大学物理——机振动
大学物理——第4章-振动和波

合成初相 与计时起始时刻有关.
v A 2
ω
v A
2
O
x2
1
v A 1
x1
xx
分振动初相差2 1与计时起始时刻无关,但它对合成振幅 是相长还是相消合成起决定作用.
20
讨 论
2 A = A2 + A2 + 2A A2 cos(2 1) 1 1
F = kx
3
l0
k
m
A
F = kx = ma
k 令ω = m
2
A x = Acos(ωt +)
o
x
积分常数,根据初始条件确定
a = ω2 x
dx = ω2 x dt 2
2
dx υ = = Aω sin( ωt +) dt
dx 2 a = 2 = Aω cos(ωt +) dt
4
2
x = Acos(ωt +)
15
π
例 4-3 有两个完全相同的弹簧振子 A 和 B,并排的放在光滑 的水平面上,测得它们的周期都是 2s ,现将两个物体从平衡 位置向右拉开 5cm,然后先释放 A 振子,经过 0.5s 后,再释 放 B 振子,如图所示,如以 B 释放的瞬时作为时间的起点, (1)分别写出两个物体的振动方程; (2)它们的相位差是多少?分别画出它们的 x—t 图.
5cm
O
x
16
解: (1)振动方程←初始条件
x0 = 0.05m, υ0 = 0 , T = 2s
2π ω= = π rad/s T
2 υ0 2 A = x0 + 2 = 0.05m ω υ0 对B振子: tan B = = 0 B = 0 x0ω
大学物理 机械振动 框架图和解题方法

第5章 机械振动一、基本要求1.掌握描述简谐运动各物理量的物理意义及相互关系,能根据给定的初始条件建立简谐运动方程;2.掌握旋转矢量法,并能用以求解初相、相位、相位差、时间差;理解简谐运动合成规律; 3.理解振幅、周期、频率、相位等描述机械波的重要物理量。
二、基本内容(一)本章重点和难点:重点:理解简谐运动特征并能根据给定的初始条件写出简谐运动方程。
难点:掌握旋转矢量法在解题中的应用。
(二)知识网络结构图:⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧=+===⎪⎩⎪⎨⎧=+''+=-=李萨如图形垂直方向频率整数比椭圆运动垂直方向同频率拍同方向不同频率仍为简谐运动同方向同频率简谐运动的合成总能量弹性势能动能简谐运动的能量复摆单摆弹簧振子典型例子初相相位角频率频率周期振幅基本物理量谐运动微分方程谐运动方程回复力公式简谐运动的定义振动::::212121,,:,,,,,:0:)cos(::2222kA E E E kx E m v E x x t A x kx F p k p k ωϕω(三)容易混淆的概念: 1.初相和相位简谐振动运动方程 简谐振动能量 简谐振动合成速度方程 加速度方程 动能 势能 合振幅合相位初相ϕ反映简谐运动物体在初始时刻的运动状态;相位ϕω+t 反映简谐运动物体在任意时刻的运动状态。
2.角频率和频率角频率(圆频率)ω反映角位置随时间的变化,对于谐振子而言,由劲度系数和质量决定,又称固有频率;频率ν是单位时间内完成全振动的次数,是周期的倒数。
(四)主要内容:1.简谐运动的基本概念:(1) 运动方程:)cos(ϕω+=t A x ,A x m =(2) 速度方程:)sin(ϕωω+-=t A v ,A v m ω= (3) 加速度方程:)cos(2ϕωω+-=t A a ,A a m 2ω= (4) 周期:ωπ2=T(5) 频率:πων21==T (6) 时间差与相位差的关系:ωϕ∆=∆t2.旋转矢量法:在平面上画一矢量A ,初始位置与x 轴正方向的夹角等于初相位ϕ,其尾端固定在坐标原点上,其长度等于振动的振幅A ,并以圆频率ω为角速度绕原点作逆时针匀速转动,则矢量A在x 轴上的投影为:)cos(ϕω+=t A x 。
大学物理 振动

P
A
M
第三象限
第一象限
x
第四象限
注意:旋转矢量在第3象限 速度V〉0
第二象限
P
A
第三象限 M
第一象限
x
第四象限
注意:旋转矢量在第3象限 速度V〉0
第二象限
P
A
第三象限
M
第一象限
x
第四象限
注意:旋转矢量在第3象限 速度V〉0
第二象限
P
第三象限
A
M
第一象限
x
第四象限
注意:旋转矢量在第3象限 速度V〉0
第二象限
第三象限
第一象限
P
A
x
M
第四象限
注意:旋转矢量在第4象限 速度V〉0
第二象限
第三象限
第一象限
P
A
x
M
第四象限
注意:旋转矢量在第4象限 速度V〉0
第二象限
第三象限
第一象限
A
M Px
第四象限
注意:旋转矢量在第4象限 速度V〉0
第二象限
第三象限
第一象限
A
M Px
第四象限
第二象限 第三象限
t=t
51
一、同方向同频率的简谐振动的合成
1、解析法
x1=A1cos( t+ 1) x2=A2cos( t+ 2)
合振动 :
x x1 x2 A1 cos( t 1) A2 cos( t 2 )
(A1 cos1 A2 cos2) cos t (A1 sin1 A2 sin2)sin t
Acos
d 2t l
令 g l 2 则有:
d 2 2 0
大学物理机械振动总结

大学物理机械振动总结在物理学领域中,机械振动是指物体在受到外力作用后发生的周期性或非周期性的振动运动。
它是研究物体运动规律和能量传递的重要课题之一。
机械振动存在于我们日常生活的各个方面,从钟摆的摆动到汽车的悬挂系统,无处不体现着机械振动的存在。
首先,机械振动的基本特点是周期性。
在一个振动过程中,物体会在一定的时间间隔内不断重复同样的运动。
这种周期性运动可以用正弦函数或余弦函数来表达,而周期T则是振动的一个重要参数,表示一个完整振动过程所需要的时间。
其次,机械振动的频率是指单位时间内振动次数的多少。
频率f的倒数称为周期T,即T=1/f。
振动的频率越高,单位时间内振动次数越多,相应的周期也就越短。
频率与周期之间存在着倒数的关系,是彼此相互依存的。
频率和周期都是描述振动特征的重要参数,能够直观地表达出振动的快慢和紧凑程度。
再次,机械振动的振幅是指物体在振动过程中离开平衡位置的最大距离。
振幅越大,物体的运动范围也就越大,相应的振动能量也越大。
振幅与振动的能量之间存在着正相关的关系,振幅越大,能量传输的效果越明显。
此外,机械振动还有一个重要的参数叫做相位,用来描述物体在振动过程中的运动状态。
相位可以通过相位角来度量,它的变化范围在0到2π之间。
当相位角为0或2π时,物体达到最大振幅的正向运动;当相位角为π时,物体达到最大振幅的负向运动;当相位角为π/2或3π/2时,物体经过平衡位置,速度达到最大值。
机械振动的实际应用非常广泛。
例如,在建筑领域中,为了保证建筑物的稳定性和抗震性,需要对建筑结构进行振动分析和工程设计。
而在工业生产中,机械设备的振动也是一个重要的研究方向,可以通过合理的设计和调整来降低噪音和振动对设备和操作人员的影响。
此外,机械振动还有许多其他的应用,比如声学研究、航空航天技术等等。
总之,机械振动作为物理学领域中的一个重要分支,在科学研究和工程应用中都具有重要意义。
它的基本特征包括周期性、频率、振幅和相位等,这些特征参数可以用来描述和分析振动的规律和性质。
大学物理-机械振动

机械振动也会影响交通工具的舒适 度,如火车、汽车等在行驶过程中 产生的振动,会让乘客感到不适。
机械振动在工程中的应用
振动输送
利用振动原理实现物料的输送,如振动筛、振动输送机等。
振动破碎
利用振动产生的冲击力破碎硬物,如破碎机、振动磨等。
振动减震
在建筑、桥梁等工程中,采用减震措施来减小机械振动对结构的影 响,提高结构的稳定性和安全性。
感谢您的观看
THANKS
机械振动理论的发展可以追溯到 古代,如中国的编钟和古代乐器 的制作。
近代发展
随着物理学和工程学的发展,人 们对机械振动的认识不断深入, 应用范围也不断扩大。
未来展望
随着科技的不断进步,机械振动 在新能源、新材料、航空航天等 领域的应用前景将更加广阔。
02
机械振动的类型与模型
简谐振动
总结词
简谐振动是最基本的振动类型,其运动规律可以用正弦函数或余弦函数描述。
机械振动在科研中的应用
振动谱分析
01
通过对物质在不同频率下的振动响应进行分析,可以研究物质
的分子结构和性质。
振动控制
02
通过控制机械振动的参数,实现对机械系统性能的优化和控制,
如振动减震、振动隔离等。
振动实验
03
利用振动实验来研究机械系统的动态特性和响应,如振动台实
验、共振实验等。
05
机械振动的实验与测量
根据实验需求设定振动频率、幅度和波形等 参数。
启动实验
启动振动台和数据采集器,开始记录数据。
数据处理
将采集到的数据导入计算机,进行滤波、去 噪和整理,以便后续分析。
绘制图表
将处理后的数据绘制成图表,如时域波形图、 频谱图等,以便观察和分析。
大学物理机械振动

大学物理机械振动 篇一:大学物理——机械振动 第十章 机械振动 基本要求 1.掌握简谐振动的基本概念和描述简谐振动的特征量的意义及相互关系。
2.掌握和熟练应用旋转 矢量法分析与解决有关简谐振动的问题。
3.掌握简谐振动的动力学与运动学特征,从而判定一个运动是否为简谐振动。
4.理解简谐振动的 能量特征,并能进行有关的计算。
5.理解两个同振动方向、同频率的简谐振动的合成。
6.了解同振动方向不同频率的简谐振动的合成和相互垂直的两个振动的合成。
7.了解频谱分析、阻尼振动与受迫振动。
8.了解混沌的概念和电磁振荡。
10-1 简谐振动 一. 弹簧振子 ?? f??kx1. 弹性力:2.运动学特征: dxdt 22 特征方程: 2 ??x?0 式中 ?2?K m 其解: x?Acos(?t??) 二. 描述谐振动的物理量 1. 2. 振幅:A 角频率:?? km 3. 频率:?? ? 2?2? 4. 5. 6. 三. 周期:T? ? 相位:?t?? 初相位:? 谐振动中的速度和加速度 v? dxdt??A?sin(?t??)?vmcos(?t??? ? 2 ) a? dvdt ? dxdt 2 2 ??A? 2 cos(?t??)?amcos(?t????) 四. 决定?,A,?的因素 1.? 决定于振动系统,与振动方式无关; 2.A,?决定于初始条件: v0 22 公式法: A?分析法: x0? 2 ? ,??arctg(? v0 ?x0 ) x0?Acos? ? cos?? x0Av0 ??1,?2 { ?0(1,2 象限)?0(3,4 象限) v0??Asin??sin??? 六.谐振动的能量 Ek? 1212mv 2 A? ? 1212 m?Asin(?t??)2 2 222 Ep? kx 2 ?kAcos(?t??)?12 12 12 m?Acos(?t??) 222 E?Ek?Ep? kA 2 ? ?Am 22 Ek? 1T ?0 T 12 m?Asin(?t??)dt? 222 14 mA? 22 ? 14 kA 2 Ep?Ek 例1. 已知 t?0 时 x0? 例2. 已知 t?0 时 x0?0,v0?0,求?思考: 1. 地球, M,R 已知, 中间开一遂道; 小球 m, 从离表面 h 处掉入隧道, 问, 小球是否作谐振动? 2. 复 摆问题(I,m,lc 已知) d?dt 22 A2,v0?0,求? ? mglI c ??0 3. 弹簧串、并联 串联: 1k?1k1 ?1k2 并联:k?k1?k2 10-2 谐振动的旋转矢量表示法 一、幅矢量法 1. 2. 作 x 轴,O 为平衡位置; ? A 在 x 轴上的投影点 P 作谐振动: x?Acos(?t??) 3. T? O ? A 以角速度?旋转一周,P 正好来回一次: 2? P P0 ? 二、参考圆法 1. 2.三、相位差 1. 同频率、同方向的两谐振动的相位差就是它们的初相差,即:????2??1 2. 超前与落后 例 1. 一物体沿 x 轴作简谐振动,振幅 A?12cm,周期 T?2s,t?0 时,位移为 6cm 且向 x 正方向运动,求: 1) 初位相及振动方程; 2) t?0.5s 时,物体的位置、速度和加速度; 3) x0??6cm 处,向 x 轴负方向运动时,物体的速度和加速度,以及从这一位置回到平衡位置所需的最 短时间; 例 2. 设有一音叉的振动为谐振动,角频率为??6.28?10s 2 ?1 以 O 为原点,A 为半径作圆,x 轴; 在图上根据已知求未知 ,音叉尖端的 振幅 A?1mm。
大学物理第五章机械振动习题解答和分析

5-1 有一弹簧振子,振幅m A 2100.2-⨯=,周期s T 0.1=,初相.4/3πϕ=试写出它的振动位移、速度和加速度方程。
分析 根据振动的标准形式得出振动方程,通过求导即可求解速度和加速度方程。
解:振动方程为:]2cos[]cos[ϕπϕω+=+=t TA t A x 代入有关数据得:30.02cos[2]()4x t SI ππ=+ 振子的速度和加速度分别是:3/0.04sin[2]()4v dx dt t SI πππ==-+ 2223/0.08cos[2]()4a d x dt t SI πππ==-+5-2若简谐振动方程为m t x ]4/20cos[1.0ππ+=,求: (1)振幅、频率、角频率、周期和初相; (2)t=2s 时的位移、速度和加速度.分析 通过与简谐振动标准方程对比,得出特征参量。
解:(1)可用比较法求解.根据]4/20cos[1.0]cos[ππϕω+=+=t t A x 得:振幅0.1A m =,角频率20/rad s ωπ=,频率1/210s νωπ-==, 周期1/0.1T s ν==,/4rad ϕπ=(2)2t s =时,振动相位为:20/4(40/4)t rad ϕππππ=+=+ 由cos x A ϕ=,sin A νωϕ=-,22cos a A x ωϕω=-=-得 20.0707, 4.44/,279/x m m s a m s ν==-=-5-3质量为kg 2的质点,按方程))](6/(5sin[2.0SI t x π-=沿着x 轴振动.求: (1)t=0时,作用于质点的力的大小;(2)作用于质点的力的最大值和此时质点的位置.分析 根据振动的动力学特征和已知的简谐振动方程求解,位移最大时受力最大。
解:(1)跟据x m ma f 2ω-==,)]6/(5sin[2.0π-=t x 将0=t 代入上式中,得: 5.0f N =(2)由x m f 2ω-=可知,当0.2x A m =-=-时,质点受力最大,为10.0f N =5-4为了测得一物体的质量m ,将其挂到一弹簧上并让其自由振动,测得振动频率Hz 0.11=ν;而当将另一已知质量为'm 的物体单独挂到该弹簧上时,测得频率为Hz 0.22=ν.设振动均在弹簧的弹性限度内进行,求被测物体的质量.分析 根据简谐振动频率公式比较即可。
大学物理-振动

中国国家管弦乐团在联合国总部的演出
引言
振动与波动是密切联系的物理现象。振动是 产生波动的根源,波动是振动在空间的传播。过 去,人们习惯于将振动与波动纳入力学的范畴, 实际上振动与波动的内容贯穿在力学、电磁学、 光学乃至量子力学之中。机械振动在介质中的传 播形成机械波,电磁振动在空间的传播形成电磁 波。虽然机械振动和机械波与电磁振动和电磁波 在本质上有所不同,但它们的变化规律是类似的。 因此,本章讨论机械振动和机械波的基本规律, 但这些规律的意义绝不局限于力学,它是研究光 学、量子力学乃至整个物理学的基础。
简谐运动方程中A、ω、φ分别被称为振幅、 圆频率和初相位.它们描述了振动的最大 位移、单位时间内的往返次数和振动点 的初始位置. 从简谐运动方程中可以看到:
简谐振动的振幅为一与时间和频率无关 的常数;而位移是按周期在有限区域内的 往复变化,并且和初始位置有关.
振幅、圆频率和初相位是决定振动具体 位移大小和速度大小的决定性参数,所以 称为振动三要素.
心坐标为x: 木L3g 水L2hg F 木L3g 水L2 (h x)g
水L2 gx kx 是简谐振动
2.简谐振动的数学模型
d2x 2x 0
dt 2
频率
2
F ma
a
d2x dt 2
F kx
角频率(angular frequency)
k
m
(1)模型的解——位移与时间的关系
d2x dt 2
解:选坐标系;分析受 力;列方程,
F mg vg
2x
d
2
g
2
1 d 2g x kx
2
是简谐振动
例题2。一立方体木块浮于静止的水面上, 其浸在水中部分的高度为h。现用手指将其 稍稍压下,使浸在水中部分的高度变为b.放 手后木块将在水面上下作振动,此振动是 否为简谐振动?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方法2:用旋转矢量法辅助求解。 v(cms1)
x Acos(t )
31.4
v Asin(t )
15.7
vm cos(t 2) vm A 31.4cms1
0 15.7
31.4
1
t(s)
v的旋转矢量 与v轴夹角表
t
由图知
示t 时刻相位
2
1 s1
A vm 31.4 10cm 3.14
得
简谐振动的表达式为
A= 0.12 m
3
3
例6-2. 如图所示,倔强系数为 8×103N·m-1的轻
质弹簧一端固定于A,另一端系一质量为
M=4.99kg的木块静止于水平光滑桌面上。 质量 m=0.01kg的子弹以水平速度v =103 m·s-1 射入
木块使其作简谐振动。若在木块经过平衡位置且 向右运动时开始计时。取平衡位置为坐标原点、
令 2 k
m
a 2 x
又a
d2x dt 2
d2 dt
x
2
2
x
0
其简通谐振动微分方程 解为:
x Acos(t ) 谐振动运动方程
2、描述简谐振动的特征量 运动方程
kF
m
x Acos(t )
A O A
•振幅A 物体离开平衡位置的最大距离,决定于初条件.
•周期T 物体完成一次全振动所需时间.
)
6 1
)
得 sin( 1 ) 1 6
a 2 Acos( t )
v(cms 1)
31.4
15.7 0
15.7
31.4
1
t(s)
1
6
62 7 或 11 66
a1 0, 则
cos( 1 )
0
1
6
7
6
3.14s1 A vm 31.4 10cm 3.14
故振动方程为 x 10 cos(t )cm 6
k m
A O
A
例6-1. 一质点沿x 轴作简谐振动,振幅A= 0.12 m,周期 T= 2 s, 当t = 0 时,质点对平衡位置的位移 x0 = 0.06 m, 此时刻质点向x 正向运动。求此简谐振动的表达式。
解 取平衡位置为坐标原点。
设简谐振动的表达式为
由题设T= 2 s,则 2 ,
由初条件 x0 = 0.06 m,Tv0 0
机械振动:物体在一定位置附近作来回往复的运动。
m
A O A
广义振动:任一物理量(如位移、电流等)在某一
数值附近反复变化。
K i
q
L
q
6-1 简谐振动(simple harmonic motion)
一、简谐振动的基本特征
1、简谐振动的定义 动力学定义:
弹簧振子
kF
m
运动学定义:
A O A
a F k x mm
x, v, a
x, v, a
av x
A
A
O
O
t
2A
T
例6-3. 以余弦函数表示的简谐振动的位移时间曲线 如图所示,求此简谐振动的表达式。
解 设简谐振动方程为
x
t= 1s
x (cm) 2
A
x0 = A/2,v0 0
O
A
t=0
1
1 O
1 t (s)
v0
2
由旋转矢量表示法
v0 0
角频率的计算:t = 1s 时,对应图示的旋转矢量。
t 0 x 0.05 cos 0 源自 v 2 sin 02
振动方程为 x 0.05 cos(40t )
2
二、简谐振动的旋转矢量表示法
1.简谐振动与匀速圆周运动
匀速圆周运动在x轴上的投影 (或分运动)为简谐振动:
y
m
A
t +
x
O
P
2.简谐振动的旋转矢量表示法
A
O
x
3.两同频率简谐振动的相位差(phase difference)
2
23
t0
2
o
6
v
x 10 cos(t )cm 6
t 1s
三、简谐振动实例
1. 弹簧振子(blockspring system)
kF
m
平衡位置:
A O A
弹簧为原长时,振动物体所处的位置. x=0 , F=0
位移为x处:
由牛顿第二定律
2 x
d2x dt 2
2x
0
x Acos(t )
由牛顿第二定律 mg mat ,
得
ml
d 2
dt 2
mg
或
d2
dt 2
g l
at
0
l
mgsin
d 2
dt 2
向右为x轴正方向,求其振动方程。 M
m A
v
解:mv=(m+M)V
0.01×103=(4.99+0.01)V
V=2m.s-1
1 (m M )V 2 1 kA2
2
2
k
mM
1 (4.99 0.01) 22 1 8 103 A2
2
2
A=0.05m
8 103 40 5
x 0.05cos(40t )
旋转矢量以 匀角速由t = 0 到t = 1s 转过了4/3
t 4 3 t =1s 4 3
例6-4.已知某简谐振动的
v(cms 1)
速度与时间的关系曲线如 31.4
图所示,试求其振动方程。15.7
解:方法1
0
用解析法求解
15.7
1
t(s)
设振动方程为
31.4
x
v0
Acos(t ) Asin 15.7cms1
角频率 k 完全由振动系统本身的性质决定。
m
固有角频率 固有周期
固有频率
2. 单摆(simple pendulum)
C
平衡位置 :摆线与竖直方向夹角 = 0 .
l
摆球相对于平衡位置的角位移为 时,
切向合外力:
ft mg sin
T
m
当 5(= 0.0873rad)时,
sin , ft mg
A vm 31.4cms1
v Asin( t )
a 2 Acos( t
sin v0 15.7 1 A 31.4 2
)
或5
66
a0 2 Acos 0
a0 0,则cos 0
6
t 1 v1 15.7cms 1
v1 即15.7
Asin( 1
34.1sin(
T 2
•频率 单位时间内振动的次数.
•角频率
相位 t 初相位
决定谐振动物体的运动状态
3.振动速度及加速度
x, v, a
av x
简谐振动的加
速度和位移成 正比而反向.
O
t
T
4.振动初相及振幅由初始条件决定
初始条件:当t = 0时, x = x0 ,v = v0
代入
得
= arctan ( v0 ) x0
两个谐振动
x1 A1 cos(t 1 ) x2 A2 cos(t 2 )
相位差
(t 2 ) (t 1 ) 2 1
=2 1 两同频率的谐振动的相位
差等于它们的初相差。
A2
A1
x
O
A1
A2
x
O
A1
A2 O
x
0, x2超前x1 = 0, 同相
= ,反相
4.谐振动的位移、速度、加速度之间的位相关系