:提公因式法与公式法的综合运用.分析:先提取公因式x,再对余下的多项式利用平方差公式继续分解.解答:解:x3﹣xy2,=x(x2﹣y2),=x(x+y)(x﹣y).故答案为:x(x+y)(x﹣y).点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.10.一元二次方程﹣2x2=6x+3的一次项系数为:6.考点:一元二次方程的一般形式.专题:计算题.分析:方程整理为一般形式,找出一次项系数即可.解答:解:方程﹣2x2=6x+3,即2x2+6x+3=0的一次项系数为6,故答案为:6点评:此题考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.11.x2﹣4x+4=(x﹣2)2.考点:配方法的应用.分析:先根据乘积二倍项和已知平方项确定出另一个数是4,再利用完全平方公式解答.解答:解:∵4x=2×2•x,∴x2﹣4x+4=(x﹣2)2,故答案为:4,2.点评:本题主要考查了配方法的应用,熟记完全平方公式是解题的关键.12.三角形两边长是3和4,第三边的长是方程x2﹣5x+6=0的根,则该三角形周长为9或10.考点:解一元二次方程-因式分解法;三角形三边关系.分析:求出已知方程的解,确定出三角形第三边长,求出周长即可.解答:解:方程x2﹣5x+6=0,分解因式得:(x﹣2)(x﹣3)=0,解得:x1=2,x2=3,当x=2时,三角形三边长分别为2,3,4,其周长=2+3+4=9;当x=3时,三角形三边长分别为3,3,4,周长为3+3+4=10,综上所述,该三角形周长为9或10.故答案为:9或10.点评:本题考查的是解一元二次方程﹣因式分解法,熟知利用因式分解法解一元二次方程是解答此题的关键.13.方程是一元二次方程,则m=﹣2.考点:一元二次方程的定义.分析:根据一元二次方程的定义,二次项系数不为0,未知数的次数为2,可得m的取值范围.解答:解:∵关于x的方程是一元二次方,∴,解得:m=﹣2.故答案为:﹣2.点评:本题考查了一元二次方程的定义,属于基础题,注意掌握一元二次方程的定义是解答本题的关键.14.请写出一个一元二次方程使它有一个根为3,x(x﹣3)=0(答案不唯一).考点:一元二次方程的解.专题:开放型.分析:有一个根是3的一元二次方程有无数个,只要含有因式x﹣3的一元二次方程肯定有一个根是3.解答:解:形如(x﹣3)(ax+b)=0(a≠0)的一元二次方程都有一个根是3,当a=1,b=0时,可以写出一个一元二次方程:x(x﹣3)=0.故答案可以是:x(x﹣3)=0(答案不唯一).点评:本题主要考查方程的根的定义,所写的方程只要把x=3代入成立即可.15.如图,已知AC=FE,BC=DE,点A、D、B、F在一条直线上,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是∠C=∠E(答案不惟一,也可以是AB=FD或AD=FB).考点:全等三角形的判定.专题:开放型.分析:要判定△ABC≌△FDE,已知AC=FE,BC=DE,具备了两组边对应相等,故添加∠C=∠E,利用SAS可证全等.(也可添加其它条件).解答:解:增加一个条件:∠C=∠E,显然能看出,在△ABC和△FDE中,利用SAS可证三角形全等.(答案不唯一).故填:∠C=∠E.点评:本题考查了全等三角形的判定;判定方法有ASA、AAS、SAS、SSS等,在选择时要结合其它已知在图形上的位置进行选取.16.一次会议上,每两个参加会议的人都相互握了一次手,经统计所有人共握了66次手,设这次到会的有x人,则可列方程为x(x﹣1)=66.考点:由实际问题抽象出一元二次方程.分析:可设参加会议有x人,每个人都与其他(x﹣1)人握手,共握手次数为x(x﹣1),根据一共握了66次手列出方程.解答:解:设参加会议有x人,依题意得,x(x﹣1)=66.故答案为:x(x﹣1)=66.点评:本题考查了由实际问题抽象出一元二次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.三.解答题(共72分)17.(30分)解方程:①x2﹣2x=3②2(x﹣1)2=6③3x2﹣2=2x④5x(3x+2)=4(3x+2)⑤4x2﹣6x﹣2=2x+1⑥(3x﹣11)(x﹣2)=2.考点:解一元二次方程-因式分解法;解一元二次方程-直接开平方法.分析:①④⑥利用分解因式法解方程即可;②利用直接开平方法解方程;③⑤整理成一般形式,利用公式法解方程即可.解答:解:①x2﹣2x=3x2﹣2x﹣3=0(x﹣3)(x+1)=0x﹣3=0,x+1=0解得:x1=3,x2=﹣1.②2(x﹣1)2=6(x﹣1)2=3x﹣1=±解得:x1=1+,x2=1﹣.③3x2﹣2=2x3x2﹣2x﹣2=0a=1,b=﹣2,c=﹣2b2﹣4ac=(﹣2)2﹣4×3×(﹣2)=28x=解得:x1=,x2=.④5x(3x+2)=4(3x+2)5x(3x+2)﹣4(3x+2)=0(3x+2)(5x﹣4)=03x+2=0,5x﹣4=0解得:x1=﹣,x2=.⑤4x2﹣6x﹣2=2x+14x2﹣8x﹣3=0a=4,b=﹣8,c=﹣3b2﹣4ac=(﹣8)2﹣4×4×(﹣3)=112x=解得:x1=,x2=.⑥(3x﹣11)(x﹣2)=23x﹣17x+20=0,(3x﹣5)(x﹣4)=0解得:x1=,x2=4.点评:此题考查解一元二次方程,根据方程的特点,灵活选用适当的方法解方程即可.18.(6分)解不等式组:.考点:解一元一次不等式组.分析:本题可根据不等式组分别求出x的取值,然后画出数轴,数轴上相交的点的集合就是该不等式的解集.若没有交集,则不等式无解.解答:解:不等式组可以转化为:,在坐标轴上表示为:∴不等式组的解集为x<﹣7.点评:求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.19.(6分)如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点O.求证:∠A=∠D.考点:全等三角形的判定与性质.专题:证明题.分析:求出BF=CE,根据SAS推出△ABF≌△DCE即可.解答:证明:∵BE=CF,∴BE+EF=CF+EF,∴BF=CE,在△ABF和△DCE中∴△ABF≌△DCE(SAS),∴∠A=∠D.点评:本题考查了全等三角形的性质和判定的应用,主要考查学生的推理能力.20.(6分)制造一种产品,原来每件成本100元,由于连续两次降低成本,现在成本是81元,平均每次降低成本的百分数是多少?考点:一元二次方程的应用.专题:增长率问题.分析:首先表示出第一次降价后的成本,然后表示出第二次的成本,根据两次降价后成本由100元降低到81元求解即可.解答:解:设平均每次降低的百分率为x,根据题意,得100(1﹣x)2=81解得:x=0.1,x=1.9(舍去),答:每次降低成本的百分数为10%.点评:考查了一元二次方程的应用,解题的关键是能够理解增长率问题,难度不大.21.(8分)学校准备一边靠墙,另三边用木板围成一个面积为130㎡的长方形健身房,木板长33m,墙长15m,那么健身房的长和宽各是多少米,才能使木板正好合适?考点:一元二次方程的应用.专题:几何图形问题.分析:首先设花坛长为x米,宽为米.根据矩形的面积公式列一元二次方程,进而解答即可.解答:解:设花坛长为x米,宽为米,故可得x=130,即x(33﹣x)=260,整理得:x2﹣33x+260=0,故可得(x﹣13)(x﹣20)=0故x=13或x=20(舍去).故花坛长为13米,宽为10米.点评:本题的考查了一元二次方程的应用,难度一般,关键是利用一元二次方程的应用与实际问题相结合.22.(8分)某超市销售一批羽绒服,平均每天可售出20件,每件盈利40元,为扩大销售增加盈利,超市决定适当降价.如果每件羽绒服降价1元,平均每天可多售出2件.如果超市平均每天要盈利1200元,每件羽绒服应降价多少元?此时的销售量是多少?考点:一元二次方程的应用.专题:销售问题.分析:可设每件羽绒服应降价x元,因为每件羽绒服降阶1元,平均每天可多售出2件,所以降价后每件可盈利(40﹣x)元,每天可售(20+2x)件,又因平均每天要盈利1200元,所以可列方程(40﹣x)(20+2x)=1200,即可求解.解答:解:设每件羽绒服应降价x元,依题意得:(40﹣x)(20+2x)=1200,整理得:x2﹣30x+200=0,解得:x1=10;x2=20.答:每件羽绒服应降价10元或20元.点评:考查了一元二次方程的应用,得到现在的销售量是解决本题的难点;根据每天盈利得到相应的等量关系是解决本题的关键.23.(8分)在Rt△ACB中,∠C=90°,点P、Q同时由A、B两点出发分别沿AC、BC方向向点C匀速移动,点P的速度是2m/s,点Q的速度是1m/s.其中一点到终点,另一点也随之停止移动.(1)几秒后△PCQ为等腰三角形?(2)几秒后四边形ABQP的面积为Rt△ACB面积的三分之一?考点:一元二次方程的应用.专题:几何动点问题.分析:(1)根据等腰三角形的两腰相等列出一元一次方程求解即可;(2)分别表示出PC和QC的长,利用三角形的面积公式列出方程求解即可.解答:解:(1)设x秒后,△PCQ是等腰三角形,则PC=(8﹣2x)cm,QC=(6﹣x)cm,∵△PCQ为等腰三角形,∴PC=QC,即:8﹣2x=6﹣x,解得:x=2,∴2秒后△PCQ为等腰三角形;(2)设y秒后四边形ABQP的面积为Rt△ACB面积的三分之一,根据题意得:(8﹣2y)(6﹣y)=××6×8,解得:y=2或y=8(舍去).答:2秒后四边形ABQP的面积为Rt△ACB面积的三分之一.点评:本题考查了一元一次方程及一元二次方程的应用,解题的关键是能够表示出有关线段的长,难度不大.北师大版九年级上学期第二次月考数学试卷一、精心选一选,相信你一定能选对!(每题3分,共36分)1.如图,在平行四边形ABCD中,AB=2,BC=3,∠ABC、∠BCD的平分线分别交AD于点E、F,则EF的长是()A.3 B.2C.1.5D.12.如图,EF过▱ABCD对角线的交点O,并交AD于E,交BC于F,若AB=4,BC=5,OE=1.5,则四边形EFCD的周长是()A.16 B.14 C.12 D.103.平行四边形一边长为10,那么它的对角线长度和可以为()A.8和12B.20和30 C.6和8 D.4和64.不能判定四边形ABCD为平行四边形的题设是()A.AB平行且等于CD B.∠A=∠C,∠B=∠DC.AB=AD,BC=CD D.AB=CD,AD=BC5.下面性质中菱形有而矩形没有的是()A.邻角互补B.内角和为360°C.对角线相等D.对角线互相垂直6.正方形具有而菱形不一定具有的性质是()A.对角线相等B.对角线互相垂直平分C.对角线平分一组对角D.四条边相等7.顺次连接任意四边形四边中点所得的四边形一定是()A.平行四边形B.矩形C.菱形D.正方形8.下列各图中,不是中心对称图形的是()A.B.C.D.9.下列命题中,真命题是()A.有两边相等的平行四边形是菱形B.有一个角是直角的四边形是直角梯形C.四个角相等的菱形是正方形D.两条对角线相等的四边形是矩形10.如图,四边形ABCD为矩形纸片,把纸片ABCD折叠,使点B恰好落在CD边的中点E 处,折痕为AF,若CD=6,则AF等于()A.B.C.D.811.如图,在平行四边形ABCD中,点E、F分别在边AB、CD上移动,且AE=CF,则四边形不可能是()A.平行四边形B.矩形C.菱形D.梯形12.如图,菱形ABCD的对角线交于点O,AC=8cm,BD=6cm,则菱形的高为()A.cm B.cm C.cm D.cm二、细心填一填,相信你填得又快又准!(每题4分,共20分)13.▱ABCD中,∠A=50°,则∠B=,∠C=,∠D.14.已知菱形两条对角线的长分别为5cm和8cm,则这个菱形的面积是cm2.15.矩形一个角的平分线分矩形一边为1cm和3cm两部分,则这个矩形的面积为cm2.16.对角线长为2的正方形的周长为,面积为.17.等腰梯形的上、下底分别是3cm和5cm,一个角是135°,则等腰梯形的面积为.三、用心做一做,培养你的综合运用能力,相信你是最棒的18.如图,E、F是平行四边形ABCD对角线AC上的两点,且AE=CF.求证:△ADF≌△CBE.19.已知:如图,平行四边形ABCD的对角线AC、BD相交于点O,E、F是直线AC上的两点,并且AE=CF.求证:四边形BFDE是平行四边形.20.已知:如图中,AD是∠A的角平分线,DE∥AC,DF∥A B.求证:四边形AEDF是菱形.21.如图,已知E是▱ABCD中BC边的中点,连接AE并延长AE交DC的延长线于点F.(1)求证:△ABE≌△FCE.(2)连接AC、BF,若∠AEC=2∠ABC,求证:四边形ABFC为矩形.22.证明:等腰梯形上底的中点与下底两端点的距离相等.23.如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥B D.求证:四边形OCED是菱形.24.等腰梯形ABCD中,AD∥BC,AB=CD,DE⊥BC与E,AE=BE,BF⊥AE与F,线段BF与图中的哪一条线段相等?先写出您的猜想,再加以证明.25.如图,△ABC中,点O为AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的外角平分线CF于点F,交∠ACB内角平分线CE于E.(1)试说明EO=FO;(2)当点O运动到何处时,四边形AECF是矩形并证明你的结论;(3)若AC边上存在点O,使四边形AECF是正方形,猜想△ABC的形状并证明你的结论.参考答案与试题解析一、精心选一选,相信你一定能选对!(每题3分,共36分)1.如图,在平行四边形ABCD中,AB=2,BC=3,∠ABC、∠BCD的平分线分别交AD于点E、F,则EF的长是()A.3 B.2 C. 1.5D.1考点:平行四边形的性质;角平分线的定义;等腰三角形的判定与性质.专题:数形结合.分析:根据平行四边形的性质可知∠DFC=∠FCB,又因为CF平分∠BCD,所以∠DCF=∠FCB,则∠DFC=∠DCF,则DF=DC,同理可证AE=AB,那么EF就可表示为AE+FD﹣BC=2AB﹣BC,继而可得出答案.解答:解:∵平行四边形ABCD,∴∠DFC=∠FCB,又CF平分∠BCD,∴∠DCF=∠FCB,∴∠DFC=∠DCF,∴DF=DC,同理可证:AE=AB,∴2AB﹣BC=AE+FD﹣BC=EF=1cm.故选D.点评:本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题,难度不大,关键是解题技巧的掌握.2.如图,EF过▱ABCD对角线的交点O,并交AD于E,交BC于F,若AB=4,BC=5,OE=1.5,则四边形EFCD的周长是()A.16 B.14 C.12 D.10考点:平行四边形的性质.分析:先利用平行四边形的性质求出AB、CD、BC、AD的值,可利用全等的性质得到△AEO ≌△CFO,即可求出四边形的周长.解答:解:已知AB=4,BC=5,OE=1.5,根据平行四边形的性质,AB=CD=4,BC=AD=5,在△AEO和△CFO中OA=OC,∠OAE=∠OCF,∠AOE=∠COF,所以△AEO≌△CFO,OE=OF=1.5,则EFCD的周长=ED+CD+CF+EF=(DE+CF)+AB+EF=5+4+3=12.则EFCD的周长是12.故选C.点评:本题考查平行四边形的性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.3.平行四边形一边长为10,那么它的对角线长度和可以为()A.8和12 B.20和30 C.6和8 D.4和6考点:平行四边形的性质;三角形三边关系.分析:平行四边形的长为10的一边,与两条对角线的一半构成的三角形的另两边应满足三角形的三边关系,即两边之和大于第三边,两边之差小于第三边.根据这个结论可以判断选择哪一个.解答:解:如图,设两条对角线的长度是x,y,即三角形的另两边是x,y,那么得到不等式组,解得.所以符合条件的对角线只有20和30它的两条对角线的长度可以是20和30.故选B.点评:本题主要考查平行四边形对角线互相平分的性质以及三角形的三边关系,有关“对角线范围”的题,应联系“三角形两边之和、差与第三边关系”知识点来解决.4.不能判定四边形ABCD为平行四边形的题设是()A.AB平行且等于CD B.∠A=∠C,∠B=∠DC.AB=AD,BC=CD D.AB=CD,AD=BC考点:平行四边形的判定.分析:根据平行四边形的判断定理,逐项分析,作出判断即可.解答:解:A、AB平行且等于CD,一组对边平行且相等的四边形是平行四边形,故选项正确;B、∠A=∠C,∠B=∠D,两组对角分别相等的四边形是平行四边形,故选项正确;C、AB=AD,BC=CD,AB与AD、BC与CD属于邻边,不能判定四边形为平行四边形,故选项错误;D、AB=CD,AD=BC,两组对边分别相等的四边形是平行四边形,故选项正确.故选C.点评:本题考查平行四边形的判定方法.一组对边平行且相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形.5.下面性质中菱形有而矩形没有的是()A.邻角互补B.内角和为360°C.对角线相等D.对角线互相垂直考点:菱形的性质;矩形的性质.分析:本题要熟知菱形以及矩形的性质方能解答要对比两者之间的相同点以及不同点.解答:解:A、∵平行四边形的邻角互补,∴矩形的邻角互补.故矩形和菱形的邻角均互补,故A错;B、平行四边形的内角和为360,矩形内角和为360度.故矩形和菱形的内角和都是360°,故B错;C、矩形的对角线相等,菱形的对角线互相垂直且平分,故C错;D、菱形对角线互相垂直,矩形的对角线不互相垂直.故选D.点评:根据菱形对角线互相垂直和矩形对角线相等的性质解答.6.正方形具有而菱形不一定具有的性质是()A.对角线相等B.对角线互相垂直平分C.对角线平分一组对角D.四条边相等考点:正方形的性质;菱形的性质.分析:根据正方形与菱形的性质即可求得答案,注意排除法在解选择题中的应用.解答:解:正方形的性质有:四条边都相等,四个角都是直角,对角线互相平分垂直且相等,而且平分一组对角;菱形的性质有:四条边都相等,对角线互相垂直平分.∴正方形具有而菱形不一定具有的性质是:对角线相等.故选A.点评:此题考查了正方形与菱形的性质.此题比较简单,解题的关键是熟记正方形与菱形的性质定理.7.顺次连接任意四边形四边中点所得的四边形一定是()A.平行四边形B.矩形C.菱形D.正方形考点:平行四边形的判定;三角形中位线定理.分析:顺次连接任意四边形四边中点所得的四边形,一组对边平行并且等于原来四边形某一对角线的一半,说明新四边形的对边平行且相等.所以是平行四边形.解答:解:连接BD,已知任意四边形ABCD,E、F、G、H分别是各边中点.∵在△ABD中,E、H是AB、AD中点,∴EH∥BD,EH=B D.∵在△BCD中,G、F是DC、BC中点,∴GF∥BD,GF=BD,∴EH=GF,EH∥GF,∴四边形EFGH为平行四边形.故选:A.点评:本题三角形的中位线的性质考查了平行四边形的判定:三角形的中位线平行于第三边,且等于第三边的一半.8.下列各图中,不是中心对称图形的是()A.B.C.D.考点:中心对称图形;生活中的旋转现象.分析:根据中心对称图形的概念和各图形的结构特点求解.解答:解:A、C、D都既是轴对称图形,也是中心对称图形;B、只是轴对称图形.故选:B.点评:掌握中心对称图形与轴对称图形的概念,要明确中心对称图形是要寻找对称中心,旋转180度后重合.9.下列命题中,真命题是()A.有两边相等的平行四边形是菱形B.有一个角是直角的四边形是直角梯形C.四个角相等的菱形是正方形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新人教九年级数学上第二次月考试题
班级 姓名 学号 成绩
一、选择题(每小题3分,共33分) 1、在式子b
a b
a a x m +-+,
2,4,5.0,31,
182中,是最简二次根式的式子有( )个 A 、2
B 、3
C 、1
D 、0
2、在平面直角坐标系中,点P (-2,3)关于原点对称的点在( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限
3、已知a 、b 、c 是ΔABC 三边长且方程0)(2)(2=-+-+-b a x a b x b c 有两相等的实数根,则这个三角形是( )
A 、等腰三角形
B 、等边三角形
C 、不等边三角形
D 、直角三角形 4、在半径等于5cm 的圆内有长为35cm 的弦,则此弦所对的圆周角为( )
A 、60º或120º B. 30º或120º C. 60º D. 120º 5、如图,⊙O 的半径为5,弦AB的长为8,M是弦AB上的动点,
则线段OM长的最小值为( ) A、2 B、3 C、4 D、5
6、AB 是⊙O 的弦,∠AOB =80︒,则AB 所对的圆周角是( )
A .40︒
B .40︒ 或140︒
C .20︒
D .80︒或100︒
7.如图, ⊙O 的半径OA=6, 以A 为圆心,OA 为半径的弧交⊙O
于B 、C 两点, 则BC= ( ) A. 36
B. 26
C. 33
D. 23
8.如图,ABC △内接于⊙O ,30C ∠=
,2AB =,则⊙O 的半径为( ) A
B .2 C
. D .4
9.按下列程序计算,最后输出的答案是( )
A.3a
B.2
1a + C.2a D.a
10.如图,四边形ABCD 内接于⊙O,若∠BOD=100
, 则∠DAB 的度数为( )
A .50
B .80
C .100
; D .130
11.如图是每个面上都标有一个汉字的正方体的平面展开图, 在此正方体上与“水”字相对的面上的汉字是( ) A .“秀”
B .“丽”
C .“江”
D .“城”
二、填空题(每小题3分,共21分)
1. 若圆的半径为2cm ,圆中一条弦长为23cm ,则此弦中点到此弦
所对劣弧的中点的距离为________.
2、如图A、B、C是⊙O上的三点,∠BAC=30°,则∠BOC的大小是°
3、如图,⊙O的半径为5cm,圆心到弦AB的距离为3cm,则弦AB的长为________cm;
4、在直径为10m的圆柱形油槽内装入一些油后,截面如图所示,
如果油面宽8
AB m
=,那么油的最大深度是_______m.
5、如图,在⊙O 中,弦 1.8
AB cm
=,圆周角30
ACB
∠=︒,则⊙O的直径等于________cm.
6、如图,AB为半圆O的直径,C、D是上的三等分点,
若⊙O的半径为1,E为线段AB上任意一点,计算图中
阴影部分的面积为________.
7.如图,一块等腰直角的三角板ABC,在水平桌面上绕点
C按顺时针方向旋转到A B C
''的位置,使A C B'
,,三点共
线,那么旋转角度的大小为
三、解答题(每小题6分,共18分)
1、如图,⊙O是ABC
△的外接圆,且1324
AB AC BC
===
,,求⊙O的半径.
2、如图,已知⊙O的半径为2,弦AB的长为23,点C与点D分别是劣弧AB与优弧ADB 上的任一点(点C、D均不与A、B重合).
(1)求∠ACB;(2)求△ABD的最大面积.
C
A'
'
3、某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,5月份的营业额达到633.6万元.求3月份到5月份营业额的平均月增长率.
四、解答题(每小题7分,共21分)
1、工程上常用钢珠来测量零件上小孔的直径.假设钢珠的直径是12毫米,测得钢珠顶端离零件表面的距离为9毫米,如图6所示,求这个小孔的直径AB是多少毫米?
2、“便民”水泥代销点销售某种水泥,每吨进价为250元.如果每吨销售价定为290元时,平均每天可售出16吨.
(1)若代销点采取降低促销的方式,试建立每吨的销售利润y(元)与每吨降低x(元)之间的函数关系式.
(2)若每吨售价每降低5元,则平均每天能多售出4吨.问:每吨水泥的实际售价定为多少元时,每天的销售利润平均可达720元.
3、商场购进一批单价为16元的日用品,销售一段时间后,为了获得更多的利润,商场决定提高销售价格,经调查发现,如果按每件20元的价格销售时,每月能卖360件,若按每月25元的价格销售时,每月能卖210件.若每月销售件数y(件)与价格x(元/件)满足关系式:y=Kx+b.(1)求K与b的值.(2)为了获得最大利润,商品价格应定为每件多少元?最大利润是多少元?
五、(每小题9分,共27分)
1、已知实数a 、b 分别满足22a 2a 2,b 2b 2+=+=.求11
a b
+的值.
2、如图⊙O 半径为2,弦BD =32,A 为弧BD 的中点,E 为弦AC 的中点,且在BD 上. 求:四边形ABCD 的面积.
3、如图,在等要直角三角形ABC 中,O 是斜边AC 的中点,P 是斜边AC 上的一个动点,D 为BC 上的一点,且PB=PD ,DE AC ⊥,垂足为点E .
⑴求证:PE=BO
⑵设AC=2a ,AP=x ,四边形PBDE 的面积为y ,
求y 与x 之间的函数关系式,并写出自变量的取值范围.
O P A E
D
B
B
参考答案
一、1、B 2、D 3、A 4、A 5、B 6、B 7、A 8、B 9、C 10、D 11、B 二、1、1cm 2、60 3、8 4、2 5、3.6 6、6
1
π 7、135° 三、1、连接OA,OB,⊙O 的半径是16.9
2、120°,33
3、20%
四、1、36 2、y=(290-x)-250=40-x ,定价 280元 3、k=-30,b=960, 定价 24元,1920元 五、
1、根据题意,a,b 是方程
0222=-+x x 的实数根
⑴当b a ≠时,a+b=-2,ab=2,
11
1=+b
a ⑵0222=-+x x 的实数根是,311+-=x ,312--=x
当b a ==-1+3时,131
1+=+b a 当b a ==-1-3时,
311
1-=+b
a 2、32
3、⑴∵△ABC 为等腰直角三角形,O 为斜边 AC 的中点,
∴BO ⊥AC ,BO=CO=AC ∠C=OBC=45°,DE⊥AC ,BO ⊥AC ,BO //DE ,
∵PB=PD
∴∠PBD=∠PDB, ∠POB=∠PED=90°,
∠PBO=∠PBD-∠OBC=∠PDB=∠OBC=∠PDB-∠C=∠DPE ∴△PBO≌△DPE , ∴PE=BO
⑵∵AC=2a,AP=x,
∴AO=BO=PE=a,DE=PO=EC=a-x,EO=x,
∴y= S PBO ∆+ S BDEO 梯形=x x a x a a )2(21)(21-+-222
1
2121a ax x ++-=, x 取值范围0<x<a。

相关文档
最新文档