免疫组化入门
免疫组化基础知识

免疫组化基础知识免疫组化是指利用特异性抗体与被检测物相互作用,通过染色或荧光等方法对细胞或组织中的分子结构、分布、表达水平等进行检测的一种技术手段。
免疫组化技术广泛应用于生命科学领域,可用于研究细胞和组织的形态学、生理学、病理学等方面,是现代分子生物学和医学研究的重要工具之一。
免疫组化技术的基本原理是利用抗体与被检测物之间的特异性结合来检测目标分子。
抗体是由机体免疫系统产生的一种特异性蛋白质,可以识别并结合到其特异性抗原上,从而发挥免疫防御作用。
在免疫组化中,我们利用抗体的这种特异性结合作用,来检测细胞或组织中的目标分子。
具体来说,我们将一种特异性抗体标记上染色剂或荧光素等物质,然后将其加入到待检测的细胞或组织中,让其与目标分子发生结合反应,最后通过染色或荧光等方法来检测抗体-抗原复合物的存在情况。
免疫组化技术的优点主要有以下几个方面:1. 特异性强:由于抗体对其特异性抗原具有高度的特异性结合能力,因此免疫组化技术具有非常高的特异性。
2. 灵敏度高:免疫组化技术可以检测非常微小的分子结构或表达水平,因此具有非常高的灵敏度。
3. 定量性好:通过对染色或荧光信号的定量分析,可以对目标分子的表达水平进行定量化分析。
4. 可视化:通过染色或荧光等方法,可以将目标分子在细胞或组织中的分布情况可视化出来。
免疫组化技术在生命科学领域中有着广泛的应用。
在细胞和分子生物学研究中,免疫组化技术可以用来检测蛋白质、核酸、多肽等生物分子的表达和定位情况;在病理学研究中,免疫组化技术可以用来检测肿瘤标志物、免疫球蛋白等分子的表达情况,从而辅助临床诊断;在药物研发领域中,免疫组化技术可以用来筛选药物靶点和评估药效等。
总之,免疫组化技术是一种非常重要的生命科学技术手段,在现代分子生物学和医学研究中具有广泛的应用前景。
(整理)免疫组化知识

免疫组织化免疫组织化学免疫组织化学(Immunohistochemistry)又称免疫细胞化学。
它是组织化学的分支,它是用标记的特异性抗体(或抗原)对组织内抗原(或抗体)的分布进行组织和细胞原位检测技术。
1.发展简史——1941年Coons 首先用荧光素标记抗体—检测肺组织内的肺炎双球菌获得成功。
——60年代Nakane建立酶标抗体技术——铁蛋白标记Ab技术。
——70年代Stemberger 改良上述技术,建立辣根过氧化物酶——抗体过氧化物酶(PAP)技术,使免疫细胞化学得到广泛应用。
—— 80年代Hsu 等建立了抗生物素—生素(ABC)法之后,免疫金—银染色法、半抗原标记法、免疫电镜技术相继问世。
—— 90年代分子杂交技术、原位杂交技术、免疫细胞化学分类方法迅速发展。
——2000年各种免疫组化技术更加成熟,使免疫组化技术成为当今生物医学中形态、功能代谢综合研究的一项有力工具。
其应用范围深达医学各个学科,是目前生命科学工作者应该掌握的基本技术之一。
2.免疫组织化学的技术分类(1)根据染色方式分成:①贴片染色;②漂浮染色。
(2)根据Ag—Ab结合方式分成:①直接法;②间接法;③多层法。
(3)按标记物的性质分成:①免疫荧光技术(免疫荧光法);②免疫酶技术(酶标抗体法、桥法、PAD法、ABC法);③免疫金属技术(免疫铁蛋白法、免疫金染色法、蛋白A金法)。
3.标记物(1)必要性:组织细胞内Ag—Ab结合反应一般是不可见的,若在镜下检测,则必须具有可视性标记物。
(2)常用标记物①荧光素:最常用的是异硫一氰酸荧光素(Fluorescein isothiocyanate,FITC)——荧光显微镜下呈绿色荧光四乙基罗达明(rho—damine RB200)——荧光显微镜下发橙红色荧光;②酶:辣根过氧化物酶、碱性磷酸酶。
③生物素:(Biotin)④铁蛋白金等:主要应用于免疫电镜。
其他:如同位素(因涉及污染和防护难一般不用)4.应用凡是组织细胞内具有抗原性的物质,如肽类、激素、神经递质、细胞因子、受体、表面抗原等等均可用免疫组织化学方法显示,因而目前在基础与临床科研中被广泛应用。
免疫组化基本步骤

免疫组化基本步骤
免疫组化是一种在组织中检测特定蛋白质表达的方法,以下是免疫组化的基本步骤:
1. 取得组织样本:从活体或已固定的组织中,取出薄片状的组织样本。
可以使用福尔马林或其他固定剂来固定组织。
2. 去除蜡块:如果组织样本是固定在蜡块中,需要将薄片状的组织样本从蜡块中剥离。
可以使用刮片或其他工具进行此步骤。
3. 抗原恢复:组织样本经过固定处理后,抗原的结构可能会发生变化,影响抗原的免疫反应性。
因此,需要进行抗原恢复步骤。
抗原恢复的方法包括热处理、酶消化、酸碱处理等。
4. 抗体染色:选择适当的一抗体来检测目标抗原。
一抗可以是单克隆抗体或多克隆抗体,并且应该针对目标抗原具有高度的特异性。
一抗可以标记有荧光染料、酶、金标或其他物质。
5. 二抗染色:将与一抗起反应的二抗添加到组织样本中。
二抗可以与一抗结合并形成复合物,用于增强抗原的检测信号。
6. 可视化:根据二抗的标记物不同,可以使用荧光显微镜、酶标仪或其他工具来可视化抗原的表达情况。
荧光染料会发出荧光信号,而酶标记会产生染色反应。
7. 图像分析:对可视化的图像进行分析,可以使用计算机软件自动计算或手动计数标记的细胞或组织区域。
以上是免疫组化的基本步骤,但具体的操作方法可能会根据实验的具体要求而有所不同。
免疫组化步骤总结

免疫组化步骤总结免疫组化是一种常用的实验技术,用于检测和定位特定分子在组织和细胞中的表达情况。
本文将对免疫组化的步骤进行总结,以帮助读者更好地了解和应用这一技术。
免疫组化步骤主要包括样本制备、抗原修复、阻断非特异性结合、一抗孵育、二抗孵育、信号放大、显色与染色、显微镜观察和结果分析等环节。
下面将对这些步骤进行详细介绍。
1. 样本制备:首先,需要选择合适的组织样本或细胞,可以通过切片、细胞培养等方法获得。
然后,将样本固定在载玻片上,常用的固定剂有福尔马林和乙醛等。
固定后,需要进行脱水和透明化处理,使样本适合于免疫组化的进一步步骤。
2. 抗原修复:有些抗原在固定和加工过程中可能会丧失免疫反应性,需要进行抗原修复。
常用的方法有热处理、酶解等,目的是使抗原恢复其免疫原性,提高抗体的特异性和敏感性。
3. 阻断非特异性结合:在进行免疫反应之前,需要阻断非特异性结合位点,减少假阳性结果。
可使用一些蛋白质,如牛血清蛋白、牛血清、小鼠血清等,进行预处理,将其涂覆在样本上,阻断不特异性结合位点。
4. 一抗孵育:将特异性抗体(一抗)与样本接触,孵育一定的时间,使抗体与靶分子发生特异性结合。
一抗可以是单克隆抗体或多克隆抗体,具体选择要根据实验需求和抗体的特异性来确定。
5. 二抗孵育:一抗与抗原结合后,需要加入与一抗来源物种不同的二抗。
二抗是与一抗来源物种的免疫球蛋白发生反应的抗体。
二抗可以标记有荧光物质、酶物质等,以便于后续的信号放大和显色。
二抗的选择要根据一抗的来源物种和实验需要来确定。
6. 信号放大:为了增强免疫反应的信号,可以使用一些信号放大的技术。
常用的信号放大方法有生物素-链霉亲和素系统(Biotin-Streptavidin System)、酶联免疫吸附试验(ELISA)等。
这些方法可以使目标物质的信号增强,提高实验的灵敏度和准确性。
7. 显色与染色:信号放大后,需要进行显色与染色步骤。
这一步骤可以根据实验需要选择适当的染色剂,如荧光染料、酶标记物等。
免疫组化的基本步骤

免疫组化的基本步骤免疫组化(immunohistochemistry, IHC)是一种常用的实验技术,用于检测和定位细胞或组织中的特定抗原。
它是一种特异且可靠的方法,通过结合抗体与抗原的特异性相互作用,利用显色或荧光信号来检测特定抗原的存在和定位。
以下是免疫组化的基本步骤。
1.组织样本处理:首先,需要准备适当的组织样本。
组织可以是固定的、冰冻的或者石蜡包埋的。
固定的样本通常使用福尔马林进行固定,并应在切片前进行脱水、透明和石蜡浸渍等处理。
2.抗原恢复:组织样本中的一些抗原可能因为固定和处理过程而被破坏或掩埋。
为了恢复抗原的免疫原性,需要进行抗原恢复步骤。
这一步骤的目的是去除或解开横断的蛋白质交联,以使抗体能够更容易进入细胞或组织内部。
抗原恢复可以使用高温、酶解或化学溶解等方法进行。
3.抗体处理:接下来,需要选择适当的一抗(primary antibody)对特定的抗原进行标记。
一抗通常是由动物免疫系统产生的,可以是单克隆抗体或多克隆抗体。
抗体的选择是非常重要的,需要确定其与特定抗原的特异性和亲和性。
一次性需要把一抗稀释到合适的浓度,并与特定的缓冲液混合。
4.反应:抗体与抗原的结合需要一定的时间来达到最佳的结果。
实验者需要将一抗混合物加到组织样本上,并进行足够的反应时间。
反应时间可以根据实验条件或需求进行调整,通常为30分钟至几小时。
5.洗涤:反应完毕后,需要对样本进行洗涤以去除未结合的一抗、杂质和非特异性结合物。
洗涤步骤通常使用缓冲液,可重复进行多次,以确保清除掉所有不必要的物质。
6.二抗处理:一抗与目标抗原结合后,需要加入相应的二抗(secondary antibody)对一抗进行检测。
二抗可以与一抗特异性结合,并携带染色剂或荧光标记。
常见的二抗有抗小鼠IgG的免疫球蛋白和抗兔IgG的免疫球蛋白。
二抗也需要适当的稀释并与缓冲液混合。
7.反应:类似于一抗反应,二抗也需要一定时间来与一抗结合和形成复合物。
免疫组化科普

免疫组化科普免疫组化技术是一种通过使用特定的抗体与待检测物发生特异性结合的方法来检测和定位细胞或组织中特定分子的存在和表达情况。
它在医学诊断、疾病研究以及药物研发等领域起着重要作用。
免疫组化技术的原理是利用抗体与抗原间的特异性结合来检测细胞或组织中的分子。
抗体是一种人体免疫系统产生的特异性蛋白质,能够识别并结合到与其具有亲和性的抗原上。
在免疫组化实验中,首先需要选取与目标分子特异性结合的抗体,这些抗体可以通过人工合成或从动物免疫产生。
然后,将这些抗体标记上荧光物质、酶或放射性同位素等,使其具有可检测的特性。
最后,将标记好的抗体与待检测的组织或细胞接触,如果目标分子存在,则标记抗体会与其结合,形成复合物。
通过特定的检测方法,可以观察到这种复合物的存在和定位情况,从而了解目标分子在细胞或组织中的表达情况。
免疫组化技术在医学诊断中有着广泛的应用。
例如,在肿瘤诊断中,通过检测肿瘤细胞中特定蛋白的表达情况,可以帮助医生确定肿瘤的类型和分级。
此外,在病理学研究中,免疫组化技术可以帮助研究人员观察和定位特定蛋白在疾病发展过程中的变化,从而揭示疾病的发生机制。
免疫组化技术还可以用于检测病原体感染、免疫系统疾病以及器官移植等方面的研究。
免疫组化技术的优点在于其高度特异性和敏感性。
由于抗体与抗原的结合具有很高的特异性,因此可以准确地检测和定位目标分子。
而且,免疫组化技术可以使用多种检测方法,如荧光显微镜、酶标仪等,可以对不同类型的样本进行检测。
此外,免疫组化技术还可以进行定量分析,通过测量标记物的强度来评估目标分子的表达水平。
然而,免疫组化技术也存在一些局限性。
首先,免疫组化技术需要合适的抗体来进行实验,因此需要事先知道目标分子的抗原性质。
其次,免疫组化技术对样本的处理要求较高,包括取材、固定、切片等步骤,这些操作容易引入误差。
此外,免疫组化技术在自动化和高通量方面仍存在一定的挑战,限制了其在临床实践中的应用。
免疫组化技术是一种重要的实验方法,可以用于检测和定位细胞或组织中特定分子的存在和表达情况。
免疫组化超详细步骤
免疫组化超详细步骤免疫组化(immunohistochemistry,IHC)是一种通过使用抗体来检测组织或细胞中特定蛋白质的方法。
该技术的原理基于抗体与其特异性抗原结合的特性。
下面将详细介绍免疫组化的步骤。
第一步,固定组织:将待检测的组织或细胞固定在载玻片上。
常用的固定剂包括甲醛和乙醛,可通过浸泡、喷洒或滴加等方式施加在组织上,使细胞和蛋白质保持其形态和结构。
第二步,脱水:将固定的组织经过一系列浓度逐渐升高的酒精溶剂中处理,以去除水分,使组织逐渐与酒精混合。
第三步,脱脂:将组织在适当的溶剂(如二甲苯或苯)中脱脂,以去除酒精和脂质。
第四步,石蜡浸渍:将脱脂的组织浸泡在液态石蜡中,使其渗透并替代脱脂剂和二甲苯,然后固化组织。
第五步,切片:使用微tome切割固化的样本,制备出薄片,常见的切片厚度为4-5μm。
第六步,脱离:将切好的薄片与载玻片分离,常用的方法是利用热水浸泡薄片,使其松散分离。
第七步,抗原修复:利用高温和压力的方法,如蒸汽煮沸或压力锅,对薄片上的蛋白质进行解散,以恢复其免疫活性。
第八步,阻断非特异性结合:使用一些蛋白质如牛血清蛋白、动物血清或其他蛋白质来包裹薄片上的非特异性结合位点,以减少假阳性反应。
第九步,抗体处理:将特异性抗体加到薄片上,与待检测的蛋白质结合。
抗体可以是原代抗体(直接与靶蛋白质结合)或二抗(与原代抗体结合)。
第十步,洗涤:用缓冲液洗去未结合的抗体,并去除阻断剂和非特异性结合物。
第十一步,检测:将检测试剂滴加到薄片上,以产生特定色素或荧光信号。
常用的检测方法包括酶标法(如辣根过氧化物酶法,HRP法)和荧光标记(如荧光素酶法,AP法)。
第十二步,显微镜检查:使用显微镜观察薄片上的染色结果,评估标记物的定位和表达情况。
通过上述步骤,免疫组化技术可以帮助研究人员检测并定位组织或细胞中感兴趣的蛋白质。
其广泛应用于生物医学研究、临床诊断以及药物研发等领域,为揭示疾病的分子机制和开发新的治疗手段提供了重要的工具。
免疫组化超详细步骤
免疫组化超详细步骤免疫组化是一种常用的实验方法,用于检测细胞或者组织中特定的分子,如蛋白质、核酸和糖等。
下面是免疫组化的详细步骤:1.样本准备:a.细胞或组织准备:首先需要获取细胞或组织样本,可以通过培养细胞或直接取得组织切片。
b.保存和处理:细胞或组织样本需要保存在合适的液体中,如福尔马林或液氮,以保证样本的完整性和保存时间。
c.切片:对于组织样本,需要将其切割成薄片,常用的方法是冰冻切片或石蜡包埋切片。
2.抗原的暴露:a.反应原位:对于固定的细胞或组织样本,可以直接进行免疫组化实验。
b.透化处理:对于未固定的细胞或组织样本,需要进行透化处理,以使抗体能够穿透细胞膜或组织间隙。
3.抗原检测步骤:a.抗原恢复:有时,抗原可能会受到固定或透化处理的损伤,需要进行抗原恢复步骤。
常见的方法有热处理、酶消化和抗体消除等。
b.阻断非特异性结合:为了减少非特异性结合,需要对样本进行阻断处理,可以使用一些蛋白质,如牛血清白蛋白(BSA)或鱼胶。
4.抗体标记检测:a.一抗:选择特异对应抗原的一抗(原抗体),将其加入到样本中,与样本中的特定抗原结合。
b.二抗:将含有特异对一抗的二抗(辅助抗体)标记的溶液加入到样本中,与一抗结合。
二抗通常会与荧光染料、酶或金颗粒等标记结合。
5.洗涤:a.用缓冲液洗涤样本,以去除未结合的抗体和其他非特异性的结合物。
6.反应可视化:a.荧光标记:对于荧光染料标记的样本,可以通过荧光显微镜观察到标记物的信号。
b.酶标记:对于酶标记的样本,需要使用合适的基质使酶产生染色反应,并通过显微镜观察到染色的结果。
7.整理和分析:a.包装:用透明性的封片将样本封装,以便保存并观察。
b.分析:使用显微镜分析样本的结果,例如观察染色的细胞或组织的形态、信号定位等。
免疫组化简要步骤
免疫组化是一种用于检测细胞或组织中特定抗原的方法。
以下是免疫组化的简要步骤:
1. 样本固定:将待检测的组织样本或细胞样本固定在载玻片上,通常使用福尔马林或乙醇等化学物质进行固定。
2. 抗原恢复:对于一些组织样本,固定后的抗原可能会变性,需要进行抗原恢复步骤,以使抗原恢复其天然的形态和可检测性。
抗原恢复可以通过热处理、酶解或化学处理等方法实现。
3. 阻断非特异性结合:在进行免疫染色之前,需要使用一种非特异性抗体或蛋白质(如牛血清蛋白)来阻断非特异性结合位点,以减少假阳性结果。
4. 抗体结合:将特异性的一抗(一般为单克隆或多克隆抗体)加入样本中,与待检测的抗原结合。
一抗可以是直接标记的,也可以是未标记的。
5. 洗涤:洗涤去除未结合的一抗,以减少背景干扰。
6. 二抗结合:加入与一抗来源不同物种的二抗,该二抗能够与一抗结合并标记有荧光素、酶或其他可视化标记。
二抗的选择取决于一抗的
种类。
7. 再次洗涤:洗涤去除未结合的二抗。
8. 可视化:根据二抗的标记方式,使用荧光显微镜、酶标仪或其他适当的设备对样本进行可视化。
9. 分析和解释:观察和分析样本中的标记信号,并根据标记的位置和强度来解释结果。
需要注意的是,具体的免疫组化步骤可能会因实验目的、样本类型和使用的抗体等因素而有所不同。
以上步骤仅为一般性的简要流程,实际操作中可能会有一些细微的差异。
免疫组化原理和步骤
免疫组化原理和步骤免疫组化(Immunohistochemistry,IHC)是一种广泛应用于组织学和细胞学研究中的实验方法,主要用于检测和定位蛋白质在组织或细胞中的分布和表达水平。
它结合了免疫学原理和组织学技术,通过使用特异性的抗体和染色剂来实现对目标蛋白质的检测和可视化。
免疫组化的原理主要是利用抗体的高度特异性与抗原相结合,然后使用染色技术来显示抗原的位置。
该技术的基本原理可分为抗原-抗体反应、信号放大和信号显示三个步骤。
第一步:抗原-抗体反应免疫组化的第一步是选择合适的抗体,通过与目标蛋白质的特异性结合来形成抗原-抗体复合物。
抗体可以是单克隆抗体或多克隆抗体。
单克隆抗体具有高度特异性,只能结合到特定的抗原上。
多克隆抗体具有高度敏感性,可以结合多个位点,从而实现信号放大。
通常,为了提高抗原的可检测性,需要对组织样本进行抗原修复处理。
这可以通过热处理(如蒸汽加热、微波加热)或酶切处理来实现。
修复可以解除组织样本中抗原与蛋白质结构之间的交联,增加抗体的渗透性和可结合性。
当抗原-抗体反应发生时,可通过一系列化学反应来形成抗原-抗体复合物。
例如,可以使用二抗来与抗原-抗体复合物结合,然后使用辣根过氧化物酶(HRP)或碱性磷酸酶(AP)标记的二抗来与二抗结合。
该反应可形成稳定的抗体-酶复合物。
第二步:信号放大由于抗原-抗体复合物的信号很弱,通常需要进行信号放大以便更好地检测到目标蛋白质。
放大信号的方法有很多种,其中最常用的是酶免疫标记联合酶放大技术。
酶免疫标记是通过将抗体与酶结合,使其能够催化特定的化学反应来产生荧光、色素或光学信号。
常用的酶免疫标记包括辣根过氧化物酶(HRP)和碱性磷酸酶(AP)。
这些酶能够催化荧光素、二苯基胺、硝基蓝等底物的氧化还原反应,从而产生可视化的信号。
酶放大技术常用的方法包括:免疫酶化学法(如DAB法)、免疫荧光法和免疫酶学荧光混合法等。
这些方法可通过将底物转化为可见的色素或荧光信号来标记抗原-抗体复合物,从而实现目标蛋白质的检测和定位。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
免疫组化技术的原理、分类和优点
一、免疫组化技术的基本原理
应用免疫学及组织化学原理,对组织切片或细胞标本中的某些化学成分进行原位的定性、定位或定量研究,这种技术称为免疫组织化学技术或免疫细胞化学技术。
众所周知,抗体与抗原之间的结合具有高度的特异性。
免疫组化正是利用这一特性,即先将组织或细胞中的某些化学物质提取出来,以其作为抗原或半抗原去免疫小鼠等实验动物,制备特异性抗体,再用这种抗体(第一抗体)作为抗原去免疫动物制备第二抗体,并用某种酶(常用辣根过氧化物酶)或生物素等处理后再与前述抗原成分结合,将抗原放大,由于抗体与抗原结合后形成的免疫复合物是无色的,因此,还必须借助于组织化学方法将抗原抗体反应部位显示出来(常用显色剂DAB显示为棕黄色颗粒)。
通过抗原抗体反应及呈色反应,显示细胞或组织中的化学成分,在显微镜下可清晰看见细胞内发生的抗原抗体反应产物,从而能够在细胞或组织原位确定某些化学成分的分布、含量。
组织或细胞中凡是能作抗原或半抗原的物质,如蛋白质、多肽、氨基酸、多糖、磷脂、受体、酶、激素、核酸及病原体等都可用相应的特异性抗体进行检测。
二、免疫组织化学染色方法
1、按标记物质的种类,如荧光染料、放射性同位素、酶(主要有辣根过氧化物酶和碱性磷酸酶)、铁蛋白、胶体金等,可分为免疫荧光法、放射免疫法、酶标法和免疫金银法等。
2、按染色步骤可分为直接法(又称一步法)和间接法(二步、三步或多步法);与直接法相比,间接法的灵敏度提高了许多。
3、按结合方式可分为抗原—抗体结合,如过氧化物酶-抗过氧化物酶(PAP)法和亲和连接,如卵白素-生物素-过氧化物酶复合物(ABC)法、链霉菌抗生物素蛋白-过氧化物酶连结(SP)法等,其中SP法是最常用的方法。
三、几种常用免疫组织化学方法的原理
1、免疫荧光方法
是最早建立的免疫组织化学技术。
它利用抗原抗体特异性结合的原理,先将已知抗体标上荧光素,以此作为探针检查细胞或组织内的相应抗原,在荧光显微镜下观察。
当抗原抗体复合物中的荧光素受激发光的照射后即会发出一定波长的荧光,从而可确定组织中某种抗原的定位,进而还可进行定量分析。
由于免疫荧光技术特异性强、灵敏度高、快速简便,所以在临床病理诊断、检验中应用比较广。
2、免疫酶标方法
免疫酶标方法是继免疫荧光后,于60年代发展起来的技术。
基本原理是先以酶标记的抗体与组织或细胞作用,然后加入酶的底物,生成有色的不溶性产物或具有一定电子密度的颗粒,通过光镜或电镜,对细胞表面和细胞内的各种抗原成分进行定位研究。
免疫酶标技术是目前最常用的技术。
本方法与免疫荧光技术相比的主要优点是:定位准确,对比度好,染色标本可长期保存,适合于光、电镜研究等。
免疫酶标方法的发展非常迅速,已经衍生出了多种标记方法,且随着方法的不断改进和创新,其特异性和灵敏度都在不断提高,使用也越来越方便。
目前在病理诊断中广为使用的当属PAP法、ABC法、SP法等。
3、免疫胶体金技术
免疫胶体金技术是以胶体金这样一种特殊的金属颗粒作为标记物。
胶体金是指金的水溶胶,它能迅速而稳定地吸附蛋白,对蛋白的生物学活性则没有明显的影响。
因此,用胶体金标记一抗、二抗或其他能特异性结合免疫球蛋白的分子(如葡萄球菌A蛋白)等作为探针,就能对组织或细胞内的抗原进行定性、定位,甚至定量研究。
由于胶体金有不同大小的颗粒,且胶体金的电子密度高,所以免疫胶体金技术特别适合于免疫电镜的单标记或多标记定位研究。
由于胶体金本身呈淡至深红色,因此也适合进行光镜观察。
如应用银加强的免疫金银法则更便于光镜观察。
四、免疫组化技术的优点
1、特异性强免疫学的基本原理决定了抗原与抗体之间的结合具有高度特异性,因此,免疫组化从理论上讲也是组织细胞中抗原的特定显示,如角蛋白(keratin)显示上皮成分,LCA显示淋巴细胞成分。
只有当组织细胞中存在交叉抗原时才会出现交叉反应。
2、敏感性高在应用免疫组化的起始阶段,由于技术上的限制,只有直接法、间接法等敏感性不高的技术,那时的抗体只能稀释几倍、几十倍;现在由于ABC法或SP法的出现,使抗体稀释上千倍、上万倍甚至上亿倍仍可在组织细胞中与抗原结合,这样高敏感性的抗体抗原反应,使免疫组化方法越来越方便地应用于常规病理诊断工作。
3、定位准确、形态与功能相结合该技术通过抗原抗体反应及呈色反应,可在组织和细胞中进行抗原的准确定位,因而可同时对不同抗原在同一组织或细胞中进行定位观察,这样就可以进行形态与功能相结合的研究,对病理学研究的深入是十分有意义的。