2019年春七年级数学下册第4章因式分解4.3第2课时用完全平方公式分解因式练习新版浙教

合集下载

第四章 因式分解复习

第四章 因式分解复习
因式分解的一般步骤:
第一步:先看多项式各项有无公因式,
如有公因式则要先提取公因式; 第二步:再看有几项,
如两项,则考虑用平方差公式;
如三项,则考虑用完全平方公式;
第三步:最后看各因式能否再分解,
如能分解,应分解到不能再分解为止。
公式法
用平方差公式分解因式的关键:多项式是否
能看成两个数的平方的差;
2 2 (x+y-2) (x+y) -4(x+y)+4=____________.
(x-2)(3x+1) 3x(x-2)-(2-x)=__________
选一选:
1. 下列多项式能分解因式的是( A. x2-y B. x2+1
x2+y+y 2
D
)
C. D. x2-4x+4 2. 下列多项式中,能用提取公因式分解因式的是( 2+2x 2-y x x A. B. C.
2

5, c 2
B、b
5, c 2
5, c 2
D、b
5, c 2
练一练:
1、把下列多项式分解因式:
a(a-b) a2-ab=_________. 3ab(a+3b) 3a2b+9ab2=__________. (a-2)2 a2-4a+4=__________.
2
(x+2y)(x-2y) x2-4y2=__________.
( x 3) x2-2 3x+3=__________.
( a b) 14( a b) 49
2
[(a b) 7]
2
2、将下列各式分解因式: (1)18a2c-8b2c

2019年春七年级数学下册第4章因式分解4.3第1课时用平方差公式分解因式练习新版浙教版

2019年春七年级数学下册第4章因式分解4.3第1课时用平方差公式分解因式练习新版浙教版

4.3 用乘法公式分解因式第1课时用平方差公式分解因式知识点1平方差公式分解因式把乘法公式(a+b)(a-b)=a2-b2反过来,得a2-b2=(a+b)(a-b).两个数的平方差,等于这两个数的和与这两个数的差的积.我们可以运用这个公式对某些多项式进行分解因式,这种方法叫运用平方差公式法.1.把下列多项式分解因式:(1)x2-36;(2)36-25y2;(3)(x+p)2-(x+q)2.一提公因式与平方差公式综合运用把下列各式分解因式:(1)18a2-8b2;(2)a5-81ab4.[归纳总结] (1)用平方差公式分解因式的条件:①二次(能写成平方的形式);②异号.(2)对于多项式中的两部分不是很明显的平方形式,应先变形为平方形式,再运用公式进行因式分解,以免出现16a2-9b2=(16a+9b)·(16a-9b)的错误.(3)还要注意不要出现分解后又乘开的现象.(4)因式分解应遵循:一提二公式.同时因式分解需彻底.二尝试用平方差公式进行简便运算教材作业题第3题变式题用简便方法计算:(1)3142-2142;(2)3.14×752-3.14×252.探究三平方差公式分解因式的应用教材补充题如图4-3-1所示,在半径为R的大圆内部挖去四个半径为r的小圆.(1)用含R,r的式子表示剩余部分的面积S;(2)当R=35 cm,r=12.5 cm时,应用分解因式的知识计算剩余部分的面积(结果保留π).图4-3-1[反思] 判断下列分解因式的过程是否正确,若不正确,请改正.①4a2-1=(4a-1)(4a+1);②(x-y)2-4x2=x2-2xy+y2-4x2=-3x2-2xy+y2.1.下列各式中,不能用平方差公式分解因式的是( )A.-m4-n4B.-16x2+y2C.1.21-a2D.9a2-64b22.将整式9-x2分解因式的结果是( )A.(3-x)2B.(3+x)(3-x)C.(9-x)2D.(9+x)(9-x)3.将多项式x3-xy2分解因式,结果正确的是( )A.x(x2-y2) B.x(x-y)2C.x(x+y)2D.x(x+y)(x-y)4.已知-(2a-b)(2a+b)是下列一个多项式分解因式的结果,则这个多项式是( )A.4a2-b2B.4a2+b2C.-4a2-b2D.-4a2+b25.观察下面4个分解因式的过程:(1)(x-3)2-y2=x2-6x+9-y2;(2)a2-4b2=(a+4b)(a-4b);(3)4x6-1=(2x3+1)(2x3-1);(4)m4n2-9=(m2n+3)(m2n-3);(5)-a2-b2=(-a+b)(-a-b).其中正确的有( )A.1个B.2个C.3个D.4个6.某同学粗心大意,在分解因式时,把等式x4-■=(x2+4)(x+2)(x-▲)中的两个数字弄污了,则式子中的■,▲对应的一组数字可以是( )A.8,1 B.16,2C.24,3 D.64,8二、填空题7.xx·嘉兴、舟山分解因式:a2-9=__________.8.xx·长沙分解因式:x2y-4y=________.9.xx·荆门分解因式:(m+1)(m-9)+8m=________.10.xx·株洲因式分解:x2(x-2)-16(x-2)=____________________.11.已知58-1能被20~30之间的两个整数整除,则这两个整数是________.三、解答题12.分解因式:(1)a3-16a;(2)16(a+b)2-9(a-b)2;(3)m4(m-2)+16(2-m).13.用简便方法计算:(1)6.42-3.62;(2)1.42×16-2.22×4.14.设n是整数,用因式分解的方法说明:(2n+1)2-25能被4整除.n(m>2n)的小正方形.(1)用含m,n的式子表示剩余部分的面积S;(2)当m=13.2厘米,n=3.4厘米时,利用分解因式计算剩余部分的面积.图4-3-2详解详析【预习效果检测】1.解:(1)x2-36=x2-62=(x+6)(x-6).(2)36-25y2=62-(5y)2=(6+5y)(6-5y).(3)(x+p)2-(x+q)2=[(x+p)+(x+q)][(x+p)-(x+q)]=(2x+p+q)(p-q).【重难互动探究】例1[解析] 分解因式时,要先观察多项式,有公因式的要先提取公因式再考虑是否符合公式.解:(1)18a2-8b2=2(9a2-4b2)=2(3a+2b)(3a-2b).(2)a5-81ab4=a(a4-81b4)=a(a2+9b2)(a2-9b2)=a(a2+9b2)(a+3b)(a-3b).例2解:(1)原式=(314+214)×(314-214)=52800.(2)原式=3.14×(752-252)=3.14×(75+25)×(75-25)=15700.例3[解析] 剩余部分的面积为大圆面积减去四个小圆的面积.解:(1)剩余部分的面积为S=πR2-4πr2=π(R2-4r2)=π(R+2r)(R-2r).(2)当R=35 cm,r=12.5 cm时,S=π(R+2r)(R-2r)=π(35+2×12.5)×(35-2×12.5)=π·60×10=600π(cm2).【课堂总结反思】[反思] 两个均不正确.改正:①4a2-1=(2a)2-12=(2a-1)(2a+1).②(x-y)2-4x2=(x-y)2-(2x)2=(x-y-2x)·(x-y+2x)=-(x+y)(3x-y).【作业高效训练】[课堂达标]1.A 2.B3.[解析] D x3-xy2=x(x2-y2)=x(x+y)(x-y).4.D 5.B 6.B7.[答案] (a+3)(a-3)8.[答案] y(x+2)(x-2)9.[答案] (m-3)(m+3)10.[答案] (x-2)(x-4)(x+4)11.[答案] 26,24[解析] 58-1=(54+1)(52+1)(52-1),因为52+1=26,52-1=24,所以这两个数是26,24. 12.解:(1)原式=a(a+4)(a-4).(2)原式=(7a+b)(a+7b).(3)原式=m4(m-2)-16(m-2)=(m-2)(m4-16)=(m-2)(m2+4)(m2-4)=(m-2)(m2+4)(m+2)(m-2)=(m-2)2(m+2)(m2+4).13.[解析] 利用平方差公式简化计算过程.解:(1)6.42-3.62=(6.4+3.6)(6.4-3.6)=10×2.8=28.(2)1.42×16-2.22×4=(1.4×4)2-(2.2×2)2=5.62-4.42=(5.6+4.4)(5.6-4.4)=10×1.2=12.14.解:原式=(2n+1)2-52=(2n+1+5)(2n+1-5)=(2n+6)(2n-4)=4(n+3)(n-2),即(2n+1)2-25能被4整除.[数学活动][解析] 剩余部分的面积为大正方形的面积减去四个小正方形的面积.解:(1)S=m2-4n2=(m+2n)(m-2n).(2)当m=13.2厘米,n=3.4厘米时,S=(m+2n)(m-2n)=(13.2+3.4×2)(13.2-3.4×2)=20×6.4=128(厘米2).所以剩余部分的面积为128平方厘米.。

2019年精选数学七年级下册第四章 因式分解4.2 提取公因式浙教版习题精选【含答案解析】五十

2019年精选数学七年级下册第四章 因式分解4.2 提取公因式浙教版习题精选【含答案解析】五十
C、12x^2y+14x^2y^2-2xy=2xy(6x+7xy-1)
D、x^3-8=(x-2)(x^2+2x+4)
【答案】:
【解析】:
分解因式8m^2n+2mn^2时,提出的公因式是______.
A、2mn
【答案】:
【解析】:
分解因式:有误______.
【答案】:
【解析】:
①6m^2n与2mn^2的公因式是______;
2019年精选数学七年级下册第四章因式分解4.2提取公因式浙教版习题精选【含答案解析】五十
若多项式x^2+2ax+4能用完全平方公式进行因式分解,则a值为( )
A、2
B、﹣2
C、±2
D、±4
【答案】:
【解析】:
不改变代数式a-(b-3c)的值,把代数式括号前的“-”号变成“+”号,结果应是( )
②2a(m﹣n)与36(n﹣m)的公因式是___答案】:
【解析】:
因式分解:2a^2﹣4a=______
【答案】:
【解析】:
把多项式﹣16x^3+40x^2y提出一个公因式﹣8x^2后,另一个因式是______.
A、2x﹣5y
【答案】:
【解析】:
多项式24m^2n^2+18n各项的公因式是______.
A、a+(b-3c)
B、a+(-b-3c)
C、a+(b+3c)
D、a+(-b+3c)
【答案】:
【解析】:
多项式3x+x^3的公因式是( )
A、3
B、x
C、3x
D、x^3
【答案】:

苏科版数学七年级下册《用完全平方公式因式分解》说课稿

苏科版数学七年级下册《用完全平方公式因式分解》说课稿

苏科版数学七年级下册《用完全平方公式因式分解》说课稿一. 教材分析《苏科版数学七年级下册》中的《用完全平方公式因式分解》一节,是在学生已经掌握了有理数的乘方、平方差公式和完全平方公式的知识基础上进行讲解的。

本节内容主要让学生掌握利用完全平方公式进行因式分解的方法,培养学生解决实际问题的能力。

教材通过例题和练习题的安排,使学生能够逐步理解和掌握完全平方公式因式分解的应用。

二. 学情分析面对七年级的学生,他们在数学学习方面已经有了一定的基础,对于平方差公式和完全平方公式已经有了一定的了解。

但是,学生在运用完全平方公式进行因式分解时,可能会出现对公式记忆不牢、理解不透彻、应用不熟练的问题。

因此,在教学过程中,我需要关注学生的学习需求,针对性地进行教学,帮助学生巩固知识,提高解题能力。

三. 说教学目标1.知识与技能目标:使学生掌握完全平方公式,并能运用完全平方公式进行因式分解。

2.过程与方法目标:通过合作交流、探索发现,培养学生运用完全平方公式解决实际问题的能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的自主学习能力。

四. 说教学重难点1.教学重点:完全平方公式的记忆和应用。

2.教学难点:如何引导学生发现完全平方公式的内涵,以及如何灵活运用完全平方公式解决实际问题。

五. 说教学方法与手段1.教学方法:采用问题驱动法、合作交流法、探究发现法等,引导学生主动参与学习,提高学生的学习效果。

2.教学手段:利用多媒体课件、黑板等教学工具,直观展示教学内容,帮助学生理解和记忆。

六. 说教学过程1.导入新课:通过复习平方差公式,引出完全平方公式,激发学生的学习兴趣。

2.讲解新课:讲解完全平方公式的推导过程,让学生理解并记忆完全平方公式。

3.例题讲解:通过典型例题,讲解如何利用完全平方公式进行因式分解,引导学生掌握解题方法。

4.练习巩固:安排练习题,让学生运用完全平方公式进行因式分解,巩固所学知识。

5.拓展提高:引导学生发现完全平方公式的内涵,探讨如何灵活运用完全平方公式解决实际问题。

用完全平方公式因式分解教案

用完全平方公式因式分解教案

用完全平方公式因式分解教案一、教学目标1、学生能正确理解并使用完全平方公式因式分解原理;2、能熟练掌握并使用完全平方公式因式分解;3、能够正确使用完全平方公式因式分解解决实际问题。

二、教学重点1、教育学生正确理解并使用完全平方公式因式分解原理;2、让学生熟练掌握并使用完全平方公式因式分解;3、让学生能够正确使用完全平方公式因式分解解决实际问题。

三、教学内容1、完全平方公式因式分解的概念:完全平方公式因式分解是指把已知的式子按照公式的形式进行因式分解,它将一个多项式分解成多个完全平方式,可以利用此方法减少复杂的运算,求出更简单的表达式,便于解题。

2、完全平方公式因式分解的原理:完全平方公式因式分解的原理是把一个多项式按完全平方的方式分解,因为是平方的变化,所以可以得到输出的式子乘积比输入的式子中的幂次(未分解之前的)总数要少,因而也能得到不那么复杂的结果,更便于进行解答。

3、完全平方公式因式分解的步骤:(1)将多项式分开化简;(2)查看乘积中对称的字母数量;(3)如果有两个就可以分解出平方根;(4)如果只有一个就可以把它们包装成一个平方;(5)将结果拆分成平方根;(6)最后将项按照完全平方的左右结构组合,即完成完全平方公式因式分解。

四、教学方法主要采用讲授法、示范法、讨论法等,使学生运用完全平方公式因式分解解决实际问题,即“先上一道习题,把学生教会讲解,通过几道练习让学生自己解决,通过交流方式归纳总结,使得学生由解答变为分析,从而更好的掌握完全平方公式因式分解的知识。

五、教学设计(1)课前准备:准备若干相关的实际问题供学生讨论解答;(2)课前检测:通过一些随机出的习题,检测学生对完全平方公式因式分解的现有知识水平;(3)概念讲解:讲解完全平方公式因式分解的定义、特征及原理;(4)实例讲解:以实例分析演示完全平方公式因式分解的步骤和思想;(5)讨论练习:准备一些重难点习题,学生分组分析,练习完全平方公式因式分解;(6)总结归纳:学生就讨论的情况发表自己的看法,总结归纳完全平方公式因式分解的方法。

2019-2020年七年级数学下册第4章因式分解4.3用乘法公式分解因式第1课时校本作业A本新版浙教版

2019-2020年七年级数学下册第4章因式分解4.3用乘法公式分解因式第1课时校本作业A本新版浙教版

2019-2020年七年级数学下册第4章因式分解4.3用乘法公式分解因式第1课时校本作业A本新版浙教版课堂笔记两个数的平方差,等于这两个数的与这两个数的的积. 即a2-b2=(a+b)(a-b).分层训练A组基础训练1. 下列各式能用平方差公式分解因式的是()A. 2x2+y2B. -x2+y2C. -x2-y2D. x3+(-y)22. 把多项式-4n2+m2分解因式,其结果正确的是()A. (m+2n)(m-2n)B. (m+2n)2C. (m-2n)2D. (2n+m)(2n-m)3. 下列因式分解中,正确的有()①4x2-1=(4x+1)(4x-1)②m2-n2=(m+n)(m-n)③-16+9x2=(4+3x)(-4+3x)④a2+(-b)2=(a+b)(a-b)A. ①②B. ②③C. ③④D. ①④4. 在一个边长为12.75cm的正方形内挖去一个边长为7.25cm的正方形,则剩下部分的面积是()A. 11cm2 B. 20cm2 C. 110cm2 D. 200cm25. (金华中考)把代数式2x2-18分解因式,结果正确的是()A. 2(x2-9)B. 2(x-3)2C. 2(x+3)(x-3)D. 2(x+9)(x-9)6. 下列各式不是多项式x3-x的因式的是()A. xB. 3x-1C. x-1D. x+17.小敏是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a-b,x-y,x+y,a+b,x2-y2,a2-b2分别对应下列六个字:乡、爱、我、家、游、美,现将(x2-y2)a2-(x2-y2)b2因式分解,结果呈现的密码信息可能是()A. 我爱美B. 家乡游C. 爱我家乡D. 美我家乡8.小华在抄因式分解的题目时,不小心漏抄了x的指数,他只知道该数为不大于10的正整数,且能利用平方差公式分解因式,他抄到作业本上的式子是x□-4y2(□表示漏抄的指数),则这个指数可能的结果共有()A. 2种 B. 3种 C. 4种 D. 5种9. 填空:(1)36x2y2-49a2=()2-()2;(2)-4n2+m2=()2-()2;(3)m4- =(m2+5)(m2- ).10.(杭州中考)若整式x2+ky2(k为不等于零的常数)能在有理数范围内因式分解,则k 的值可以是(写出一个即可).11.已知x+y=2,则x2-y2+4y= .12. 分解因式:9x2(a-b)+y2(b-a)= .13. 把下列各式分解因式:(1)1-16x2;(2)-n2+0.81m2;(3)x2-64y2;(4)(a+b)2-4;(5)4m2-(m+n)2.(6)a4-b4;(7)x3y2-x3;(8)25(m+n)2-81(m-n)2.14. 用简便方法计算:(1)552-452;(2)99×100;(3)已知a+2b=5,a-2b=3,求5a2-20b2的值.B组自主提高15. 两个偶数的平方差,一定是()A. 2B. 4C. 8D. 4的倍数16. 如图,某筑路工程队需要一种空心混凝土管道,它的规格是:内径d=120cm,外径D=150cm,长L=200cm. 利用分解因式计算:浇筑一节这样的管道需要多少立方米的混凝土(π取3.14,结果精确到0.1m3).17. 阅读题:我们在计算(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)时,发现直接运算很麻烦,如果在算式前乘以(2-1)即1,原式的值不变,而且还使整个算式能运用平方差公式计算,解答过程如下:原式=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)=(22-1)(22+1)(24+1)(28+1)(216+1)(232+1)=(24-1)(24+1)(28+1)(216+1)(232+1)=…=264-1.你能用上述方法算出下列式子的值吗?请试试看.(3+1)(32+1)(34+1)(38+1)(316+1).C组综合运用18.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“和谐数”.如4=22-02,12=42-22,20=62-42,因此4,12,20这三个数都是和谐数.(1)36和xx这两个数是和谐数吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的和谐数是4的倍数吗?为什么?(3)介于1到200之间的所有“和谐数”之和为.参考答案4.3 用乘法公式分解因式(第1课时)【课堂笔记】和差【分层训练】1—6. BABCC 6. B7. C 【点拨】原式=(x2-y2)(a2-b2)=(x+y)(x-y)(a+b)(a-b).∵x+y,x -y,a+b,a-b四个代数式分别对应我、爱、家、乡,∴结果呈现的密码信息可能是“爱我家乡”.8. D9. (1)6xy 7a (2)m 2n (3)25 510. 答案不唯一,如-1,-4等11. 412. (a-b)(3x+y)(3x-y)13. (1)(1+4x)(1-4x)(2)(0.9m+n)(0.9m-n)(3)(x+8y)(x-8y)(4)(a+b+2)(a+b-2)(5)(3m+n)(m-n)(6)(a-b)(a+b)(a2+b2)(7)x3(y+1)(y-1)(8)4(7m-2n)(7n-2m)14. (1)1000 (2)9999 (3)7515. D16. 所需混凝土为[π()2-π()2]L=πL(-)(+)≈3.14×200(75-60)(75+60)=1271700(cm3)=1.2717(m3)≈1.3(m3). 所以浇筑一节这样的管道需要1.3立方米的混凝土. 【点拨】混凝土的立方数即为图中阴影部分的体积,亦即大圆柱体与小圆柱体的体积差. 17. 原式=(3-1)(3+1)(32+1)(34+1)(38+1)(316+1)=(32-1)(32+1)(34+1)(38+1)(316+1)=…=×(332-1)=.18. (1)36是“和谐数”,xx不是“和谐数”.理由如下:36=102-82,xx=1008×2;(2)∵两个连续偶数为2k+2和2k(k为自然数),∵(2k+2)2-(2k)2=(2k+2+2k)(2k+2-2k)=(4k+2)×2=4(2k+1),∵4(2k+1)能被4整除,∴“和谐数”一定是4的倍数;(3)介于1到200之间的所有“和谐数”之和,S=(22-02)+(42-22)+(62-42)+…+(502-482)=502=2500. 故答案:2500.2019-2020年七年级数学下册第4章因式分解4.3用乘法公式分解因式第2课时校本作业B本新版浙教版课堂笔记两数的平方和,加上(或者减去)这两数的积的倍,等于这两数和(或者差)的平方. 即a2+2ab+b2=(a+b)2; a2-2ab+b2=(a-b)2.注意:一般地,利用公式a2-b2=(a-b)(a+b),或a2±2ab+b2=(a±b)2把一个多项式分解因式的方法,叫做公式法. 公式中的a,b可以是数,也可以是整式.分层训练A组基础训练1. 下列各式是完全平方式的是()A. x2-x+1B. 4x2+4xy+1C. x2+xy+y2D. x2-4xz+z22. (长春中考)把多项式x2-6x+9分解因式,结果正确的是()A.(x-3)2 B.(x-9)2C.(x+3)(x-3) D. (x+9)(x-9)3. 若等式x2-x+k=(x-)2成立,则k的值是()A. B. - C. D. ±4. 把代数式ax2-4ax+4a分解因式,下列结果中正确的是()A. a(x-2)2B. a(x+2)2C. a(x-4)2D. a(x+2)(x-2)5. 如果A(5a+2b)=25a2+20ab+4b2,则A等于()A. 5a+2bB. 5a-2bC. 5a+2ab+2bD. a2-2b26. 已知正方形的面积是(16-8x+x2)cm2(x>4),则正方形的周长是()A.(4-x)cm B.(x-4)cm C.(16-4x)cm D.(4x-16)cm7. 下列多项式中,①x2+2xy+4y2;②a2-2a+3;③x2-xy+y2;④m2-(-n)2可以进行因式分解的个数有()A. 1个B. 2个C. 3个D. 4个8. 分解因式,若5a2+ma+=5(a-)2,则m的值是()A. -2B. 2C.D. -9. 在括号内填入适当的数或单项式.(1)9a2-()+b2=( -b)2;(2)x4+4x2+()=()2;(3)p2-3p+()=(p- )2;(4)(a-b)2-2(a-b)+1=( -1)2.10. 多项式a3c-4a2bc+4ab2c因式分解的结果是 .11. 若x=156,y=144,则多项式x2+xy+y2= .12.填空:(1)分解因式:x2-4x+4=.(2)4x2+9y2=()2.(3)若4x2+mx+25是一个完全平方式,则实数m=.(4)分解因式:x3+2x2+x=.(5)分解因式:a2-2ab+b2-1= .13. 多项式9x2+1加上一个单项式后,使它能成为一个多项式的完全平方,那么加上的单项式可以是(填上一个你认为正确的即可).14. 把下列各式分解因式:(1)x2+8x+16;(2)-4x2+12xy-9y2;(3)m2+mn+n2;(4)a3+2a2+a;(5)(a+b)2-18(a+b)+81;(6)(x2+2x)2+2(x2+2x)+1.15. 利用因式分解计算下列各式:(1)872+87×26+132;(2)xx2-4034×xx+xx2.B组自主提高16.把下列各式分解因式:(1)3x2-12xy+12y2;(2)a2-ab+b2;(3)-2x3+24x2-72x;(4)9(p-q)2-6p+6q+1;(5)(x2-7)2-4(x2-7)+4.17. (1)已知b-a=-3,ab=-2,求-a3b+a2b2-ab3的值. (2)已知x2+y2-2x+6y+10=0,求x+y的值.C组综合运用18.问题背景:对于形如x2-120x+3600这样的二次三项式,可以直接用完全平方公式将它分解成(x-60)2,对于二次三项式x2-120x+3456,就不能直接用完全平方公式分解因式了.此时常采用将x2-120x加上一项602,使它与x2-120x的和成为一个完全平方式,再减去602,整个式子的值不变,于是有:x2-120x+3456=x2-2×60x+602-602+3456=(x-60)2-144=(x-60)2-122=(x-60+12)(x-60-12)=(x-48)(x-72).问题解决:(1)请你按照上面的方法分解因式:x2-140x+4756;(2)已知一个长方形的面积为a2+8ab+12b2,长为a+2b,求这个长方形的宽.参考答案4.3 用乘法公式分解因式(第2课时)【课堂笔记】2【分层训练】1—5. CACAA 6—8. DBA9. (1)6ab 3a (2)4 x2+2 (3)(4)a-b10. ac(a-2b)211. 4500012. (1)(x-2)2(2)±12xy 2x±3y (3)±20(4)x(x+1)2 (5)(a-b+1)(a-b-1)13. 6x或-6x或x414. (1)(x+4)2(2)-(2x-3y)2 (3)(m+n)2(4)a(a+1)2(5)(a+b-9)2(6)(x+1)415. (1)10000 (2)116. (1)原式=3(x2-4xy+4y2)=3(x-2y)2(2)原式=a2-2·a·b+(b)2=(a-b)2(3)原式=-2x(x2-12x+36)=-2x(x-6)2(4)原式=9(p-q)2-6(p-q)+1=[3(p-q)-1]2=(3p-3q-1)2(5)原式=(x2-7-2)2=(x2-9)2=[(x+3)(x-3)]2=(x+3)2(x-3)217. (1)-a3b+a2b2-ab3=-ab(a2-2ab+b2)=-ab(a-b)2=9(2)由题意,得(x2-2x+1)+(y2+6y+9)=0,(x-1)2+(y+3)2=0. ∵(x-1)2与(y+3)2的值都是非负数,∴(x-1)2=0且(y+3)2=0,∴x=1,y=-3,∴x+y=-2.18. (1)x2-140x+4756=x2-2×70x+702-702+4756=(x-70)2-144=(x-70)2-122=(x-70+12)(x-70-12)=(x-58)(x-82)(2)∵a2+8ab+12b2=a2+2×a×4b+(4b)2-(4b)2+12b2=(a+4b)2-4b2=(a+4b+2b)(a+4b-2b)=(a+2b)(a+6b),∴长为a+2b时这个长方形的宽为a+6b.。

因式分解(第2课时)-2022-2023学年七年级数学下册教材配套教学课件(沪科版)

因式分解(第2课时)-2022-2023学年七年级数学下册教材配套教学课件(沪科版)

几个非负数的和为 0,则这几个非负 数都为0.
∴x2y2+2xy+1=(xy+1)2
=112=121.
方法总结:此类问题一般情况是通过配方将原 式转化为非负数的和的形式,然后利用非负数 性质解答问题.
ห้องสมุดไป่ตู้ 当堂练习
1.下列多项式中能用平方差公式分解因式的是( D )
A.a2+(-b)2 B.5m2-20mn
C.-x2-y2
D.-x2+9
2.分解因式(2x+3)2 -x2的结果是( D )
A.3(x2+4x+3)
B.3(x2+2x+3)
C.(3x+3)(x+3) D.3(x+1)(x+3)
3.若a+b=3,a-b=7,则b2-a2的值为( A )
A.-21 B.21 C.-10 D.10
4.把下列各式分解因式: (1) 16a2-9b2=__(_4_a_+_3_b_)_(4_a_-_3_b_)___; (2) (a+b)2-(a-b)2=_____4_a_b__________; (3) -a4+16=__(_4_+_a_2_)(_2_+_a_)_(_2_-a_)__.
沪科版七年级下册配套课件
第8章 整式乘法与因式分解
第4节 因式分解 第2课时 公式法与分组分解法
学习目标
1.探索并运用平方差公式和完全平方公式进行因式分 解,体会转化思想.(重点)
2.能会综合运用平方差公式和完全平方公式对多项式 进行因式分解.(难点)
导入新课
情境引入
如图,在边长为a米的正方形上剪掉一个边长为b米的小
完全平方式: a 2 2ab b2

【新浙教版】七年级数学下册第四章因式分解4.3《用乘法公式分解因式二》练习(含答案)

【新浙教版】七年级数学下册第四章因式分解4.3《用乘法公式分解因式二》练习(含答案)

4.3 用乘法公式分解因式(二)A 组1.填空:(1)分解因式:x 2-4x +4=(x -2)2.(2)分解因式:4a 2-4a +1=(2a -1)2.(3)若4x 2+mx +25是一个完全平方式,则实数m =±20.(4)分解因式:2x 2-4x +2=2(x -1)2.(5)分解因式:x 3+2x 2+x =x(x +1)2.2.下列多项式中,不能用完全平方公式分解因式的是(C )A. m +1+m 24B. -x 2+2xy -y 2C. -a 2+14ab +49b 2D. n 29-23n +1 3.把多项式x 2-6x +9分解因式,结果正确的是(A )A. (x -3)2B. (x -9)2C. (x +3)(x -3)D. (x +9)(x -9)4.分解因式:(1)x 2-x +14. 【解】原式=x 2-2·x ·12+⎝ ⎛⎭⎪⎫122 =⎝⎛⎭⎪⎫x -122. (2)a 2-12ab +116b 2.【解】原式=a 2-2·a ·14b +⎝ ⎛⎭⎪⎫14b 2 =⎝⎛⎭⎪⎫a -14b 2. (3)9m 2-6mn +n 2.【解】原式=(3m )2-2·(3m )·n +n 2=(3m -n )2.5.把下列各式分解因式:(1)3x 2-12xy +12y 2.【解】原式=3(x 2-4xy +4y 2)=3(x -2y )2.(2)-2x 3+24x 2-72x .【解】原式=-2x (x 2-12x +36)=-2x (x -6)2.(3)(a +b )2-12(a +b )-36.【解】原式=[(a +b )-6]2=(a +b -6)2.(4)2m 2+2m +12. 【解】原式=2⎝⎛⎭⎪⎫m 2+m +14 =2⎝⎛⎭⎪⎫m +122. 6.用简便方法计算:(1)9992+2×999+1.【解】原式=9992+2×999×1+12=(999+1)2=10002=1000000.(2)552-110×45+452.【解】原式=552-2×55×45+452=(55-45)2=102=100.B组7.若(x2+y2)(x2+y2-2)=8,则x2+y2的值为__4__.【解】∵(x2+y2)(x2+y2-2)=8,∴(x2+y2)2-2(x2+y2)=8,(x2+y2)2-2(x2+y2)+1=9,∴(x2+y2-1)2=9,∴x2+y2-1=3或x2+y2-1=-3,∴x2+y2=4或x2+y2=-2.∵x2+y2≥0,∴x2+y2=4.8.分解因式:(1)(a2+1)2-4a2.【解】原式=(a2+1+2a)(a2+1-2a)=(a+1)2(a-1)2.(2)81+x4-18x2.【解】原式=x4-18x2+81=(x 2)2-2·x 2·9+92=(x 2-9)2=[(x +3)(x -3)]2=(x +3)2(x -3)2.9.(1)已知x 2+4x +y 2+2y +5=0,求x y 的值.【解】x 2+4x +y 2+2y +5=0,x 2+4x +4+y 2+2y +1=0,(x +2)2+(y +1)2=0,∴x +2=0且y +1=0,∴x =-2,y =-1,∴x y =(-2)-1=-12. (2)已知a +b =3,ab =2,求代数式a 3b +2a 2b 2+ab 3的值.【解】a 3b +2a 2b 2+ab 3=ab (a 2+2ab +b 2)=ab (a +b )2=2×32=18.10.阅读材料,并回答问题:分解因式:x 2-120x +3456.分析:由于常数项数值较大,可以把x 2-120x +3456变为平方差的形式进行分解,这样就简便易行.解:x 2-120x +3456=x 2-2×60x +3600-3600+3456=(x -60)2-144=(x-60)2-122=(x-60+12)(x-60-12)=(x-48)(x-72).请按照上面方法分解因式:x2-16x-561.【解】x2-16x-561=x2-16x+64-64-561=(x-8)2-625=(x-8)2-252=(x-8+25)(x-8-25)=(x+17)(x-33).11.已知(a+2b)2-2a-4b+1=0,求(a+2b)2018的值.【解】∵(a+2b)2-2a-4b+1=0,∴(a+2b)2-2(a+2b)+1=0,∴(a+2b-1)2=0,∴a+2b-1=0,∴a+2b=1,∴(a+2b)2018=12018=1.数学乐园12.阅读材料,并回答问题:分解因式:x4+4.分析:这个二项式既无公因式可提,也不能直接利用乘法公式,怎么办呢?19世纪的法国数学家苏菲·热门抓住了该式只有两项,且都是数或式的平方和的形式的特点,添加了一项4x2组成完全平方公式,然后将4x2减去,即可得x4+4=x4+4x2+4-4x2=(x2+2)2-(2x)2=(x2+2x+2)·(x2-2x+2).人们为了纪念苏菲·热门给出的这一解法,就把它叫做“热门定理”.请你依照苏菲·热门的做法,将下面各式分解因式:(1)x4+4y4. (2)x2-2ax-b2-2ab.【解】(1)x4+4y4=x4+4x2y2+4y4-4x2y2=(x2+2y2)2-(2xy)2=(x2+2y2+2xy)(x2+2y2-2xy).(2)x2-2ax-b2-2ab=x2-2ax+a2-a2-2ab-b2=(x-a)2-(a+b)2=[(x-a)+(a+b)][(x-a)-(a+b)]=(x+b)(x-2a-b).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.3 用乘法公式分解因式第2课时用完全平方公式分解因式知识点1完全平方公式分解因式由完全平方公式可得:a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2.即两数的平方和,加上(或者减去)这两数的积的2倍,等于这两数和(或者差)的平方.1.把下列各式分解因式:(1)a2-8a+16;(2)4x2+4x+1.一综合运用乘法公式分解因式教材例3变式题把下列各式分解因式:(1)x3-2x2+x;(2)9m2+24mn+16n2;(3)16a4-8a2+1;(4)(x2-4x+4)-4(x-2)+4.[总结归纳] 运用完全平方公式分解因式前,应注意:(1)观察是否有公因式可提取;(2)首项系数为负时,需先提取“-”号;(3)用完全平方公式前需将该多项式化为“a2±2ab+b2”的形式;(4)分解因式时,要观察所得的结果能否继续分解;(5)注意与提取公因式法和平方差公式的综合使用.二完全平方公式的简单应用教材补充题已知x(x-1)-(x2-y)=-3,求x2+y2-2xy的值.[归纳总结] 有些计算题可利用因式分解的方法来进行计算,以简化运算过程.[反思] 判断下面分解因式的过程是否正确,若不正确,请改正.a3b-2a2b+ab=ab(a2-2a+1).一、选择题1.下列各式中能用完全平方公式进行分解因式的是( ) A .x 2+x +1 B .x 2+2x -1 C .x 2-1 D .x 2-6x +92.若25n 2-np +36是一个完全平方式,则p 的值为( ) A .±30 B .±60 C .30 D .603.分解因式(x -1)2-2(x -1)+1的结果是( ) A .(x -1)(x -2) B .x 2 C .(x +1)2 D .(x -2)24.2016·聊城把8a 3-8a 2+2a 分解因式,结果正确的是( ) A .2a(4a 2-4a +1) B .8a 2(a -1) C .2a(2a -1)2 D .2a(2a +1)25.多项式(x 2+y 2)(x 2+y 2-8)+16分解因式正确的是( ) A .(x 2+y 2-4)2 B .(x -y)4C .(x 2-y 2-4)2D .(x 2+y 2+4)2 二、填空题6.分解因式:a 2-6a +9=________.7.分解因式:ab 4-4ab 3+4ab 2=______________.8.[2015·威海] 分解因式:-2x 2y +12xy -18y =______________.9.已知a 2+2ab +b 2=0,则代数式a(a +4b)-(a +2b)(a -2b)的值为________. 10.利用1个a×a 的正方形,1个b×b 的正方形和2个a×b 的长方形可拼成一个大正方形(如图4-3-3所示),从而可得到因式分解的公式:____________.图4-3-311.当s =t +12时,代数式s 2-2st +t 2的值为________.三、解答题12.给出三个多项式:12x 2+x -1,12x 2+3x +1,12x 2-x ,请你选择其中两个进行加法运算,并把结果分解因式.13.把下列各式分解因式:(1)x 2-6x +9;(2)-36m 2-60mn -25n 2;(3)(x -y)2-10(x -y)+25;(4)(x 2+4)2-16x 2;(5)(x 2-2x)2+2(x 2-2x)+1.14.利用因式分解计算下列各题:(1)962+96×8+16;(2)9.92+1.98+0.01.15.已知x =156,y =144,求代数式12x 2+xy +12y 2的值.16.已知a -2b =12,ab =2,求-a 4b 2+4a 3b 3-4a 2b 4的值.17.若|x -2|+x 2-xy +14y 2=0,求x ,y 的值.1.已知a ,b ,c 是△ABC 的三边长,且a +b +c =ab +bc +ac ,请你分析△ABC 三边之间的关系.2.[阅读理解题] 先阅读下列解题过程,然后完成后面的题目.分解因式:x 4+4.解:x 4+4=x 4+4x 2+4-4x 2=(x 2+2)2-4x 2=(x 2+2x +2)(x 2-2x +2).以上解法中,在x4+4的中间加上一项,使得三项组成一个完全平方式,为了使原式的值保持不变,必须减去同样的一项.按照这个思路,试把多项式x4+x2y2+y4分解因式.详解详析【预习效果检测】1.[解析] (1)中的多项式可写成a2-2·a·4+42,(2)中的多项式可以写成(2x)2+2×2x·1+12,再利用公式分解因式.解:(1)a2-8a+16=a2-2·a·4+42=(a-4)2.(2)4x2+4x+1=(2x+1)2.【重难互动探究】例1解:(1)x3-2x2+x=x(x2-2x+1)=x(x-1)2.(2)9m2+24mn+16n2=(3m+4n)2.(3)16a4-8a2+1=(4a2)2-2×4a2×1+12=(4a2-1)2=(2a+1)2(2a-1)2.(4)(x2-4x+4)-4(x-2)+4=(x-2)2-4(x-2)+4=(x-2-2)2=(x-4)2.例2解:∵x(x-1)-(x2-y)=-3,∴x2-x-x2+y=-3,即x-y=3,∴x2+y2-2xy=(x-y)2=9.【课堂总结反思】[反思] 不正确.改正:a 3b -2a 2b +ab =ab(a 2-2a +1)=ab(a -1)2. 【作业高效训练】 [课堂达标] 1.D2.[解析] B 因为25n 2-np +36是一个完全平方式,25n 2-np +36=(5n)2-np +(±6)2,所以-np =2×5n·(±6),即p =60或p =-60.3.D 4.C5.[解析] A 原式=(x 2+y 2)2-8(x 2+y 2)+16=(x 2+y 2-4)2.6.[答案] (a -3)27.[答案] ab 2(b -2)28.[答案] -2y(x -3)2[解析] 本题考查了因式分解的有关知识,可以先提取公因式-2y ,再运用完全平方公式进行因式分解,-2x 2y +12xy -18y =-2y(x -3)2.9.[答案] 010.[答案] a 2+2ab +b 2=(a +b)2[解析] 根据拼得的正方形面积,可得(a +b)2=a 2+2ab +b 2,即a 2+2ab +b 2=(a +b)2.11.[答案] 14[解析] s 2-2st +t 2=(s -t)2=⎝ ⎛⎭⎪⎫122=14.12.解:12x 2+x -1+12x 2+3x +1=x 2+4x =x ()x +4;12x 2+x -1+12x 2-x =x 2-1=()x +1()x -1; 12x 2+3x +1+12x 2-x =x 2+2x +1=()x +12. 13.[解析] 运用公式法分解因式,不能直接使用公式的要适当加以变形,并且分解因式要分解到每个因式都不能再分解为止.解:(1)x 2-6x +9=(x -3)2.(2)-36m 2-60mn -25n 2=-(36m 2+60mn +25n 2)=-(6m +5n)2.(3)(x -y)2-10(x -y)+25=(x -y -5)2.(4)(x 2+4)2-16x 2=(x 2+4+4x)(x 2+4-4x)=(x +2)2(x -2)2.(5)原式=(x 2-2x +1)2=[(x -1)2]2=(x -1)4.14.解:(1)962+96×8+16=962+2×96×4+42=(96+4)2=1002=10000.(2)9.92+1.98+0.01=9.92+2×9.9×0.1+0.12=(9.9+0.1)2=102=100. 15.解:12x 2+xy +12y 2=12(x 2+2xy +y 2) =12(x +y)2. 当x =156,y =144时, 原式=12×(156+144)2=45000.[点评] 本题应先把x 2的系数12提出来,使其他各项的系数均为整数.16.解:-a 4b 2+4a 3b 3-4a 2b 4=-a 2b 2(a 2-4ab +4b 2)=-a 2b 2(a -2b)2. 而a -2b =12,ab =2,所以-a 4b 2+4a 3b 3-4a 2b 4=-a 2b 2(a -2b)2=-4×14=-1.17.解:因为|x -2|+⎝ ⎛⎭⎪⎫x -12y 2=0, 所以x -2=0且x -12y =0,所以x =2,y =4. [数学活动]1.解:因为a 2+b 2+c 2=ab +bc +ac ,所以2a 2+2b 2+2c 2=2ab +2bc +2ac ,则2a 2+2b 2+2c 2-2ab -2bc -2ac =0, a 2-2ab +b 2+b 2-2bc +c 2+a 2-2ac +c 2=0,即(a -b)2+(b -c)2+(a -c)2=0.因为(a -b)2≥0,(b -c)2≥0,(a -c)2≥0,所以(a -b)2=0,(b -c)2=0,(a -c)2=0. 因为a ,b ,c 都是正数, 所以a =b =c ,所以△ABC 的三条边相等.2.[解析] 把原式中的第二项的系数1变为(2-1),化简后三项结合构成完全平方式,剩下的一项写成平方的形式,然后再利用平方差公式即可分解因式.解:x 4+x 2y 2+y 4=x 4+2x 2y 2+y 4-x 2y 2=(x2+y2)2-x2y2=(x2+y2+xy)(x2+y2-xy).。

相关文档
最新文档