平面直角坐标系3
平面直角坐标系(3)

小明
小林
小红
(1)小明:我家的坐标为(0,0) 小红家的坐标为(5,0) (2)小红:小明家的坐标为(0,0) 我家的坐标为(0,5) (3)小林:小明家的坐标为(1,1) 小红家的坐标为(6,1) 聪明的你一定能分别求出他们的方案中每种情况 下小林家的坐标。试试看!
继 续 努 力
问题3
动物园
问题1 你能根据这张旅游景点分布 图,说出各旅游景点的位置吗?如何确 定呢?
解决方案
建立适当的坐标系
y
x
课堂活动 现场调查
在班级里建立一个坐标系, 用坐标来表示每个同学的位置。
练习1 已知正方形ABCD的边长为4,请你 建立适当的直角坐标系,写出各顶点 的坐标。
D C
A
B
练习2 已知等边△ABC的边长为2,请你建立 适当的直角坐标系,写出各顶点的坐 标,看谁做的巧妙。
A
B
C
练习3
等腰△ABC中,AB=AC=5,BC=6,以 点C为原点,以BC所在直线为x轴,建立 直角坐标系,求点A的坐标。
小明、小红、小林的家在一条笔直 的马路边上,小明与小红的家相距500米, 小林的家刚好处在小明和小红家 的正中间,他们三人在学了本章的知 识后,都打算用坐标对他们三家的位 置进行定位,他们的方案如下:
1.点(-1,2)与点(1,-2)关于原点 ____对称
x 轴 点(-1,2)与点(-1,-2)关于____对称
轴 对称 点(1,-3)与点(-1,-3)关于y ____
2.点A(1,-2)和位于第三象限的点 B(x,y)的连线平行于x轴,且点B到点 A的距离等于3,则x=____,y=____ 3.已知点M(3,a),点N(b,-1),根据下 列条件求a,b的值 1)M,N两点关于x轴对称 2)M,N两点关于y轴对称 3)M,N的连线平行于y轴
平面直角坐标系(第三课时)教学设计与反思

北师大版八年级上第五章《平面直角坐标系》135页---137页《平面直角坐标系(第三课时)》教学设计与教学反思合肥市第四十五中学何钧设计理念根据基础教育课程的具体目标,结合学习是学习者主动建构知识的过程的建构主义理论,把握学生的独立探索与教师的引导支持之间的辩证关系。
教学中,关注学生的学习兴趣和经验,让学生主动参与学习活动,进行多向、充分的探索交流,在课堂活动中感悟知识的生成、发展与变化,形成良好的情感、态度、价值观。
教材分析本节内容选于《义务教育课程标准实验教科书—数学》(北师大版)第五章第2节,本章前面已初步介绍平面直角坐标系由点定坐标和用坐标描点等基本知识,本节课的内容以“建立适当的直角坐标系”为核心内容,内容的处理以“Z+Z智能平台”的辅助工具,学生自主动手完成。
经历根据已知图形建立适当的直角坐标系并确定各顶点坐标的过程,进一步发展学生数形结合意识,培养良好的学习情感、态度以及主动参与、合作交流的意识。
本课重在学生自己动脑、动手,培养创造精神和探究意识,因而在教学中,教师要热情鼓励学生自主探究和大胆创新,对每一位同学建立不同的直角坐标系的方法给予鼓励和足够的重视。
学生分析(1)学生已初步感知了平面直角坐标系、由点定坐示和用坐标描点等基本知识;(2)这个年龄阶段的学生有很强的好奇心,学习中学生会选择不同的点为原点建立直角坐标系,因而教学过程中尽可能多给学生表现的机会,激发学生探究意识。
资源分析本节课利用“Z+Z智能教育平台”教学。
《三角函数》新世纪版可演示建立直角坐标西的过程,并可移动已建成的平面直角坐标系,有利于学生的探究讨论。
教学目标(1)经历根据已知图形建立适当的坐标系并确定各顶点坐标的过程,进一步发展学生形数结合意识和合作交流意识。
(2)会根据已知图形建立适当的坐标系写出图形的顶点坐标。
教学重点会选择并建立适当的平面直角坐标系写出图形的顶点坐标。
教学难点(1)直角坐标系的选择;(2)根据已知图形建立适当的直角坐标系。
《平面直角坐标系》第三课时教案

3.2 平面直角坐标系 (三)一.教课目标(一 )教课知识点1.进一步牢固画平面直角坐标系,在给定的直角坐标系中,会依据坐标描出点的地点,由点的地点写出它的坐标.2.能在方格纸上建立合适的直角坐标系,描述物体的地点.3.能联合详尽情境灵巧运用多种方式确立物体的地点.(二 )能力训练要求依据已知条件有不一样的解决问题的方式,灵巧地采用既简易又易懂的方法求解是本节的要点,经过多角度的研究既可以拓宽学生的思想,又可以从中找到解决问题的捷径,使大家的解决问题的能力得以提升 .(三 )感情与价值观要求1.经过学习建立直角坐标系有多种方法,让学生体验数学活动充满着研究与创建 .2.经过确立旅行景点的地点,让学生认识数学与人类生活的亲近联系,提升他们学习数学的兴趣 .二.教课要点依据实质问题建立合适的坐标系,并能写出各点的坐标.三.教课难点依据已知条件,建立合适的坐标系.四.教课方法商讨法 .五.教具准备方格纸若干张 .投电影三张:第一张:练习 (记作§3.2.3 A);第二张:增补练习 (记作§3.2.3 B);第三张:增补练习 (记作§3.2.3 C).六.教课过程Ⅰ.创建问题情境,引入新课在前两节课中我们学习了在直角坐标系下由点找坐标,和依据坐标找点,并把点用线段连接起来构成不一样的图形,还自己设计出了许多美丽的图案 .这些都是在已知的直角坐标系下进行的,假如给出一个图形,要你写出图中一些点的坐标,那么你一定建立直角坐标系,直角坐标系应如何建立?是唯一的情况还是多种状况,这就是本节课的内容 .Ⅱ.讲解新课[例]以以下图,矩形 ABCD 的长与宽分别是 6,4,建立合适的直角坐标系,并写出各个极点的坐标 .[师]在没有直角坐标系的状况下是不可以写出各个极点的坐标的,因此应先建立直角坐标系,那么应如何采用直角坐标系呢?请大家思虑.[生甲]以以下图所示,以点 C 为坐标原点,分别以 CD、CB 所在直线为 x 轴、 y 轴,建立直角坐标系 .由 CD 长为 6, CB 长为 4,可得 A、 B、 C、D 的坐标分别为 A(6, 4),B(0,4), C(0,0),D(6, 0).[生乙]以以下图所示 .以点 D 为坐标原点,分别以 CD、AD 所在直线为 x 轴、 y 轴,建立直角坐标系 .由 CD 长为 6,BC 长为 4,可得 A、B、C、D 的坐标分别为 A(0,4),B(-6,4), C(-6,0), D(0,0).[师]这两位同学采用坐标系的方式都是以矩形的某一极点为坐标原点,矩形的相邻两边所在直线分别作为x 轴、y 轴,建立直角坐标系的 .这样建立直角坐标系的方式还有两种,即以 A、 B 为原点,矩形两邻边分别为 x 轴、 y 轴建立直角坐标系 .除此以外,还有其余方式吗?[生]有,以以下图所示 .以矩形的中心 (即对角线的交点 )为坐标原点,平行于矩形相邻两边的直角为 x 轴、 y 轴,建立直角坐标系 .则 A、 B、C、D 的坐标分别为 A(3, 2),B(-3,2),C(-3,- 2),D(3,-2).[师]这位同学做的很棒 .较前两种有难度,那还有没有其余建立直角坐标系的方式呢?[生]有,以以下图所示 .建立直角坐标系,则 A、 B、C、D 的坐标系分别为A(4,3),B(-2,3), C(-2,- 1),D(4,- 1).[师]还有其余状况吗?[生]有,把上图中的横坐标逐渐向上挪动,纵坐标左、右挪动,则可获得不一样的坐标系,从而获得 A、B、C、D 四点的不一样坐标 .[师]从刚刚我们谈论的状况看,大家能发现什么?[生]建立直角坐标系有多种方法.[师]特别正确 .[例题]对于边长为 4 的正三角形 ABC,建立合适的直角坐标系,写出各个极点的坐标 .解:以以下图,以边 BC 所在直线为 x 轴,以边 BC 的中垂线为 y 轴建立直角坐标系 .由正三角形的性质,可知AO=2 3 ,正△ABC各个极点A、B、C的坐标分别为 A(0,2 3 ),B(-2,0),C(2,0).[师]正三角形的边长已经确立是4,则它一边上的高能否是会因所处地点的不一样而发生变化呢?[生]不会,不过地点变化,而长度不会变.[师]除了上边的直角坐标系的采用外,能否还有其余的采用方法.[生]有,以以下图所示 .以点 B 为坐标原点, BC 所在的直线为 x 轴,建立直角坐标系 .由于 BC=4,AD=2 3,因此 A、 B、 C 三点的坐标为 A(2,2 3 ), B(0, 0),C(4, 0).[师]很好,其余同学还有不一样建议吗?[生]有 .分别以 A、C 为坐标原点,以平行于线段 BC 或线段 BC 所在的直线为 x 轴,建立直角坐标系,则 A、B、C 的坐标相应地发生变化 .[师]很棒,其余状况我们就不一一列举了,请大家在课后连续.议一议在一次“寻宝”游戏中,寻宝人员已经找到了坐标为(3,2)和(3,-2)的两个标记点,而且知道藏宝地点的坐标为(4,4),除其余不知道其余信息 .如何确立直角坐标系找到“宝藏”?与伙伴进行交流 .[生]由于 (3,2)和(3,- 2)到 x 轴的距离都为 2,因此 x 轴必定经过连接两个点的线段的中点 .[生]由于这两点的横坐标都是 3,因此 y 轴应在这两点的左边,且连接 (3,- 2),(3,2)的线段向左挪动 3 个单位长度就与 y 轴相重合 .[师]说的对,下边我完好地给大家表达一次.以以下图,设A(3,2),B(3,- 2),C(4,4).由于点 A、B 到 x 轴的距离相等,因此线段 AB 垂直于 x 轴,则连接线段 AB,作线段 AB 的垂直均分线即为 x 轴,并把线段 AB 四等份,此中的一份为一个单位长度,以线段 AB 的中点 D 为起点,向左挪动 3 个单位长度的点为原点O,过点 O 作 x 轴的垂线即为 y 轴,建立直角坐标系,再在新建的直角坐标系内找到 (4,4)点,即是藏宝地点 .Ⅲ.课堂练习(一 )随堂练习投电影 ( §5.2.3 A)以以下图,五个少儿正在做游戏,建立合适的直角坐标系,写出这五个少儿所在地点的坐标 .[师]请大家每 5 个人构成一个小组,每个同学建立直角坐标系的方式不一样. 请在自己准备的方格纸上建立直角坐标系,并写出在此坐标系下的坐标.[生甲]我是以中间的少儿(即 A)为坐标原点,以方格的横线、纵线所在直线为横轴、纵轴,建立直角坐标系,这样,五个少儿所在地点的坐标分别为A(0,0), B(-5,0), C(0,- 4), D(4,0),E(0, 3),如上图所示 .[生乙]我是以图中的 B 为坐标原点,以方格的横线、纵线所在直线为横轴、纵轴建立直角坐标系,五个少儿所在地点的坐标分别为 A(5,0),B(0,0),C(5,- 4),D(9, 0), E(5,3).以以下图所示 .[师]其余以 C、D、E 为坐标原点,以方格的横线、纵线所在直线为横轴、轴纵建立直角坐标系的方法我们就不一一说了然,我相信大家做的必定很棒.除这五种方法外,能否就没有其余方法了呢?请大家思虑.[生]还有,以方格纸的横线、纵线所在直线为横轴、纵轴,横线、纵线的任一交点为原点,都可建立直角坐标系,相应的可求出五个地点的坐标.(二 )增补练习Ⅵ.活动与研究以以下图,建立两个不一样的直角坐标系,在各个直角坐标系下,分别写出八角星 8 个角的极点的坐标,并比较同一极点在两个坐标系中的坐标.解:如上图所示建立直角坐标系,则八个极点的坐标分别为A(- 5, 10),B(- 7, 5),C(- 5, 0),D(0,- 2),E(5,0) ,F(7,5), G(5, 10),H(0,12).第二种:以以下图所示建立直角坐标系.这时八个极点的坐标分别为A(-5,7),B(-7,2),C(-5,- 3),D(0,-5), E(5,- 3), F(7, 2),G(5, 7),H(0,9).比较同一极点在两种坐标系下的坐标:A(- 5,10),A(-5,7),可知横坐标不变,纵坐标减小了;B(-7,5)、 B(-7,2),横坐标不变,纵坐标减小了比较全部极点的坐标可知,在这两种直角坐标系下,同一极点的坐标的横坐标不变,纵坐标减小了 .七.板书设计§平面直角坐标系(三)一、例题讲解二、议一议 (寻宝藏 )三、课时小结四、课后作业五、课堂练习。
七年级数学平面直角坐标系3

如图是某市旅游景 点的示意图。 1、你是怎样确定各 个景点的位置的? 2、“大成殿”在 “中心广场”的西、 南各多少格?碑林 在“中心广场”的 东、北各多少格? 3、如果中心广场处定为(0,0)一个小格的 边长为1,你能表示“碑林”的位置吗?
你知道吗
早在1637年以前,法国数学家、解析几何的创始人 笛卡尔受到了经纬度的启发,地理上的经纬度是以 赤道和本初子午线为标准的,这两条线从局部上可 以看成是平面内互相垂直的两条直线。所以笛卡尔 的方法是在平面内画两条互相垂直的数轴,其中水 平的数轴叫 x 轴 ( 或横轴 ) ,取向右为正方向,铅直 的数轴叫 y 轴 ( 或纵轴 ) ,取向上为正方向,它们的 交点是原点,这个平面叫坐标平面。
-4
-3
-2 原点
-1
0 -1 -2 -3 -4
1
2
3
4
5
x
横轴
第Ⅲ象限
注
第Ⅳ象限
意:坐标轴上的点不属于任何象限。
纵轴
y 5 4
A点在x 轴上的坐标为4 A点在y 轴上的坐标为2
A点在平面直角坐标系中的坐标为(4, 2)
记作:A(4,2) A
B(-4,1)
B
·
-3 -2 -1
3 2
1 0 -1 1 2 3
数轴上的点A表示表示 数1.反过来,数1就是点A 的位置。我们说点1是点A 在数轴上的坐标。 同理可知,点B在数轴 上的坐标是-3;点C在数轴 上的坐标是2.5;点D在数 轴上坐标是0.
行 10 黎明 8 6 4 2 m(4,6)
·
4
0
讲 台
1
2
3
5 列
纵轴
y 5 4 3 2 1
3.2 平面直角坐标系(第3课时)

为(4,4),如何确定直 3 角坐标系找到“宝藏”? 2
· (3,2)
解:如图所示
4
3
2
·1
1
O
-
-1
1
2
345 x
· (3,-2)
2-
3
课堂检测
基础巩固题
4.长方形的两条边长分别为4,6,建立适当的直角坐标系,
使它的一个顶点的坐标为(-2,-3).
请你写出另外三个顶点的坐标.
解:如图, 建立直角坐标系,因为长方形的一个顶点的坐
12
探究新知
成果交流汇展 建立直角坐标系的步骤:
1.选原点;
2.画x,y坐标轴;
3.建立平面直角坐标系.
y
yy
y
0
x
0x
0
x
(1)
y
0x
(5)
0x (2y)
0x
(6)
(3)
(4)
根据图形的特点, 建立简单直角坐标系.
探究新知
思考 由前面得知,建立的平面直角坐标系不同,则各点的坐 标也不同.你认为怎样建立直角坐标系才比较适当?
数学 八年级 上册
3.2 平面直角坐标系 (第3课时)
导入新知
如图,有一个长为10,宽为8的长方形,你能说出四个顶 点的坐标吗?请进入我们今天的知识海洋,遨游吧!
A
D
B
C
素养目标
2. 能根据几个点的坐标确定直角坐标系. 1. 能根据图形建立适当的平面直角坐标 系,并能准确求出图形上点的坐标 .
探究新知
标.
D
C
A
B
巩固练习
y 4D
(A) O
解:如图,以顶点A为原点,AB C 所在直线为x轴,AD所在直线为
人教版数学七年级下册:第七章 平面直角坐标系 第3课时 课件

※11.如图,正方形A1A2A3A4, A5A6A7A8,A9A10A11A12,…,(每 个正方形从第三象限的顶点开始 ,按顺时针方向顺序,依次记为 A1,A2,A3,A4;A5,A6,A7, A8;A9,A10,A11,A12;…)的中 心均在坐标原点O,各边均与x轴 或y轴平行,若它们的边长依次是 2为,(45,,6﹣…,5)则.顶点A20的坐标
•
12、人乱于心,不宽余请。2021/4/30 2021/4/ 302021 /4/30F riday, April 30, 2021
•
13、生气是拿别人做错的事来惩罚自 己。202 1/4/30 2021/4/ 302021 /4/302 021/4/3 04/30/ 2021
•
14、抱最大的希望,作最大的努力。2 021年4 月30日 星期五 2021/4 /30202 1/4/302 021/4/ 30
•
9、 人的价值,在招收诱惑的一瞬间被决定 。2021/ 4/30202 1/4/30 Friday, April 30, 2021
•
10、低头要有勇气,抬头要有低气。2 021/4/ 302021 /4/3020 21/4/3 04/30/2 021 2:39:36 PM
•
11、人总是珍惜为得到。2021/4/3020 21/4/30 2021/4 /30Apr-2130-A pr-21
课后作业
3.在平面直角坐标系中,若点P的坐标为 (﹣3,2),则点P所在的象限是( B ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
课后作业
苏科版数学八年级上册教学设计《5-2平面直角坐标系(3)》

苏科版数学八年级上册教学设计《5-2平面直角坐标系(3)》一. 教材分析《5-2平面直角坐标系(3)》这一节内容,是在学生已经掌握了平面直角坐标系的定义、坐标轴、坐标点等基本知识的基础上进行讲解的。
本节课主要让学生了解平面直角坐标系中图形的性质,能够利用坐标系解决一些实际问题。
教材通过例题和练习题的形式,帮助学生巩固所学知识,提高解决问题的能力。
二. 学情分析八年级的学生已经具备了一定的数学基础,对平面直角坐标系的概念和基本知识有了一定的了解。
但学生在解决实际问题时,还存在着一定的困难,对坐标系中图形的性质理解不够深入。
因此,在教学过程中,需要引导学生通过观察、思考、操作等活动,加深对知识的理解,提高解决问题的能力。
三. 教学目标1.理解平面直角坐标系中图形的性质,能够利用坐标系解决一些实际问题。
2.培养学生的观察能力、思考能力和动手操作能力。
3.提高学生运用数学知识解决实际问题的能力。
四. 教学重难点1.重点:平面直角坐标系中图形的性质。
2.难点:利用坐标系解决实际问题。
五. 教学方法1.引导法:教师通过提问、引导,激发学生的思考,帮助学生理解知识。
2.实例法:教师通过举例子,让学生直观地理解平面直角坐标系中图形的性质。
3.练习法:学生通过做练习题,巩固所学知识,提高解决问题的能力。
六. 教学准备1.准备相关的例题和练习题,以便学生在课堂上进行操作和练习。
2.准备一些实际问题,让学生在课堂上进行解决。
七. 教学过程1.导入(5分钟)教师通过提问,引导学生回顾平面直角坐标系的基本知识,为新课的学习做好铺垫。
2.呈现(10分钟)教师通过讲解和展示实例,让学生了解平面直角坐标系中图形的性质,引导学生进行观察和思考。
3.操练(10分钟)学生分组进行讨论,根据教师提供的实际问题,利用所学知识解决问题。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)学生独立完成教师提供的练习题,巩固所学知识。
教师选取部分学生的作业进行讲解和评价。
七年级数学平面直角坐标系3
