高速加工
高速加工的概念

高速加工的概念世纪30年代,德国科学家Salomon在对不同材料进行切削实验时发现,随着切削速度的增加,切削温度及刀具磨损会剧烈增加,但是当切削速度达到并超过某临界值时,切削温度及切削力不但不会增加反而会减小,然后又随着切削速度的增加而急剧增加。
所谓高速加工就是指切削速度高于临界速度的切削加工。
从下图可看出,以刀具磨损的切削力为限制条件,前一个低于该值的区域A是一般传统加工。
后一个低于该值的区域HSM为高速加工。
由此也可看出,不同材料有不同的临界值,对于铝、镁合金,切削速度大于1000m/min 可称为高速加工,而对于加工钢或铸铁,切削速度大于305m/min就可称为高速加工了。
高速加工除了和切削速度有密切联系外,还和刀具材料、机床刚性等因素相关。
所以高速加工不仅决定于主轴速度与刀具直径,还与所切削的材料,刀具寿命及加工工艺等综合因素有关。
2.2高速加工的优点高速切削(HSC)加工作为一种先进切削技术,自二十世纪八十年代以来得到了日益广泛应用。
高速加工采用远高于常规加工切削速度进给速度,不仅可提高加工效率,缩短加工工时,同时还可获得很高加工精度。
随着高速主轴技术发展,与其配套新型刀具不断出现,同时对高速加工工艺参数优化研究也不断深入,使得高速切削技术理论研究应用都得到了长足发展。
高速切削(HSC)加工作为一种先进切削技术,自二十世纪八十年代以来得到了日益广泛应用。
高速加工采用远高于常规加工切削速度进给速度,不仅可提高加工效率,缩短加工工时,同时还可获得很高加工精度。
随着高速主轴技术发展,与其配套新型刀具不断出现,同时对高速加工工艺参数优化研究也不断深入,使得高速切削技术理论研究应用都得到了长足发展。
山特维克切削刀具高速加工主要优点有:1、切削力降低30%左右,非凡适合刚性差零件,2、由于加工时对刀具工件进行了冷却润滑,减少了切削热对工件影响,非凡适合加工易热变形工件;3、激振频率远远高于机床工艺系统固有频率,加工平稳,振动小,加工表面质量好;4、能极大地提高生产效率。
高速切削加工的工艺特点

高速切削加工的工艺特点高速切削加工是一种先进的金属加工方法,具有以下几个主要的工艺特点:1. 切削速度高:高速切削加工的切削速度通常比传统的切削加工方法高出数倍甚至数十倍。
这是由于高速切削使用了高速切削工具和适合高速切削的加工参数,如切削速度、进给速度和切削深度等。
高速切削加工的切削速度可以达到数千米/分钟,这对于提高生产效率和缩短加工时间非常有益。
2. 切削质量高:高速切削加工的另一个显著特点是切削质量高,表面粗糙度低。
这是因为高速切削使用了高硬度、高韧性和高耐磨性的刀具材料,在高速切削下刀具磨损小,可以保持刀具的锋利度,切削力也相对较小,切屑容易破碎,减少了切削振动,从而得到更高质量的切削表面。
3. 加工精度高:高速切削加工具有很高的加工精度,通常可以达到数微米的级别。
这是由于高速切削加工的切削力小、切削热量集中,能够减小切削变形和热影响区域,从而得到更高精度的零件尺寸和形状。
4. 加工效率高:高速切削加工具有很高的加工效率,可以大大缩短加工周期。
高速切削的切削速度快、进给速度高,加工速度相对传统切削加工方法快数倍,可以实现高效率的切削。
此外,使用高速切削还可以减少切削次数,提高生产效益。
5. 节能环保:高速切削加工相较于传统切削加工方法具有较低的切削力和切削温度。
低切削力减小了机床和刀具的负荷,延长了机床和刀具的使用寿命。
低切削温度减少了切削变形和刀具磨损,减少了能源的消耗。
因此,高速切削加工具有节能环保的特点,符合可持续发展的要求。
6. 加工适应性广:高速切削加工适用于各类金属材料的加工,如铁、钢、铜、铝、合金等。
而且,对于复杂零件的加工,高速切削加工也能够发挥其优势,提高生产效率和加工质量。
总之,高速切削加工具有切削速度高、切削质量高、加工精度高、加工效率高、节能环保和加工适应性广的特点。
在现代制造业中,高速切削加工已经成为提高加工效率和改善产品质量的重要工艺方法,对于推动制造业的快速发展具有重要意义。
高速加工技术

高速加工技术一.起源1931年,德国切削物理学家萨洛蒙(Carl.J.Salomon)博士提出了一个假设,即同年申请了德国专利的所罗门原理:被加工材料都有一个临界切削速度V0,在切削速度达到临界速度之前,切削温度和刀具磨损随着切削速度增大而增大,当切削速度达到普通切削速度的5~6倍时,切削刃口的温度开始随切削速度增大而降低,刀具磨损随切削速度增大而减小。
切削塑性材料时,传统的加工方式为“重切削”,每一刀切削的排屑量都很大,即吃刀大,但进给速度低,切削力大。
实践证明随着切削速度的提高,切屑形态从带状、片状到碎屑状演化,所需单位切削力在初期呈上升趋势,而后急剧下降,这说明高速切削比常规切削轻快,两者的机理也不同。
通过长期的研究,从上世纪90年代中期起,高速加工进入实用化阶段。
用户可以享受高速加工的高效率,高精度和成本优势。
德国OPS-INGERSOLL公司是目前世界上最好的高速加工中心制造商之一。
二.高速加工的定义高速加工是指转速在30,000RPM以上,实际加工切削进给保持8-12m/min的恒定进给。
我们从定义中看出,高速加工的一个关键要素是高速恒定进给。
由于高速加工时,转速上万转,特别在加工高硬度材料时,瞬间产生大量热量,所以必须保持高速进给,使产生的85%以上的热量被铁屑带走。
但在模具加工过程中,硬度通常在HRC50以上,且为复杂的曲面或拐角,所以高速机床必须做到在加工曲面或拐角时仍能高速进给。
另外实际加工中,刀具都有一个最佳切削参数,如能保持恒定进给,对刀具寿命,切削精度和加工表面质量都有提高。
由此看出,高速加工不仅是高速主轴,而且也是机床伺服系统的综合。
事实上,高速切削技术是一个非常庞大而复杂的系统工程,它涵盖了机床材料的研究及选用技术,机床结构设计和制造技术,高性能C NC控制系统、通讯系统,高速、高效冷却、高精度和大功率主轴系统,高精度快速进给系统,高性能刀具夹持系统,高性能刀具材料、刀具结构设计和制造技术,高效高精度测试测量技术,高速切削机理,高速切削工艺,适合高速加工的编程软件与编程策略等等诸多相关的硬件和软件技术。
我国高速加工技术现状及发展趋势

标题:我国高速加工技术现状及发展趋势在当前工业生产中,高速加工技术已成为了提高加工效率、降低成本、改善产品质量的重要手段。
我国作为全球最大的制造业大国,高速加工技术的现状和发展趋势备受关注。
本文将从深度和广度两个方面对我国高速加工技术进行全面评估,并探讨其发展趋势。
一、我国高速加工技术的现状1. 高速加工技术的定义和特点高速加工技术是指在高速度下对工件进行切削加工的一种先进加工技术,具有高效率、高精度、高表面质量、低热影响区等特点。
2. 国内高速加工技术的发展历程自20世纪80年代以来,我国的高速加工技术得到了迅猛的发展,尤其是在航空航天、汽车制造、模具制造等行业得到了广泛应用。
3. 我国高速加工技术的应用现状高速加工技术在航空航天、汽车制造、模具制造、医疗器械等领域得到了广泛应用,成为提高生产效率和产品质量的重要手段。
二、我国高速加工技术的发展趋势1. 技术创新推动高速加工技术的发展随着科技的进步和不断创新,高速加工技术将会更加高效、精密、稳定,能够满足更加复杂的加工需求。
2. 智能制造与高速加工技术的融合智能制造将成为未来高速加工技术发展的重要方向,通过智能化、自动化技术,提高生产效率和产品质量。
3. 绿色制造与高速加工技术的结合高速加工技术在减少碳排放、节能减排方面将会有更大的发展空间,应用于绿色制造领域。
4. 人工智能在高速加工技术中的应用随着人工智能技术的快速发展,其在高速加工技术中的应用将会成为新的发展趋势,将提高生产效率和产品质量。
三、总结与展望我国高速加工技术在不断发展创新的过程中,已经取得了令人瞩目的成绩,但与发达国家相比仍有一定差距。
在未来发展中,需要加大科技投入力度,加强技术研发和创新,培养更多高端技术人才,不断提升我国的高速加工技术水平,推动制造业向高质量发展。
个人观点:高速加工技术作为先进制造技术的代表,将会对我国工业生产产生深远影响。
在未来,我相信随着科技的进步和不断创新,我国的高速加工技术将不断迈向更加高效、精密、稳定的发展方向,并为我国制造业的转型升级和智能制造提供重要支撑。
高速切削加工技术ppt课件.pptx

我国高速切削加工技术最早应用于轿车工业,二十世纪八十年 代后期,相继从德国、美国、法国、日本等国引进了多条具有先进 水平的轿车数控自动化生产线,如从德国引进的具有九十年代中期 水平的一汽大众捷达轿车和上海大众桑塔纳轿车自动生产线,其中 大量应用了高速切削加工技术。生产线所用刀具材料以超硬刀具为 主,依靠进口。
近年来,我国航天、航空、汽轮机、模具等制造行业引进了 大量加工中心和数控镗铣床,都不同程度地开始推广应用高速切 削加工技术,其中模具行业应用较多。
例如上海某模具厂,高速铣削高精度铝合金模具型腔,半精 铣采用主轴转速18000rpm,切削深度2mm,进给速度5m/min; 精铣采用20000rpm,切削深度0.2mm,进给速度8m/min,加工 周期为6h,质量完全满足客户要求。
➢ 高速切削已成为当今制造业中一项快速发展 的新技术,在工业发达国家,高速切削正成 为一种新的切削加工理念。
➢ 人们逐渐认识到高速切削是提高加工效率的 关键技术。
高速切削的特点
➢ 随切削速度提高,单位时间内材料切除率增加,切削加工时间减 少,切削效率提高3~5倍。加工成本可降低20%-40%。
➢ 在高速切削加工范围,随切削速度提高,切削力可减少30%以上, 减少工件变形。对大型框架件、刚性差的薄壁件和薄壁槽形零件 的高精度高效加工,高速铣削是目前最有效的加工方法。
高速切削的加工工艺方法
目前高速切削工艺主要在车削和铣削,各类高速切削机床 的发展将使高速切削工艺范围进一步扩大,从粗加工到精加工 ,从车削、铣削到镗削、钻削、拉削、铰削、攻丝、磨削等。
随着市场竞争的进一步加剧,世界各国的制造业都将更加积 极地应用高速切削技术完成高效高精度生产。
高速切削加工在国内的研究与应用
高速加工技术及应用

高速加工技术及应用高速加工技术是一种在短时间内迅速、高效地完成工件加工的技术。
它是现代制造业发展的重要一环,广泛应用于航空航天、汽车、船舶、电子、模具等领域。
高速加工技术的特点有以下几点:1.高速切削:高速加工技术采用高速旋转的切削工具,使得切削速度大大提高,一般可以达到切削速度的数倍甚至十数倍,从而大大缩短了加工时间。
2.小切削量:高速加工技术多采用微小切削量的方式进行切削,这样可以降低加工对机床、刀具和工件的热影响,提高加工精度。
3.高精度和高表面质量:高速加工技术能够实现很高的加工精度和表面质量,通常可以达到几个微米的加工精度和很低的表面粗糙度。
4.刀具寿命长:高速加工技术采用高硬度和高耐磨性的刀具材料,使得刀具使用寿命大大延长,降低了换刀频率和加工成本。
高速加工技术在以下方面有广泛的应用:1.航空航天领域:在航空航天领域,高速加工技术能够加工各种复杂曲面和薄壁结构件,如发动机叶片、航空航天零件等,提高了零件的精度和表面质量。
2.汽车领域:高速加工技术在汽车制造中主要用于零部件的加工,如发动机缸体、座椅滑块等,能够提高加工效率和产品质量。
3.船舶领域:高速加工技术在船舶制造中主要用于船体结构和轴承加工,如船体钢板切割、轴承的外圈和内圈加工等,提高了加工速度和质量。
4.电子领域:高速加工技术在电子领域主要用于半导体器件的切割和加工,如芯片切割、光纤连接器加工等,提高了加工精度和产品性能。
5.模具领域:高速加工技术在模具制造中主要用于模具的精细加工,如模具的深孔加工、细小结构的加工等,提高了模具的加工精度和寿命。
高速加工技术的发展对于提高制造业的竞争力和产品质量具有重要意义。
随着材料科学和机械加工技术的不断发展,高速加工技术将在更多领域得到应用,并不断推动制造业的发展。
高速加工技术

手机外壳的加工
电脑键盘的制造
平板电脑外壳的铣削
电子元器件的微细加 工
06
高速加工技术的发展趋势和未来展望
高速加工技术的发展趋势
更高的切削速度:随着新材料和新工艺的不断发展高速加工技术将进一步提高切削速度提高加 工效率。
智能化和自动化:随着人工智能和机器学习技术的不断发展高速加工技术将更加智能化和自动 化实现加工过程的自动监控和优化。
高速加工技术采 用小切削力可以 减小工件变形和 振动提高加工精
度。
高速加工技术可 以快速切除工件 材料缩短加工时
间降低成本。
高速加工技术采 用先进的控制系 统和刀具能够实 现高精度的轨迹 控制和补偿功能 进一步增强加工 过程的灵活性。
04
高速加工的关键技术
高速切削技术
定义:高速切削 是一种在极高转 速下进行的切削 加工方法具有高 进给速度和高切 削速度的特点。
05
高速加工技术的应用案例
航空航天领域的应用案例
高速加工技术在航空航天领域的应用提高了零件的加工精度和效率。 在航空发动机制造中高速加工技术能够快速去除材料提高生产效率。 高速加工技术在航天器制造中得到广泛应用如卫星天线、太阳能电池板等。 高速加工技术能够满足航空航天领域对高精度、高质量、高效率的加工要求。
高精度加工技术
高速切削技术:通过高转速的刀具实现高效切削提高加工精度和表面质量。
超精密切削技术:采用超硬材料和纳米级切削参数实现超精密切削提高加工精度和表面光 洁度。
快速点磨削技术:通过高速旋转的磨头对工件进行快速点磨削实现高效高精度加工。
激光辅助加工技术:利用激光的高能量密度特性对工件进行快速、高精度的加工。
通过高速加工 技术可以实现 快速原型制造 和快速模具制 造缩短了产品 开发周期降低 了开发成本。
材料加工与制造中的新技术

材料加工与制造中的新技术随着科技的进步,材料加工与制造领域也在不断地革新与发展。
新技术的出现,让加工与制造变得更加高效、精准和环保,为产业升级和发展带来了新的机遇和挑战。
一、高速加工技术高速加工技术是一种利用高速的机床和刀具,以较大的进给量和切削深度进行金属材料的切削加工的技术。
相比传统的加工技术,高速加工技术可以大大提高加工效率,降低生产成本。
在高速加工中,钨钢等超硬合金已成为切削工具主要材料,辉带是目前被广泛使用的刀具涂层之一,可大大提高刀具的寿命,使其更加耐磨,减小切削力,提高加工精度和稳定性。
二、立体打印技术近年来,立体打印技术在制造业中引起了广泛关注。
这项技术基于数字化设计,将设计图通过电脑转化为CAD格式,再通过专业的打印机进行扫描和处理,最后利用打印机内部的机械臂、喷头等器件把材料精确地堆积在一起,逐层完成构建出的物品。
立体打印技术能够加工出精度极高和复杂度较高的构件,可以应用于一些特殊的材料加工和生产过程中,比如复杂内部结构的金属零件和医疗用品等。
三、智能制造技术智能制造是一个集成了多个领域内的技术和方法的综合体,涵盖了先进的装备、实时生产计划和控制、数字化设计和生产等各个方面。
利用一些新技术和下一代信息技术,智能制造可以实现生产流程的自适应性和自主化,提高生产效率,从而提高了生产力和企业竞争力。
比如,利用工业机器人和人工智能技术,智能制造可以实现各种自动化加工,快速反应市场变化,生产出优质的产品,并实现对于产品质量、生产时效等方面的精密控制。
四、激光切割技术激光切割技术是一种利用高能量的激光束来切割材料的技术。
它可以对各种材料进行高精度、高效率的切割。
在激光切割过程中,因为激光束的能量非常高,使得切削效果更加准确和平滑,在加工过程中也会产生较少的废料和污染物,使该技术更具环保性。
同时,激光切割技术的应用领域非常广泛,可以应用于钣金、电子、医疗器械、汽车等各个行业。
五、无人化工厂无人化工厂采用自动化生产方式,将机器人带进厂房,建立具有高度自动化的生产线,实现生产流程的自动化和无人化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
v = 800m/mim vz = 0.08mm/齿 a p= 0.5mm
v = 2900m/mim vz = 0.018mm/齿 a p= 0.5mm
v = 590m/mim f = 0.2mm/r a p= 10mm
v = 132m/mim vf = 380mm/min
v = 350m/mim f = 0.05mm/r a p= 0.25mm, 干切
学科前沿讲座之五
高速加工技术
High Speed Machining Technology
1
内容提要
高速加工概述 高速加工应用 高速加工刀具技术 高速加工机床技术 高速加工路径规划 高速磨削技术
2
1. 高速加工概述
高速加工概念
➢ 尚无统一定义,一般认为高速加工是指采用超硬材料 的刀具,通过极大地提高切削速度和进给速度,来提高 材料切除率、加工精度和加工表面质量的现代加工技术。 ➢ 以切削速度和进给速度界定:高速加工的切削速度和 进给速度为普通切削的5~10倍。 ➢ 以主轴转速界定:高速加工的主轴转速≥10000 r/min。 ➢ 高速加工切削速度范围随加工方法不同也有所不同:
➢ Salomom的理论与实验结果,引发了人们极大的兴趣, 并由此产生了“高速切削(HSC)”的概念
➢ 1960年前后美国空军和Lockheed飞机公司研究了用于轻 合金材料的超高速铣削(切削速度达1500~4500m/min) ➢ 德国,全面而系统研究超高速切削机床、刀具、控制系 统以及相关工艺技术,并广泛应用,获得好的经济效益
9
2. 高速加工应用
表2 PCD刀具切削铝、铜合金实例
加工对象 加工方式
工艺参数
刀具参数
加工效果
车辆汽缸体 AiSi17Cu4Mg
合金
照相机机身 13%硅铝合金
活塞环槽 LM24铝合金
活塞式阀门 LM24铝合金
整流子 CDA105铜合金 油泵喷射内源自 GdAlSi12Cu硅铝合金
精铣 精铣 车削 钻孔 精车 精镗
可连续加工2500件,无颤振
可连续加工5000件,取代硬质 合金钻头定中心、钻孔、铰孔
可连续加工2500件(使用WC 基硬质合金只能加工50件)
Ra=0.35μm,每把刀可加工 150000件
10
2. 高速加工应用
铸铁与钢高速切削加工
不仅可以获得高的加工效率和好的表面质量,还可以 对淬硬钢和冷硬铸铁进行切削加工,实现以切代磨。
➢ 动力学特性好:刀具激振频率远离工艺系统固有频率, 不易产生振动,可获得好的表面粗糙度
➢ 可加工硬表面:高速切削可加工硬度HRC45-65的淬硬 钢铁件,在一定条件下可取代磨削加工或某些特种加工
➢ 环保:可实现“干切”和“准干切”,避免冷却液污染
5
1. 高速加工概述
高速加工的产生和发展
➢ 1931年德国切削物理学家C.J.Salomom在“高速切削原 理”一文中给出了著名的“Salomom曲线”——对应于一 定的工件材料存在一个临界切削速度,此点切削温度最高, 超过该临界值,切削速度增加,切削温度反而下降
v = 180m/mim f = 5.6mm/r a p= 1.5mm
图1 高速与超高速切削速度范围
10000
4
1. 高速加工概述
高速加工特点
➢ 加工效率高:进给率较常规切削提高5-10倍,材料去除
率可提高3-6倍
Real Real
➢ 切削力小:较常规切削至少降低30%,径向力降低更明 显。工件受力变形小,适于加工薄壁件和细长件
➢ 切削热小:加工过程迅速,95%以上切削热被切屑带走, 工件积聚热量极少,温升低,适合于加工熔点低、易氧化 和易于产生热变形的零件,可提高加工精度
不宜采用金刚石刀具,可以选用涂层硬质合金、陶瓷 和PCBN等刀具,在超高速切削时应首选PCBN。
加工对象
表3 PCBN刀具高速切削钢和铸铁实例
硬度 加工方式
工艺参数
加工效果
轧辊 Cr15钢
HRC71
A3热压板
汽缸套孔 珠光体铸铁
Cr、Cu铸铁 40Cr钢
HB210 HRC38
车削
端铣
精镗 端铣 立铣
v = 173m/mim f = 0.02mm/r a p= 0.2mm
12mm方形刀片 齿数z = 12 α=12° 齿数z = 4 γ=10° α=12° γ=10° α=12° α’=2°
麻花钻
γ=0° α=7° r=0.5mm
阶梯镗刀
Ra=0.8μm,可连续加工500件 (使用WC基硬质合金只能加 工25件) Ra=0.8~0.4μm,可连续加工 20000件(使用WC基硬质合金 只能加工250件)
➢ 日本在超高速切削机床的研究和开发方面后来居上,现 已成为世界上超高速机床的主要提供者
6
1. 高速加工概述
切削温度/℃
1600
钢
1200
青铜
铸铁
硬质合金980℃
Stelite合金850℃
800
高速钢650℃
400
软铝
碳素工具钢450℃
非铁金属
0 切削不 切削适应区 适应区
600
1200
切削适应区
高速加工工艺
实时监控与安全保障系统
切削力 切削热 切屑形态 切削振动
刀具材料与结构设计 刀具使用寿命 磨损、破损机理与在线检测 动平衡 刀具刃磨与修整
切削方式 路径规划 加工参数选取 工序、工步优化设计
图3 高速加工技术体系及关键技术
8
2. 高速加工应用
不同材料的高速加工
铝、铜合金的高速切削加工 铝、铜合金的强度和硬度相对较低,导热性好,适 于进行高速切削加工,不仅可以获得高的生产率,还可 以获得好的加工表面质量。 切削铝、铜合金可选用的刀具材料有硬质合金、金 刚石镀层硬质合金以及PCD等。
◎车削:700-7000 m/min ◎铣削:300-6000 m/min ◎钻削:200-1100 m/min ◎磨削:100-300 m/s
3
1. 高速加工概述
➢ 高速加工切削速度范围因不同的工件材料而异(图1)
塑料 铝合金 铜 铸铁 钢 钛合金 镍合金
10
100
1000
切削速度V(m/min)
1800
2400
3000
切削速度v/(m/min)
图2 Salomon切削温度与切削速度曲线
7
1. 高速加工概述
高速加工关键技术
高速加工体 系结构及关
键技术
高速切削与磨削机理
高速加工机床
机床整体结构 机床主轴系统 机床进给系统 冷却系统 安全防护装置 数控系统 实时监控系统
高速加工刀具
工件
工件材料 定位夹紧 动平衡