3平面直角坐标系-象限的划分

合集下载

平面直角坐标系中的点与坐标

平面直角坐标系中的点与坐标

平面直角坐标系中的点与坐标平面直角坐标系,简称二维坐标系,是由两条相互垂直的坐标轴构成的坐标系。

其中,水平的坐标轴被称作x轴,垂直的坐标轴被称作y 轴。

在这个坐标系中,我们可以用坐标来定位平面上的点。

本文将介绍点与坐标之间的关系以及如何确定点的位置。

1. 坐标概念在平面直角坐标系中,每个点都有一个唯一的坐标来定位它的位置。

坐标由两个数值组成,分别表示点在x轴和y轴上的位置。

我们用(x, y)的形式表示一个点的坐标,其中x表示横坐标,y表示纵坐标。

2. 点的位置将平面直角坐标系划分成四个象限,分别从第一象限到第四象限,沿顺时针方向编号。

在第一象限,x轴和y轴的数值都为正数。

在第二象限,x轴的数值为负数,y轴的数值为正数。

在第三象限,x轴和y轴的数值都为负数。

在第四象限,x轴的数值为正数,y轴的数值为负数。

3. 点的坐标以原点O(0, 0)为基准点,我们可以通过平移和旋转的方式确定其他点的坐标。

当一个点的坐标为(x, y)时,它的位置相对于原点的水平距离为x,垂直距离为y。

例如,点A(3, 4)表示在x轴方向上向右移动3个单位,在y轴方向上向上移动4个单位。

4. 点的距离在平面直角坐标系中,我们可以使用勾股定理来计算两个点之间的距离。

勾股定理表明,在直角三角形中,斜边的平方等于其他两边的平方和。

假设有两个点A(x1, y1)和B(x2, y2),它们之间的距离可以用以下公式计算:距离AB = √((x2 - x1)^2 + (y2 - y1)^2)5. 坐标轴的刻度在平面直角坐标系中,我们可以通过刻度来标示坐标轴上的数值。

通常情况下,刻度是均匀的,每个单位长度都对应一个刻度线。

x轴和y轴的刻度线可以用来表示和比较数值的大小,从而更清楚地理解点的位置和距离。

6. 应用举例平面直角坐标系在解决各种实际问题时非常有用。

例如,在地图上标注城市的位置时,可以使用坐标系来确定城市的经纬度。

在建筑设计中,可以使用坐标系来定位和测量建筑物的各个部分。

平面直角坐标系平面直角坐标系

平面直角坐标系平面直角坐标系
(注意
在有些情况下,1个单位长度表示的单位量可能 不是1,需要具体问题具体分析。)
3
特点
坐标轴上的单位长度是等长的,即1个单位长度 上对应的坐标值是等距的。
象限与八分区
• 象限:将平面分成四个区域,左上、右上、左下、右下分别称为第一、第二、第三、第四象限。 • 八分区:将平面分成八个区域,类似于象限的划分方法,但是增加了两条坐标轴上的奇数和偶数分区。具
平面直角坐标系的优化算法
平面直角坐标系也可以用于解决优化问题,例如线 性规划、非线性规划等。
线性规划问题可以定义一个目标函数和一组约束条 件,通过求解目标函数的最大值或最小值,以及满
足约束条件的最优解得到最优解。
非线性规划问题可以定义一个非线性目标函数和 一组约束条件,通过求解目标函数的最小值或最 大值,以及满足约束条件的最优解得到最优解。
特点
平面直角坐标系具有简单易行、直观形象、易于理解与运用 等优点。
平面直角坐标系的重要性
数学科学的基础
平面直角坐标系是数学科学中最为基础和重要的概念之一,它为代数、几何 、分析等多个分支提供了桥梁和工具。
解决实际问题
平面直角坐标系广泛应用于各个领域,如物理学、工程学、经济学等,用于 描述和分析实际问题。
体如下 • 第一象限:(+,+) • 第二象限:(-,+) • 第三象限:(-,-) • 第四象限:(+,-) • x轴正半轴:(+,0) • x轴负半轴:(0,-) • y轴正半轴:(0,+) • y轴负半轴:(-,0)
03
平面直角坐标系的应用
描述点的位置
平面直角坐标系由横轴和纵轴构成,原点表示为 (0,0),可以在此基础上确定任意点的位置。

平面直角坐标系题型讲解

平面直角坐标系题型讲解
一.平面直角坐标系: (纵轴) y 第二象限 第一象限
O (坐标原点) 第三象限 第四象限
x (横轴)
二.平面直角坐标系内各位置点的坐标特征 第二象限 第一象限 (-,+) (+,+) O (坐标原点) x 第三象限 第四象限 (-,-) (+,-) 若P(x,y)是坐标平面内一点 点P在第一象限,则x>0,y>0; 点P在第二象限,则x<0,y>0; 点P在第三象限,则x<0,y<0; 点P在第四象限,则x>0,y<0; 点P在横轴上,则y=0; 点P在纵轴上,则x=0.
.
y
(1)y随x怎样变化?
(2)自变量的取值范围是什么?
.
(3)当取什么值时,的值 最小?最小值是多少? x
; / 龙虎斗

战气,对着剑身拍下!" "唔?"夜枪眨了眨眼睛,不相信の抬起左手,对着神剑轻轻一拍. "咔嚓!" 神剑竟然应声而断,断成两截,露出中间中空の黑幽幽口子. …… 现场一片哗然,他们都没有想到,争夺了数千年の落神山至宝,到头来却是把假货,并且居然似乎还不止一把假货? "得到最多 宝物の人,将获得胜利!将会有机会得到至宝,祝你呀们好运" "当然能不能拿到至宝要看你呀运气好不好了" 有机会?运气? 这时众人想起落神山守护者刚才说得话,纷纷暗自猜测起来,莫非,这神剑还有不少把?只有一把才是真の?但是其余の神剑哪里去了?真の神剑又在哪里? 当然也有少 数人将怀疑の目光投向了白重炙,投向了他那把黑油油,摸样奇怪の长刀.莫非这把才是真正の神剑? "看什么看?妈の,晦气……诸位俺很惭愧,不咋大的爷心情很不好,所以不咋大的爷改变主意了,你呀们不能就这样回去了!" 白重炙白眼一翻,直接发飙了,心里却无奈,毕竟他突然出现在了 天路广场,并且还玩嗨了,现出了屠神刀,以及空间神器逍遥戒,别人没有怀疑才怪.此刻他只能尽量将众人の注意转移一些,希望不让他们怀疑,于是他几多霸蛮の吼了起来. "擦…" 白重炙一发飙,蛮**们却傻了,不带这样玩の. 蛮干首先急了,他可不想白重炙再给他剁去另外一根中指,或者 下面の第三条腿什么の,连忙带着哭腔喊了起来:"夜少,不光俺の事啊,你呀可能将火气撒在俺们身体上啊,俺上有老下有下,俺要是死了,俺の那几百房媳妇该怎么办啊?她们可不能靠手指和冬瓜度日啊…" "对啊,夜大人,你呀大人有大量,真不光俺们の事情!" "夜公子,你呀可不能出尔反 尔啊?再说了俺们可是都没有对付你呀们白家の人啊!" "……" 一时候众人连忙又是拱手,又是弯腰,又是擦眼泪,集体恳求起来. "轻寒,得饶人处且饶人,你呀看…" 夜枪也急了,神器没了就没了,最少白重炙平安归来了,实力还变得如此生猛,白家知道这消息肯定都会欢喜连天.但是如果 白重炙把在场の全杀了,那可是得罪了几方势力,以后白家の日子也不好过啊… "额…既然俺三叔,开口求情了,那么就算了!"白重炙沉思片刻,开口了,让众人一阵大喜,只是下一秒白重炙继续说の话,却又让他们心情跌入了谷底. "这样吧…把你呀们身体上所有の宝物,全部留下,宝器以上 の,全部丢过来,别想隐瞒,俺心情可是还没恢复,要是被俺发现了,俺可是要发飙の……宝物留下之后,全体双手抱头,排成三排,排好队,走出去,队形要整齐哦,俺心情不好,你呀们知道の,别惹俺发飙…" "扑通,扑通!" 白重炙话一说完,现场直接由不少人直接,昏迷倒地,场中剩下の人却脸 上布满了黑线,这样玩,也太坑爹了吧! 本书来自 品&书#网 当前 第2捌0章 一二一,一二一. 文章阅读 夜天龙很急,落神山接连而三の异变,让他无比の心慌,而当他看着夜青牛不断の在他眼睛走来走去,心就更加慌了起来.看书 "青牛,别晃来晃去,晃得俺眼都花了!" 夜青牛也很慌,所 以他才会不停の走来走去,但是此刻被夜天龙一吼,连忙不敢再走了,只是眼巴巴の望着天路の出口,心情复杂到了极点. 月姬封谔谔花香也急,她们没表现在脸上,只是袍子下不断微微抖动の双手出卖了她们の心情. 神城四卫也急,妖族蛮族隐岛の强者也急.所以人此刻の目光投投向了天路 の入口,等待着最后の结局. "轰隆隆!" 就在这时,落神山再次一阵摇晃,将众人の目光集体吸引到了落神山の顶端,在众人惊恐の目光下,落神山顶部,悬空の不咋大的神阁,竟然不断の剧烈摇晃起来,发出了巨大の响声……而后在众人膛目结舌の目光下,突然直接消失了… "咻,咻,咻…" 在就不咋大的神阁完全消失の前,不咋大的神阁内突然爆发出一条刺目の光芒,而后数百道金色の光芒直接从不咋大的神阁内激射而出,朝着落神山四面八方射去,速度奇快,眨眼就消失不见了… "那些金光是什么?不咋大的神阁怎么消失了?"封谔谔首先发出了一声怪叫,满脸の震惊和疑惑. "好像是无数把剑?往大陆各个方向飞去了!"夜青牛鼓着牛眼,不确定の说道. 发生了什么事情? 为何不咋大的神阁消失了?还射出了无数把剑? 就在众人迷糊不解の时候,一条压抑の气息,将落神山脚下全部笼罩,紧接着,一些低沉の声音响起,将众人の疑惑全部消除. "落神山神剑出世,有 缘者得之…" "有缘者得之…得之…" 低沉の声音,响彻天空,传向了远方,传遍了大陆,将大陆の所有人震呆了… …… 而就在不咋大的神阁消失の那一刻,炽火位面外面の空间乱流中,一些长着双角の男人,突然睁开了眼睛,站起了身子,望着不咋大的神阁消失の地方,愣了许久,而后在幽幽 开口起来. "守护了数千年,第十二把神剑终于出世了,俺终于可以回去了,哈哈…想必血王大人知道了这个消息,一定会赐予俺一些家主位置和一些神将神晶吧,哈哈…" 双角高大の男人,狂笑几声,直接朝空间乱流出快速飞去,最后消失在无边无际の乱流风刃之中. 而就在同一时候,暗黑森 林内の古堡内. 那名一只坐在古堡顶部の红衣女子,再次放下了手中の书,朝着落神山方向望了一眼,嘴角荡起一丝微笑,轻声呢喃起来: "这鹿希倒也聪明,两人这戏也演得不错…唔,在乱流中蹲守了数千年,倒也难为他了.看来,要不了多久会更热闹了,这炽火位面越来越有意思了,呵呵…" 悦耳の声音,将古堡の平静打破,宛如平静の湖水落下了一些不咋大的石头,引发了道道涟漪. 神城,神主府书房の那扇门,突然被推开,屠の一红一黑の诡异双瞳尽是冷意,他望着空中の无数金光,连忙大喝了起来.迅速召集起无数の神城使者,密议一阵,整个神城利马热闹了起来,无数穿着金 袍の人,从神城の四个大门,往外快速奔去,眨眼消失不见了. 龙城,三位破仙再次出关,片刻之后,龙匹夫手下の无数军队强者,快速の奔出了龙城,朝四面八方奔去.白家堡,夜白虎受到了夜若水の传音,迅速将白家の所有子弟动用了起来,无数の快马朝破仙府北方奔走.落花城,飘雪城,笑昏 城,西风城,也同时纷纷行动了起来,四处开始奔走,四处寻觅. 蛮神府,妖神府,隐岛,在同一时候无数の强者开始奔走,整个大陆,在同一时候都混乱了起来,都忙碌了起来,都四处寻找起来. 他们都在寻找,落神山飞出来の数百道金光,都在寻找落神山の至宝. …… …… "队形排好了,双手 抱头,别左看右看,往前走!一二一,一二一……" 就在夜天龙屠神卫他们,正在因为不咋大的神阁消失无数神剑出世,以及落神山中传出の神级强者声音,在惊疑不定の时候,天路路口却传出一些年轻の声音. 而当他们不由自主の,将目光投向天路入口の时候,他们却全部傻了,脸上集体露出 了被雷电击中の表情… 他们看到——天路入口,此时正走出三排人.当然,这不是最重要の.最重要の是……这三排人,竟然全部衣裳不整,全身狼狈,满脸羞愧神色,双手抱在后脑勺,宛如一群囚犯被人驱赶着游街一样… 什么情况? 屠神卫怒了,斩神卫傻了,焚神卫羞了,弑神卫迷茫了…… 因为最前面の人却是全部是神城の强者,一眼看去,他们很清楚の看到.神城の数百强者只剩下一半不到,并且他们去の时候の全副武装の宝器,圣器,此刻一件都没有了. 神城之后,走来の是妖族の强者,同样の武器护甲没有一件,同样の双手抱头,同样の羞涩和尴尬の表情,让妖族の强者也 差点暴走了. 在后面是蛮族の,当蛮族の人看着蛮干那个光头,此刻光着身子只剩下一条红色の内裤,一副死了爹の表情,走在前方の时候.他们有人晕倒了,剩下の人却是无比の脸色阴沉,恨不得挖个洞钻进去… 怎么?他们の少族长,出来了两趟,两趟却都给人扒光了只剩下内裤? 而隐岛の 几个老家伙,也准备承受同样の打击の时候,却发现,隐岛の人整齐の走了出来,神情很

同步经典学案数学八年级上册

同步经典学案数学八年级上册

同步经典学案数学八年级上册一、平面直角坐标系1. 知识点梳理(1)有序数对:有顺序的两个数a 和 b 组成的数对,记作(a, b),称为有序数对。

(2)平面直角坐标系:在平面内,两条互相垂直的数轴相交,构成平面直角坐标系。

水平的数轴称为x 轴或横轴,取向右的方向为正方向;垂直的数轴称为y 轴或纵轴,取向上的方向为正方向。

(3)点的坐标:在平面直角坐标系中,任意一点P 可以由一对有序数对(x, y) 表示,记作P(x, y)。

其中,x 称为点P 的横坐标,y 称为点P 的纵坐标。

(4)坐标原点:两数轴的交点称为坐标原点,记作O(0,0)。

(5)象限与坐标符号:平面直角坐标系中,按逆时针方向分别划分的四个象限,每个象限内的点的坐标符号各有特点。

第一象限为(+,+),第二象限为(-,+),第三象限为(-,-),第四象限为(+,-)。

(6)点的平移:在平面直角坐标系中,将点P(x, y) 沿x 轴向右平移a 个单位长度,对应点的坐标变化为(x+a, y);将点P(x, y) 沿x 轴向左平移 a 个单位长度,对应点的坐标变化为(x-a, y)。

同样地,将点P(x, y) 沿y 轴向上平移 b 个单位长度,对应点的坐标变化为(x, y+b);将点P(x, y) 沿y 轴向下平移b 个单位长度,对应点的坐标变化为(x, y-b)。

2. 经典例题解析例题1:在平面直角坐标系中,点 A 的坐标为(2, -3),将点A 向左平移4 个单位长度后得到点B,则点B 的坐标是_______。

【分析】根据点的平移规律“左减右加”,即可得到点B的坐标。

【解答】解:∵点A的坐标为(2, - 3),将点A向左平移4个单位长度后得到点B,∴点B的横坐标为2 - 4 = - 2,纵坐标不变,即点B的坐标为( - 2, - 3)。

故答案为( - 2, - 3)。

新华师大版八年级下学期数学平面直角坐标系知识点总结与例题讲解

新华师大版八年级下学期数学平面直角坐标系知识点总结与例题讲解

平面直角坐标系资料编号:202203251050 【自学指导】借助于数学课本,弄清楚以下几个问题:1. 如何建立平面直角坐标系?2. 如何在平面直角坐标系中表示给定点的坐标?3. 给出一个点的坐标,如何在平面直角坐标系中描出这个点?4. 象限的划分.5. 象限内点的坐标特征.6. 会根据点所在的位置求字母的值或取值范围.【重要知识点总结】平面直角坐标系在平面上画两条原点重合、互相垂直且具有相同单位长度的数轴,这就建立了平面直角坐标系.把水平的数轴叫做x轴或横轴,取向右的方向为正方向;铅直的数轴叫做y轴或纵轴,取向上的方向为正方向.两条数轴的交点O叫做坐标原点.如下图(1)所示.轴横轴或x 轴图(1)平面直角坐标系点的坐标在平面直角坐标系中,任何一点都可以用一对有序实数对来表示,叫做点的坐标.点与有序实数对是一一对应的.如下页图(2)所示,点P的坐标是这样确定的:通过点P向x轴作垂线,垂足在x轴上对应的数就是点P 的横坐标;通过点P 向y 轴作垂线,垂足在y 轴上对应的数就是点P 的纵坐标.规定:横坐标在前,纵坐标在后(横前纵后),所以点P 的坐标为()3,2-,其横坐标为2-,纵坐标为3.图(2)注意:(1)在求点的坐标时,x 轴上对应的数是横坐标,y 轴上对应的数是纵坐标.(2)求点的坐标时,横坐标要写在前面,纵坐标写在后面,中间用逗号隔开,再把它们用小括号括起来.(3)如果点在x 轴(横轴)上,其纵坐标为0;如果点在y 轴(纵轴)上,其横坐标为0;如果点在原点,其横坐标、纵坐标均为0,坐标为()0,0.(4)知道一个点的坐标,可以在平面直角坐标系中描出点(即确定点的位置);知道一个点在平面直角坐标系中的位置,可以求出点的坐标. 点在坐标轴上的坐标特征已知点P 的坐标为()n m ,,若点P 在x 轴上,则0=n ;若点P 在y 轴上,则0=m ;若点P 在原点,则0,0==n m . 象限在平面直角坐标系中,两条坐标轴把平面分成如图(3)所示的Ⅰ, Ⅱ , Ⅲ , Ⅳ四个区域,分别称为第一、二、三、四象限. 注意:(1)象限以坐标轴为界,坐标轴上的点不属于任何一个象限.(2)不同的象限内,点的坐标符合不同.(3)象限内点的坐标符号的确定方法:看点所在象限是以两条坐标轴的哪两条半轴为分界线的,正半轴所对应的坐标符号为正,负半轴所对应的坐标符号为负.如,第一象限是以x 轴的正半轴和y 轴的正半轴为分界线的,所以在第一象限内,点的横坐标、纵坐标均为正.第二象限:横坐标为_________,纵坐标为_________; 第三象限:横坐标为_________,纵坐标为_________; 第四象限:横坐标为_________,纵坐标为_________.图(3)图(4)四个象限内点的坐标符号(4)点在坐标轴上,则点不属于任何一个象限:点在x 轴的正半轴上,坐标符号为)0,(+,点在x 轴的负半轴上,坐标符号为)0,(-; 点在y 轴的正半轴上,坐标符号为),0(+,点在y 轴的负半轴上,坐标符号为),0(-.(5)根据点的坐标,我们可以确定点所在的象限;而根据点所在的象限,我们可以确定字母的取值范围. 【例题讲解】例1. 如图所示,在平面直角坐标系中: 点A 的坐标是__________; 点B 的坐标是__________; 点C 的坐标是__________; 点D 的坐标是__________; 点E 的坐标是__________.解:点A 的坐标是()2,2; 点B 的坐标是()3,3-; 点C 的坐标是()2,2--; 点D 的坐标是()2,3-; 点E 的坐标是()0,3.例2. 平面直角坐标系中,点()3,2-A 在第_________象限. 分析 本题考查根据点的坐标判断点所在的象限.点A 的横坐标为正,对应x 轴的正半轴,纵坐标为负,对应y 轴的负半轴,故点A 位于第四象限. 解: 四例3. 若点()1,3++m m A 在x 轴上,则点A 的坐标是__________. 分析 点在坐标轴上,点不属于任何象限.当点在x 轴上时,其纵坐标为0;当点在y 轴上时,其横坐标为0. 解:由题意可知:01=+m 解之得:1-=m ∴()0,2A .例4. 若点()12,1+-m m P 在第二象限,则m 的取值范围是__________. 分析 本题考查根据点所在的象限,求参数的取值范围.在第二象限,对应x 轴的负半轴,y 轴的正半轴,故第二象限的点,其横坐标为负,纵坐标为正.解:由题意可得:⎩⎨⎧>+<-01201m m解之得:121<<-m . 例5. 如果点()n m A -3,2在第二象限,那么点()4,1--n m B 在第_________象限. 分析 要先根据点A 所在的象限求出n m ,的取值范围,然后再确定点B 所在的象限. 解:由题意可得:03,02>-<n m ∴3,0<<n m ∴04,01<-<-n m ∴点B 在第三象限.【作业】1. 点()2,1-P 在第_________象限.2. 若点()3,2+-x x P 在第一象限,则x 的取值范围是__________.3. 已知点()m A ,0在y 轴的负半轴上,则点()1,+--m m B 在第_________象限.4. 若第三象限内的点()n m P ,满足9,52==n m ,则点P 的坐标为__________.5. 点⎪⎭⎫ ⎝⎛1,b a A 在第一象限,则点()ab a B ,2-在第_________象限.6. 如图所示,在平面直角坐标系中: (1)点A 的坐标是_________;点B 的坐标是_________; 点C 的坐标是_________; 点D 的坐标是_________. (2)在图中分别作出点A , B , C , D 关 于x 轴对称的点',',','D C B A ; (3)点'A 的坐标是_________;点'B 的坐标是_________;点'C 的坐标是_________; 点'D 的坐标是_________.(4)观察这些对称点的坐标之间的关系,你能得出什么结论?(从横坐标、纵坐标两个角度观察)在图中再找一对对称点验证一下你得出的结论.【作业答案】1. 点()2,1-P 在第_________象限. 解: 二2. 若点()3,2+-x x P 在第一象限,则x 的取值范围是__________.解:由题意可得:⎩⎨⎧>+>-0302x x解之得:2>x .3. 已知点()m A ,0在y 轴的负半轴上,则点()1,+--m m B 在第_________象限. 解:由题意可得:0<m ∴01,0>+->-m m∴点()1,+--m m B 在第一象限.4. 若第三象限内的点()n m P ,满足9,52==n m ,则点P 的坐标为__________. 解:∵9,52==n m ∴3,5±=±=n m ∵点P 在第三象限 ∴0,0<<n m ∴3,5-=-=n m ∴点P 的坐标为()3,5--.5. 点⎪⎭⎫ ⎝⎛1,b a A 在第一象限,则点()ab a B ,2-在第_________象限.解:∵点⎪⎭⎫⎝⎛1,b a A 在第一象限∴0≠a ,且b a ,同号 ∴0,02><-ab a∴点()ab a B ,2-在第二象限.6. 如图所示,在平面直角坐标系中: (1)点A 的坐标是_________;点B 的坐标是_________; 点C 的坐标是_________; 点D 的坐标是_________. (2)在图中分别作出点A , B , C , D 关 于x 轴对称的点',',','D C B A ; (3)点'A 的坐标是_________;点'B 的坐标是_________; 点'C 的坐标是_________; 点'D 的坐标是_________.(4)观察这些对称点的坐标之间的关系,你能得出什么结论?(从横坐标、纵坐标两个角度观察)在图中再找一对对称点验证一下你得出的结论.解:(1)点A 的坐标是()3,2; 点B 的坐标是()4,3-; 点C 的坐标是()2,2--; 点D 的坐标是()1,3-. (2)如图所示;(3)点'A 的坐标是()3,2-; 点'B 的坐标是()4,3--; 点'C 的坐标是()2,2-; 点'D 的坐标是()1,3.(4)发现的结论: 两个点关于x 轴对称,它们的横坐标相等,纵坐标互为相反数.。

北师大版八年级数学上册:3.2《平面直角坐标系》说课稿

北师大版八年级数学上册:3.2《平面直角坐标系》说课稿

北师大版八年级数学上册:3.2《平面直角坐标系》说课稿一. 教材分析《平面直角坐标系》是北师大版八年级数学上册第三章第二节的内容。

本节课的主要内容是让学生掌握平面直角坐标系的建立、坐标轴的特点、坐标的表示方法以及坐标轴上的点的坐标特点。

教材通过生动的实例和丰富的练习,使学生能够理解并熟练运用平面直角坐标系解决实际问题。

二. 学情分析学生在学习本节课之前,已经掌握了实数、一次函数和二次函数等基础知识。

他们对数学图形有一定的认识,但平面直角坐标系的概念和应用可能较为抽象。

因此,在教学过程中,需要注重引导学生通过观察、操作和思考,理解和掌握平面直角坐标系的相关知识。

三. 说教学目标1.知识与技能目标:让学生掌握平面直角坐标系的建立、坐标轴的特点、坐标的表示方法,以及坐标轴上的点的坐标特点。

2.过程与方法目标:通过观察、操作和思考,培养学生运用平面直角坐标系解决实际问题的能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的合作意识和创新精神。

四. 说教学重难点1.教学重点:平面直角坐标系的建立,坐标轴的特点,坐标的表示方法。

2.教学难点:坐标轴上的点的坐标特点,以及运用平面直角坐标系解决实际问题。

五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法和探究式教学法。

2.教学手段:利用多媒体课件、实物模型和几何画板等辅助教学。

六. 说教学过程1.导入新课:通过一个实际问题,引导学生思考如何用数学方法表示物体的位置。

2.探究平面直角坐标系:让学生观察和分析实际问题,引导学生发现平面直角坐标系的建立和特点。

3.学习坐标表示方法:讲解坐标的表示方法,让学生通过实际操作,掌握坐标轴上的点的坐标特点。

4.应用与拓展:让学生运用平面直角坐标系解决实际问题,培养学生的应用能力。

5.总结与反思:对本节课的内容进行总结,引导学生思考如何更好地运用平面直角坐标系。

七. 说板书设计板书设计要简洁明了,突出重点。

平面直角坐标系中第一二象限内的所有点组成的集合

平面直角坐标系中第一二象限内的所有点组成的集合

平面直角坐标系中第一二象限内的所有点组成的集合在平面直角坐标系中,第一象限和第二象限内的所有点所组成的集合是一个非常有趣的数学概念。

这个概念不仅在数学中有着重要的地位,而且在现实生活中也有着广泛的应用。

在本篇文章中,我将会对这个概念进行深入的探讨和解释,让我们一起来探索这个有趣且具有挑战性的主题。

1. 了解平面直角坐标系要深入理解第一二象限内所有点的集合,首先我们需要了解平面直角坐标系。

平面直角坐标系由两条互相垂直的坐标轴组成,一般规定横轴为 x 轴,纵轴为 y 轴。

这两条坐标轴的交点称为坐标系的原点 O,然后分别从原点向右和向上画出正方向,形成第一象限、第二象限、第三象限和第四象限。

每一个点都可以由一个有序数对 (x, y) 来表示,其中 x 表示横坐标,y 表示纵坐标。

2. 第一二象限内所有点的集合是什么?在平面直角坐标系中,第一象限位于坐标轴的右上方,横坐标和纵坐标均为正数。

第二象限位于坐标轴的左上方,横坐标为负数,纵坐标为正数。

第一二象限内所有点的集合就是指横坐标和纵坐标均为正数或者横坐标为负数,纵坐标为正数的所有点的集合。

这个集合内包含了无数个点,构成了一个无限的区域。

3. 应用和意义第一二象限内所有点的集合在数学上有很多重要的应用。

比如在代数中,我们经常需要用到坐标系来解方程、画图、研究函数等,而第一二象限内所有点的集合就是这些过程中不可或缺的一部分。

在几何学中,我们也常常需要用到坐标系来研究图形的性质,而第一二象限内所有点的集合就是构成这些图形的基础。

在物理学和工程学中,平面直角坐标系更是被广泛应用,而第一二象限内所有点的集合则成为了描述空间位置、运动轨迹等重要工具。

4. 个人观点和总结对于第一二象限内所有点的集合,我个人认为它代表了一种积极向上的态势。

在这个集合中,所有的点都具有正向的坐标,象征着正能量和积极的发展趋势。

这种集合在数学领域的应用非常广泛,而且在现实生活中也有着深远的意义。

平面直角坐标系知识点归纳总结

平面直角坐标系知识点归纳总结

平面直角坐标系知识点归纳总结一、主要知识点概括:(一)有序数对:有顺序的两个数a与b组成的数对。

1、记作(a ,b);2、注意:a、b的先后顺序对位置的影响。

(二)平面直角坐标系1、构成坐标系的各种名称;2、各象限的点的横纵坐标的符号;3、各种特殊位置点的坐标特点:原点、坐标轴上的点、角平分线上的点;4、点A(x,y)到两坐标轴的距离;5、同一坐标轴上两点间的距离;6、根据已知条件求某一点的坐标。

(三)坐标方法的简单应用1、用坐标表示地理位置;2、用坐标表示平移。

二、各象限内点的坐标特点:第一象限:P(x,y)x>0 y>0第二象限:P(x,y)x<0 y>0第三象限:P(x,y)x<0 y<0第四象限:P(x,y)x>0 y<0三、原点及坐标轴上点的坐标特点:原点:P(0,0)X轴上的点:P(x,0)Y轴上的点:P(0,y)四、平行于坐标轴的直线的点的坐标特点:平行于x轴(或横轴)的直线上的点的纵坐标相同;平行于y轴(或纵轴)的直线上的点的横坐标相同。

五、各象限的角平分线上的点的坐标特点:第一、三象限角平分线上的点的横纵坐标相同;第二、四象限角平分线上的点的横纵坐标相反。

六、与坐标轴、原点对称的点的坐标特点:关于x轴对称的点的横坐标相同,纵坐标互为相反数关于y轴对称的点的纵坐标相同,横坐标互为相反数关于原点对称的点的横坐标、纵坐标都互为相反数七、利用平面直角坐标系绘制区域内一些点分布情况平面图过程如下:? 建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;? 根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;? 在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面直角坐标系
【象限的划分】
【基础练习】
1.在平面直角坐标系中,点P(﹣2,3)在()
A.第一象限B.第二象限C.第三象限D.第四象限
2.在平面直角坐标系中,点(3,3)所在的象限是()
A.第一象限B.第二象限C.第三象限D.第四象限
3.在平面直角坐标系中,点P(﹣3,1)所在的象限是()
A.第一象限B.第二象限C.第三象限D.第四象限
4.如图,小手盖住的点的坐标可能为 ( )
A.(5,2) B.(-6,3) C.(-4,-6) D.(3,-4)
5.如图,下列说法正确的是()
A.A与D的横坐标相同. B.C与D的横坐标相同.
C.B与C的纵坐标相同. D.B与D的纵坐标相同.
6.横坐标与纵坐标互为相反数的点在()
A.第二象限的角平分线上 B.第四象限的角平分线上
C.原点 D.前三种情况都有可能
7.点P在第二象限内,若P到x轴的距离是3,到y轴的距离是4,那么点P的坐标为()
A.()
4,3
-
B.
()
3,4
--
C.
()
3,4
-
D.
()
3,4-
8. 若a>0,b<-2,则点(a ,b+2)应在( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
9. 若点P 在第四象限,且点P 到x 轴y 轴的距离分别为4,3,则点P ′的坐标为( )
A .(4,-3)
B .(-4,3)
C .(-3,4)
D .(3,-4)
10. 若点P 在第二象限,则点Q 在( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
11. 若a>0,则点P (﹣a ,2)应在( )
A . 第﹣象限内
B . 第二象限内
C . 第三象限内
D . 第四象限内
12. 在直角坐标系中,点P (6-2x ,x-5)在第四象限,•则x 的取值范围是( )
A .3<x<5
B .x> 5
C .x<3
D .-3<x<5
13. 点P (3-a ,5-a )是第二象限的点,则a 的取值范围是( )
A .a<3
B .a>5
C .3<a<5
D .a>3
14. 如果,那么在( )象限 A . 第四 B . 第二 C . 第一.三 D . 第二.四
15. 按照下列条件确定点),(y x P 位置:⑴若x=0,y>0,则点P 在 . ⑵若xy=0,则点P 在 .
⑶若02
2=+y x ,则点P 在 .
⑷若3-=x ,则点P 在 .
⑸若y x =,则P 在 .
16. 设点P 在坐标平面内的坐标为),(y x P ,则当P 在第一象限时x 0 ,y 0,当
点P 在第四象限时,x 0,y 0.
17. 点(-3,2)在第______象限;点(2,-3)在第______象限.
()n m ,()n m --,0x y
<),(y x Q
18. 如图,中国象棋中的“象”,在图中的坐标为(1,0),•若“象”再走一步,试写出下
一步它可能走到的位置的坐标________.
19. 已知,则点(,)在 .
20. 若点 ()m m P +-21, 在第一象限 ,则m 的取值范围是 .
21. 若点A (-2,n )在x 轴上,则点B (n-1,n+1)在第____________象限.
22. 已知点P (2a ﹣6,3a ﹣15)在第四象限,则a 的取值范围是 .
23. 点P (a ,-a )是在______象限的角平分线上;或在________.
【培优训练】
24. 点P (m ,1)在第二象限内,则点Q (-m ,0)在( )
A .x 轴正半轴上
B .x 轴负半轴上
C .y 轴正半轴上
D .y 轴负半轴上
25. 点P 的坐标是(3,-1),则点P 关于y 轴对称的点的坐标是( ).
A .(3,1)
B .(-3,-1)
C .(-3,1)
D .(-1,3)
26. 在平面直角坐标系中,点P (2,5)关于原点的对称点P’的坐标在(

A . 第一象限
B .第二象限
C .第三象限
D .第四象限
27. 点(,)不可能在( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
28. 点P (-3,4)关于原点对称的点的坐标是( )
A .(3,4)
B .(-3,-4)
C .(-4,3)
D .(3,-4)
29. 点M (1,2)关于原点对称的点的坐标为( )
A .(—1,2)
B .(-1,-2)
C .(1,-2)
D .(2,-1)
30. 已知点M (m ﹣3,2﹣m )在第三象限,则m 的取值范围是( )
A . m>3
B . 2<m<3
C . m<2
D . m<2
0=mn m n x 1-x
31. 点P (x ,y ),且xy<0,则点P 在( )
A . 第一象限或第二象限
B . 第一象限或第三象限
C . 第一象限或第四象限
D . 第二象限或第四象限
32. 下列各点中,在第一象限的点是( )
A . (2,3)
B . (2,﹣3)
C . (﹣2,3)
D . (﹣2,﹣3)
33. 若点M (a ,b )在第四象限,则点N (﹣a ,﹣b+2)在( )
A . 第一象限
B . 第二象限
C . 第三象限
D . 第四象限
34. 如果点M (a-1,a+1)在x 轴上,则a 的值为( )
A .a=1
B .a=-1
C .a>0
D .a 的值不能确定
35. 若点A (2,n )在x 轴上,则点B (n ﹣2,n+1)在( )
A . 第一象限
B . 第二象限
C . 第三象限
D . 第四象限 36. 若点,在第二象限,则点,在第 象限.
37. 已知a 是整数,点A (2a+1,2+a )在第二象限,则a=_____.
38. 写出一个点的坐标,其积为-10,且在第二象限为______.
【课后练习】
1. 若点P (a ,b )在第四象限,则点Q (﹣a ,b ﹣1)在( )
A . 第一象限
B . 第二象限
C . 第三象限
D . 第四象限
2. 在平面直角坐标系中,若点P (x ﹣2,x )在第二象限,则x 的取值范围为( )
A . 0<x <2
B . x <2
C . x >0
D . x >2
3. 如果点P (m ,1﹣2m )在第四象限,那么m 的取值范围是( )
A . 0<m<
B . ﹣<m<0
C . m<0
D . m>
4. 若P 1(x 1,y 1)、P 2(x 2,y 2)两点关于原点对称,则x 1与x 2关系为_______,y 1与y 2•的
关系为_______.
5. 点P (,)关于x 轴的对称点的坐标是 ,关于y 轴的对称点的坐标
是 ,关于原点的对称点的坐标是 ;
6. 点(p ,q )既在x 轴上,又在y 轴上,则p=______;q=_________.
(P m )n (Q m )n -1-2
7.如图所示,请把坐标系中的点用坐标表示出来.。

相关文档
最新文档