2016-2017学年陕西省西安中学高一上学期期末数学试卷和解析
陕西省西安市高一上学期期末数学试卷

陕西省西安市高一上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2017高一上·保定期末) 已知集合A={x|﹣1≤x<3},B={2<x≤5},则A∩B=()A . (2,3)B . [2,3]C . (﹣1,5)D . [﹣1,5]2. (2分) (2016高一上·嘉兴期中) 函数f(x)= 的定义域是()A . (﹣∞,3)B . (3,+∞)C . (﹣∞,3)∩(3,+∞)D . (﹣∞,3)∪(3,+∞)3. (2分)若方程表示一条直线,则实数m满足A .B .C .D .4. (2分) (2018高三上·湖南月考) 已知 ,则的大小为()A .B .C .D .5. (2分)四棱锥F-ABCD的底面ABCD是菱形,其对角线AC=4,, AE,CF都与平面ABCD垂直,AE=2,CF=4,则四棱锥E-ABCD与F-ABCD公共部分的体积为()A .B .C .D .6. (2分) (2016高一上·武城期中) 已知函数f(x)= ,满足对任意的x1≠x2都有<0成立,则a的取值范围是()A . (0, ]B . (0,1)C . [ ,1)D . (0,3)7. (2分)圆和圆的位置关系为()A . 相交B . 内切C . 外切D . 外离8. (2分)已知函数,则f(2)=()A . 9B . 3C . 0D . -29. (2分) (2016高二上·重庆期中) 如图,在棱长为a的正方体ABCD﹣A1B1C1D1中,P为A1D1的中点,Q 为A1B1上任意一点,E,F为CD上任意两点,且EF的长为定值b,则下面的四个值中不为定值的是()A . 点P到平面QEF的距离B . 三棱锥P﹣QEF的体积C . 直线PQ与平面PEF所成的角D . 二面角P﹣EF﹣Q的大小10. (2分)(2017·南充模拟) 已知函数f(x)是定义在R上的偶函数,且f (2﹣x)=f(x)当x∈[0,1]时,f (x)=e﹣x ,若函数y=[f (x)]2+(m+l)f(x)+n在区间[﹣k,k](k>0)内有奇数个零点,则m+n=()A . ﹣2B . 0C . 1D . 211. (2分) (2017高一上·安庆期末) 已知函数的值域为R,则实数a的取值范围是()A .B .C .D . (﹣∞,﹣1]12. (2分)一个几何体的三视图如右图所示(单位长度:cm),则此几何体的表面积是()A . 16cm2B .C .D .二、填空题 (共4题;共4分)13. (1分) (2017高一下·河北期末) 已知直线2x+y﹣2=0与直线4x+my+6=0平行,则它们之间的距离为________.14. (1分) (2015高一上·娄底期末) lg +2lg2﹣2 =________.15. (1分)(2016·四川理) 已知函数f(x)是定义在R上的周期为2的奇函数,当0<x<1时,f(x)=4x ,则f(﹣)+f(1)=________ .16. (1分)矩形ABCD中,AB=4,BC=3,沿AC将矩形ABCD折成一个直二面角B﹣AC﹣D,则四面体ABCD的外接球的体积为________三、解答题 (共4题;共30分)17. (10分) (2016高一上·杭州期中) 设A={x∈Z||x|≤6},B={1,2,3},C={3,4,5,6},求:(1)A∩(B∩C);(2)A∩CA(B∪C).18. (5分)在极坐标系中,已知圆C的圆心C(,),半径r=.(Ⅰ)求圆C的极坐标方程;(Ⅱ)若α∈[0,),直线l的参数方程为(t为参数),直线l交圆C于A、B两点,求弦长|AB|的取值范围.19. (10分)(2020·邵阳模拟) 如图,在平面图形中,为菱形,,为的中点,将沿直线向上折起,使 .(1)求证:平面平面;(2)若直线与平面所成的角为,求四棱锥的体积. 20. (5分)已知圆Cx2+y2+2x﹣4y+3=0(1)已知不过原点的直线l与圆C相切,且在x轴,y轴上的截距相等,求直线l的方程;(2)求经过原点且被圆C截得的线段长为2的直线方程.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10、答案:略11、答案:略12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共4题;共30分) 17-1、17-2、18-1、19-1、19-2、20-1、。
【全国百强校】陕西省西安中学2016-2017学年高一上学期第三次质量检测数学试题(PDF版)

像 3421
表 1 映射 f 的对应关系
则与 f[g(1)]相同的是( )
A.g[f(1)]
B.g[f(2)]
原像 1 2 3 4 像 4312
表 2 映射 g 的对应关系
C.g[f(3)]
D.g[f(4)]
4.设 a=20.1,b=ln2,c= log3 0.9 ,则 a,b,c 的大小关系是(
A.b>c>a
第Ⅰ卷 选择题
一、选择题(本大题共 14 小题,每小题 5 分,共 70 分,在每小题给出的四个选项中,只有一项 是符合题目要求的)
第一部分:函数 1.设全集 U=R,M {x 0 x 2} ,N {x y ln(1 x)},则图 1 中阴影部分表示的集合为( )
A.{x | x 1} C.{x | 0 x 1}
B.a>c>b
C.b>a>c
) D.a>b>c
5.若函数 y x2 3x 4 的定义域为[0, m] ,值域为[ 25 ,4] ,则 m 的取值范围是( ) 4
A. (0,4]
B.[ 3 ,4] 2
C.[ 3 ,3] 2
D.[ 3 ,) 2
6.方程| ex 1|=a2+1( a 是常数)的解的个数是( )
西安中学 2016—2017 学年度上学期高一年级第三次质检试题 数学
注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共 150 分。考试时间 120 分钟。 2.答卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。 3.以下所有问题的答案均需书写在答题卡上相应位置。
A. 2 ,
B. 0 ,2
C. 0 ,4
2016-2017学年陕西省高一上学期期末考试数学试题word版含答案

2016-2017学年陕西省高一上学期期末考试数学试题一、选择题1.如图,为正方体,下面结论错误的是()A. 平面B.C. 平面D. 异面直线与所成的角为60°【答案】D【解析】在正方体中与平行,因此有与平面平行,A正确;在平面内的射影垂直于,因此有,B正确;与B同理有与垂直,从而平面,C正确;由知与所成角为45°,D错.故选D.2.已知函数,为自然对数的底数,则()A. 0B. 1C. 2D.【答案】C【解析】由题意,∴,故选C.【点睛】对于分段函数求值问题,一般根据自变量的不同范围选取相应的解析式进行计算.如果已知分段函数值要求自变量的值,应根据函数的每一段的解析式分别求解,但应注意检验该值是否在相应的自变量的取值范围内.3.直线和互相垂直,则()A. 1B. -3C.D. -3或1【答案】D【解析】由题意,解得或.故选D.4.设是两条不同的直线,是三个不同的平面,给出下列四个命题,其中正确命题的序号是()①若,则;②若,则;③若,则;④若,则.A. ①②B. ②③C. ③④D. ①④【答案】A【解析】①可以作为线面垂直的性质定理,①正确;②在时,有,又得,②正确;③在时,可能相交,可能异面,也可能平行,③错误;④把门绕轴旋转,它在每一个位置都与地面垂直,但门所在的各个位置并不垂直,④错误,故选A.5.已知点,直线过点,且与线段相交,则直线的斜率的取值范围是()A. 或B. 或C.D.【答案】A【解析】由题意,,又线段上点的横坐标满足,因此直线的斜率满足或.故选A.【点睛】直线与线段相交问题,可从两个方面解决:(1)从形着手,连接定点与线段两端点的直线是动直线的分界线,求出这两条直线的斜率,当直线在这两条直线间旋转时,如果不可能与轴垂直,则所求斜率范围是刚求得的两斜率之间;如果有与轴垂直的直线,则所求斜率范围是刚求得的两斜率之外.(2)可设直线方程为,记,则由可得的范围.6.如图所示,在空间直角坐标系中,是坐标原点,有一棱长为的正方体,和分别是体对角线和棱上的动点,则的最小值为()A. B. C. D.【答案】B【解析】题图所示的空间直角坐标系中,易得,,,,则,设,则,设,于是,显然当时,,故选B.7.A. B.C. D.【答案】A【解析】试题分析:几何体是一个立方体挖掉一个倒置的圆锥的图形,所以其体积就为:。
陕西省西安市长安区2016_2017学年高一数学上学期期末考试试题

陕西省西安市长安区2016-2017学年高一数学上学期期末考试试题注意事项:1. 答题前,考生务必将自己的姓名、准考证号填在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上指定位置.2. 选择题每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答在试题卷上无效.3. 填空题和解答题用0.5毫米黑色墨水签字笔答在答题卡上每题对应的答题区域内,答在试题卷上无效.4. 考试结束,请将答题卡上交.一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是满足题目要求的.1.每年的12月是长安一中的体育文化活动月,已知集合A={参加比赛的运动员},集合B={参加比赛的男运动员},集合C={参加比赛的女运动员},则下列关系正确的是( ) A .A B ⊆ B .B C ⊆ C .A C B C = D .AB C =2.下列函数中,既是偶函数又在区间(,0)-∞上单调递增的是( ) A.21()f x x=B.2()1f x x =+C.3()f x x =D.()2xf x -= 3.根据表格中的数据,可以判定方程e x﹣x ﹣2=0的一个根所在的区间为( )e ﹣x ﹣2A .(﹣1,0)B .(0,1)C .(1,2)D .(2,3)4.设10.52,3,log a b c -===则a b c ,,的大小关系是( )A. a c b <<B. a b c <<C.b a c <<D.b c a <<5.已知函数3,1()(1),1x x f x f x x ⎧<=⎨-≥⎩,则3(log 10)f =( )A .1021B .1027C .109D .1036.若()()1,2,,,3,2A m B m ,则AB 的最小值为( ).A.32 B.1227.垂直于直线1y x =+且与圆224x y +=相切于第一象限的直线方程是( ).A.0x y ++=B. 20x y ++=C.0x y +-=D. 20x y +-=8.已知m ,n 为两条不同的直线,α,β错误!未找到引用源。
2016-2017学年西安市高一(上)期末数学试卷((有答案))AlPnMK

2016-2017学年陕西省西安市高一(上)期末数学试卷一、选择题(每小题3分,共36分)1.(3分)已知直线的斜率是2,在y轴上的截距是﹣3,则此直线方程是()A.2x﹣y﹣3=0 B.2x﹣y+3=0 C.2x+y+3=0 D.2x+y﹣3=02.(3分)在空间,下列说法正确的是()A.两组对边相等的四边形是平行四边形B.四边相等的四边形是菱形C.平行于同一直线的两条直线平行D.三点确定一个平面3.(3分)点P(x,y)在直线x+y﹣4=0上,O是原点,则|OP|的最小值是()A. B.2 C.D.24.(3分)两圆x2+y2=9和x2+y2﹣8x+6y+9=0的位置关系是()A.相离B.相交C.内切D.外切5.(3分)若l,m,n是互不相同的空间直线,α,β是不重合的平面,下列命题正确的是()A.若α∥β,l⊂α,n⊂β,则l∥n B.若α⊥β,l⊂α,则l⊥βC.若l⊥n,m⊥n,则l∥m D.若l⊥α,l∥β,则α⊥β6.(3分)若直线ax+my+2a=0(a≠0)过点,则此直线的斜率为()A.B.﹣C.D.﹣7.(3分)已知直线l1:ax﹣y+2a=0,l2:(2a﹣1)x+ay=0互相垂直,则a的值是()A.0 B.1 C.0或1 D.0或﹣18.(3分)如图,已知正六棱柱的最大对角面的面积为4m2,互相平行的两个侧面的距离为2m,则这个六棱柱的体积为()A.3m3 B.6m3 C.12m3D.15m39.(3分)若P(2,﹣1)为圆(x﹣1)2+y2=25的弦AB的中点,则直线AB的方程为()A.2x+y﹣3=0 B.x+y﹣1=0 C.x﹣y﹣3=0 D.2x﹣y﹣5=010.(3分)如图长方体中,AB=AD=2,CC1=,则二面角C1﹣BD﹣C的大小为()A.30°B.45°C.60°D.90°11.(3分)已知P为△ABC所在平面外一点,PA⊥PB,PB⊥PC,PC⊥PA,PH⊥平面ABC,H,则H为△ABC的()A.重心B.垂心C.外心D.内心12.(3分)已知点A(1,3),B(﹣2,﹣1).若直线l:y=k(x﹣2)+1与线段AB相交,则k 的取值范围是()A.[,+∞)B.(﹣∞,﹣2]C.(﹣∞,﹣2]∪[,+∞)D.[﹣2,]二、填空题(每小题4分,共20分)13.(4分)在空间直角坐标系中,点A(﹣1,2,0)关于平面yOz的对称点坐标为.14.(4分)已知某个几何体的三视图如图,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是cm3.15.(4分)一个水平放置的平面图形的斜二测直观图是一个底角为45°,腰为,上底面为1的等腰梯形,则这个平面图形的面积是.16.(4分)已知过点M(﹣3,0)的直线l被圆x2+(y+2)2=25所截得的弦长为8,那么直线l的方程为.17.(4分)已知实数x,y满足(x﹣3)2+(y﹣3)2=8,则x+y的最大值为.三、解答题(18,19题各10分,20,21题各12分)18.(10分)如图,在直三棱柱ABC﹣A1B1C1中,AB=AC=5,BB1=BC=6,D,E分别是AA1和B1C 的中点(1)求证:DE∥平面ABC;(2)求三棱锥E﹣BCD的体积.19.(10分)求满足下列条件的曲线方程:(1)经过两条直线2x+y﹣8=0和x﹣2y+1=0的交点,且垂直于直线6x﹣8y+3=0的直线(2)经过点C(﹣1,1)和D(1,3),圆心在x轴上的圆.20.(12分)在四棱锥P﹣ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E 是PC的中点,过E点做EF⊥PB交PB于点F.求证:(1)PA∥平面DEB;(2)PB⊥平面DEF.21.(12分)已知圆C:x2+y2﹣2x+4y﹣4=0,是否存在斜率为1的直线l,使l被圆C截得的弦长AB为直径的圆过原点,若存在求出直线的方程l,若不存在说明理由.三、附加题:(22题,23题各5分,24题10分)22.(5分)已知正三棱柱ABC﹣A1B1C1的所有棱长都等于6,且各顶点都在同一球面上,则此球的表面积等于.23.(5分)已知0<k<4直线L:kx﹣2y﹣2k+8=0和直线M:2x+k2y﹣4k2﹣4=0与两坐标轴围成一个四边形,则这个四边形面积最小值时k值为()A.2 B.C.D.24.(10分)已知以点C(t,)(t∈R且t≠0)为圆心的圆经过原点O,且与x轴交于点A,与y轴交于点B.(1)求证:△AOB的面积为定值.(2)设直线2x+y﹣4=0与圆C交于点M,N,若|OM|=|ON|,求圆C的方程.(3)在(2)的条件下,设P,Q分别是直线l:x+y+2=0和圆C上的动点,求|PB|+|PQ|的最小值及此时点P的坐标.2016-2017学年陕西省西安市交大附中高一(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共36分)1.(3分)已知直线的斜率是2,在y轴上的截距是﹣3,则此直线方程是()A.2x﹣y﹣3=0 B.2x﹣y+3=0 C.2x+y+3=0 D.2x+y﹣3=0【解答】解:∵直线的斜率为2,在y轴上的截距是﹣3,∴由直线方程的斜截式得直线方程为y=2x﹣3,即2x﹣y﹣3=0.故选:A.2.(3分)在空间,下列说法正确的是()A.两组对边相等的四边形是平行四边形B.四边相等的四边形是菱形C.平行于同一直线的两条直线平行D.三点确定一个平面【解答】解:四边形可能是空间四边形,故A,B错误;由平行公理可知C正确,当三点在同一直线上时,可以确定无数个平面,故D错误.故选C.3.(3分)点P(x,y)在直线x+y﹣4=0上,O是原点,则|OP|的最小值是()A. B.2 C.D.2【解答】解:由题意可知:过O作已知直线的垂线,垂足为P,此时|OP|最小,则原点(0,0)到直线x+y﹣4=0的距离d==2,即|OP|的最小值为2.故选B.4.(3分)两圆x2+y2=9和x2+y2﹣8x+6y+9=0的位置关系是()A.相离B.相交C.内切D.外切【解答】解:把x2+y2﹣8x+6y+9=0化为(x﹣4)2+(y+3)2=16,又x2+y2=9,所以两圆心的坐标分别为:(4,﹣3)和(0,0),两半径分别为R=4和r=3,则两圆心之间的距离d==5,因为4﹣3<5<4+3即R﹣r<d<R+r,所以两圆的位置关系是相交.故选B.5.(3分)若l,m,n是互不相同的空间直线,α,β是不重合的平面,下列命题正确的是()A.若α∥β,l⊂α,n⊂β,则l∥n B.若α⊥β,l⊂α,则l⊥βC.若l⊥n,m⊥n,则l∥m D.若l⊥α,l∥β,则α⊥β【解答】解:若α∥β,l⊂α,n⊂β,则l与n平行、相交或异面,故A不正确;若α⊥β,l⊂α,则l∥β或l与β相交,故B不正确;若l⊥n,m⊥n,则l与m相交、平行或异面,故C不正确;若l⊥α,l∥β,则由平面与平面垂直的判定定理知α⊥β,故D正确.故选:D.6.(3分)若直线ax+my+2a=0(a≠0)过点,则此直线的斜率为()A.B.﹣C.D.﹣【解答】解:∵直线ax+my+2a=0(a≠0)过点,∴a﹣m+2a=0,∴a=m,∴这条直线的斜率是k=﹣=﹣,故选D.7.(3分)已知直线l1:ax﹣y+2a=0,l2:(2a﹣1)x+ay=0互相垂直,则a的值是()A.0 B.1 C.0或1 D.0或﹣1【解答】解:∵直线l1:ax﹣y+2a=0,l2:(2a﹣1)x+ay=0互相垂直,∴(2a﹣1)a+a(﹣1)=0,解得a=0或a=1.故选C.8.(3分)如图,已知正六棱柱的最大对角面的面积为4m2,互相平行的两个侧面的距离为2m,则这个六棱柱的体积为()A.3m3 B.6m3 C.12m3D.15m3【解答】解:由题意,设正六棱柱的底面边长为am,高为hm,∵正六棱柱的最大对角面的面积为4m2,互相平行的两个侧面的距离为2m,∴2ah=4,a=2,解得,a=,h=,故V=Sh=6××()2×sin60°×=6(m3)故选:B.9.(3分)若P(2,﹣1)为圆(x﹣1)2+y2=25的弦AB的中点,则直线AB的方程为()A.2x+y﹣3=0 B.x+y﹣1=0 C.x﹣y﹣3=0 D.2x﹣y﹣5=0【解答】解:圆(x﹣1)2+y2=25的圆心C(1,0),点P(2,﹣1)为弦AB的中点,PC的斜率为=﹣1,∴直线AB的斜率为1,点斜式写出直线AB的方程y+1=1×(x﹣2),即x﹣y﹣3=0,故选C.10.(3分)如图长方体中,AB=AD=2,CC1=,则二面角C1﹣BD﹣C的大小为()A.30°B.45°C.60°D.90°【解答】解:取BD的中点E,连接C1E,CE由已知中AB=AD=2,CC1=,易得CB=CD=2,C1B=C1D=根据等腰三角形三线合一的性质,我们易得C1E⊥BD,CE⊥BD则∠C1EC即为二面角C1﹣BD﹣C的平面角在△C1EC中,C1E=2,CC1=,CE=故∠C1EC=30°故二面角C1﹣BD﹣C的大小为30°故选A11.(3分)已知P为△ABC所在平面外一点,PA⊥PB,PB⊥PC,PC⊥PA,PH⊥平面ABC,H,则H为△ABC的()A.重心B.垂心C.外心D.内心【解答】证明:连结AH并延长,交BC与D连结BH并延长,交AC与E;因PA⊥PB,PA⊥PC,故PA⊥面PBC,故PA⊥BC;因PH⊥面ABC,故PH⊥BC,故BC⊥面PAH,故AH⊥BC即AD⊥BC;同理:BE⊥AC;故H是△ABC的垂心.故选:B12.(3分)已知点A(1,3),B(﹣2,﹣1).若直线l:y=k(x﹣2)+1与线段AB相交,则k 的取值范围是()A.[,+∞)B.(﹣∞,﹣2]C.(﹣∞,﹣2]∪[,+∞)D.[﹣2,]【解答】解:∵直线l:y=k(x﹣2)+1过点P(2,1),连接P与线段AB上的点A(1,3)时直线l的斜率最小,为,连接P与线段AB上的点B(﹣2,﹣1)时直线l的斜率最大,为.∴k的取值范围是.故选:D.二、填空题(每小题4分,共20分)13.(4分)在空间直角坐标系中,点A(﹣1,2,0)关于平面yOz的对称点坐标为(1,2,0).【解答】解:根据关于坐标平面yOz对称点的坐标特点,可得点A(﹣1,2,0)关于坐标平面yOz对称点的坐标为:(1,2,0).故答案为:(1,2,0).14.(4分)已知某个几何体的三视图如图,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是cm3.【解答】解:由已知中的三视图可得:该几何体是一个以侧视图为底面的四棱锥,其底面面积S=20×20=400cm2,高h=20cm,故体积V==cm3,故答案为:15.(4分)一个水平放置的平面图形的斜二测直观图是一个底角为45°,腰为,上底面为14.【解答】解:如图所示:由已知斜二测直观图根据斜二测化法画出原平面图形,所以BC=B′C′=1,OA=O′A′=1+=3,OC=2O′C′=2,所以这个平面图形的面积为×(1+3)×2=4..故答案为:4.16.(4分)已知过点M(﹣3,0)的直线l被圆x2+(y+2)2=25所截得的弦长为8,那么直线l的方程为x=﹣3或5x﹣12y+15=0.【解答】解:设直线方程为y=k(x+3)或x=﹣3,∵圆心坐标为(0,﹣2),圆的半径为5,∴圆心到直线的距离d==3,∴=3,∴k=,∴直线方程为y=(x+3),即5x﹣12y+15=0;直线x=﹣3,圆心到直线的距离d=|﹣3|=3,符合题意,故答案为:x=﹣3或5x﹣12y+15=0.17.(4分)已知实数x,y满足(x﹣3)2+(y﹣3)2=8,则x+y的最大值为10.【解答】解:∵(x﹣3)2+(y﹣3)2=8,则可令x=3+2cosθ,y=3+2sinθ,∴x+y=6+2(cosθ+sinθ)=6+4cos(θ﹣45°),故cos(θ﹣45°)=1,x+y的最大值为10,故答案为10.三、解答题(18,19题各10分,20,21题各12分)18.(10分)如图,在直三棱柱ABC﹣A1B1C1中,AB=AC=5,BB1=BC=6,D,E分别是AA1和B1C 的中点(1)求证:DE∥平面ABC;(2)求三棱锥E﹣BCD的体积.【解答】解:(1)证明:取BC中点G,连接AG,EG,因为E是B1C的中点,所以EG∥BB1,且.由直棱柱知,AA1∥BB1,AA1=BB1,而D是AA1的中点,所以EG∥AD,EG=AD(4分)所以四边形EGAD是平行四边形,所以ED∥AG,又DE⊄平面ABC,AG⊂平面ABC所以DE∥平面ABC.(7分)(2)解:因为AD∥BB1,所以AD∥平面BCE,所以V E=V D﹣BCE=V A﹣BCE=V E﹣ABC,(10分)﹣BCD由(1)知,DE∥平面ABC,所以.(14分)19.(10分)求满足下列条件的曲线方程:(1)经过两条直线2x+y﹣8=0和x﹣2y+1=0的交点,且垂直于直线6x﹣8y+3=0的直线(2)经过点C(﹣1,1)和D(1,3),圆心在x轴上的圆.【解答】解:(1)由,解得x=3,y=2,∴点P的坐标是(3,2),∵所求直线l与8x+6y+C=0垂直,∴可设直线l的方程为8x+6y+C=0.把点P的坐标代入得8×3+6×2+C=0,即C=﹣36.∴所求直线l的方程为8x+6y﹣36=0,即4x+3y﹣18=0.(2)∵圆C的圆心在x轴上,设圆心为M(a,0),由圆过点A(﹣1,1)和B(1,3),由|MA|=|MB|可得MA2=MB2,即(a+1)2+1=(a﹣1)2+9,求得a=2,可得圆心为M(2,0),半径为|MA|=,故圆的方程为(x﹣2)2+y2=10.20.(12分)在四棱锥P﹣ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E 是PC的中点,过E点做EF⊥PB交PB于点F.求证:(1)PA∥平面DEB;(2)PB⊥平面DEF.【解答】证明:(1)连接AC,AC交BD于O.连接EO.∵底面ABCD是正方形,∴点O是AC的中点.∴在△PAC中,EO是中位线,∴PA∥EO,∵EO⊂平面EDB,且PA⊄平面EDB,∴PA∥平面EDB.(2)∵PD⊥底面ABCD,且DC⊂底面ABCD,∴PD⊥BC.∵底面ABCD是正方形,∴DC⊥BC,可得:BC⊥平面PDC.∵DE⊂平面PDC,∴BC⊥DE.又∵PD=DC,E是PC的中点,∴DE⊥PC.∴DE⊥平面PBC.∵PB⊂平面PBC,∴DE⊥PB.又∵EF⊥PB,且DE∩EF=E,∴PB⊥平面EFD.21.(12分)已知圆C:x2+y2﹣2x+4y﹣4=0,是否存在斜率为1的直线l,使l被圆C截得的弦长AB为直径的圆过原点,若存在求出直线的方程l,若不存在说明理由.【解答】解:圆C化成标准方程为(x﹣1)2+(y+2)2=9,假设存在以AB为直径的圆M,圆心M的坐标为(a,b).∵CM⊥l,即k CM•k l=×1=﹣1∴b=﹣a﹣1∴直线l的方程为y﹣b=x﹣a,即x﹣y﹣2a﹣1=0∴|CM|2=()2=2(1﹣a)2∴|MB|2=|CB|2﹣|CM|2=﹣2a2+4a+7∵|MB|=|OM|∴﹣2a2+4a+7=a2+b2,得a=﹣1或,当a=时,b=﹣,此时直线l的方程为x﹣y﹣4=0当a=﹣1时,b=0,此时直线l的方程为x﹣y+1=0故这样的直线l是存在的,方程为x﹣y﹣4=0或x﹣y+1=0.三、附加题:(22题,23题各5分,24题10分)22.(5分)已知正三棱柱ABC﹣A1B1C1的所有棱长都等于6,且各顶点都在同一球面上,则此球的表面积等于84π.【解答】解:由题意可知:正三棱柱的底面中心的连线的中点就是外接球的球心,底面中心到顶点的距离为:2;所以外接球的半径为:=.所以外接球的表面积为:=84π.故答案为:84π23.(5分)已知0<k<4直线L:kx﹣2y﹣2k+8=0和直线M:2x+k2y﹣4k2﹣4=0与两坐标轴围成一个四边形,则这个四边形面积最小值时k值为()A.2 B.C.D.【解答】解:如图所示:直线L:kx﹣2y﹣2k+8=0 即k(x﹣2)﹣2y+8=0,过定点B(2,4),与y 轴的交点C(0,4﹣k),直线M:2x+k2y﹣4k2﹣4=0,即2x+k2(y﹣4)﹣4=0,过定点(2,4 ),与x 轴的交点A(2 k2+2,0),由题意,四边形的面积等于三角形ABD的面积和梯形OCBD的面积之和,∴所求四边形的面积为×4×(2 k2+2﹣2)+×(4﹣k+4)×2=4k2﹣k+8,∴当k=时,所求四边形的面积最小,故选:.24.(10分)已知以点C(t,)(t∈R且t≠0)为圆心的圆经过原点O,且与x轴交于点A,与y轴交于点B.(1)求证:△AOB的面积为定值.(2)设直线2x+y﹣4=0与圆C交于点M,N,若|OM|=|ON|,求圆C的方程.(3)在(2)的条件下,设P,Q分别是直线l:x+y+2=0和圆C上的动点,求|PB|+|PQ|的最小值及此时点P的坐标.【解答】(1)证明:由题意可得:圆的方程为:=t2+,化为:x2﹣2tx+y2﹣=0.与坐标轴的交点分别为:A(2t,0),B.∴S==4,为定值.△OAB(2)解:∵|OM|=|ON|,∴原点O在线段MN的垂直平分线上,设线段MN的中点为H,则C,H,O三点共线,OC的斜率k==,∴×(﹣2)=﹣1,解得t=±2,可得圆心C(2,1),或(﹣2,﹣1)(舍去).∴圆C的方程为:(x﹣2)2+(y﹣1)2=5.(3)解:由(2)可知:圆心C(2,1),半径r=,点B(0,2)关于直线x+y+2=0的对称点为B′(﹣4,﹣2),则|PB|+|PQ|=|PB′|+|PQ|≥|B′Q|,又点B′到圆上点Q的最短距离为|B′C|﹣r=﹣=2,则|PB|+|PQ|的最小值为2.直线B′C的方程为:y=x,此时点P为直线B′C与直线l的交点,故所求的点P.。
2016-2017学年陕西省高一上学期期末调研考试数学试题word版含答案

2016-2017学年陕西省高一上学期期末调研考试数学试题(必修①、必修②)说明:本卷满分150分.考试用时120分钟.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.请把正确答案的代号填入下面的表格内.1.设集合}0,4,3,2,1{----=U ,集合}0,2,1{--=A ,集合}0,4,3{--=B 则(∁A U )=BA .}4,3{--B .}2,1{--C .}0{D .∅2.直线330x y ++=的斜率是 A .3- B .13 C .13- D .3 3.用一个平面去截一个几何体,得到的截面是四边形,这个几何体可能是A .圆锥B .圆柱C .球D .以上都有可能4.已知函数21,1()2,1x x f x x x⎧+≤⎪=⎨>⎪⎩,则((2))f f =A .1B .2C .3D .45.在同一直角坐标系下,表示直线ax y =和a x y +=正确的是A. B. C. D. 6.经过点)4,1(-A 且在x 轴上的截距为3的直线方程是A .03=++y xB .05=+-y xC .03=-+y xD .05=-+y x 7.有一个几何体的三视图如图所示,这个几何体应是一个A .棱台B .棱锥C .棱柱D .正四面体 8.已知399.0=a ,6.0log 2=b ,π3log =c ,则A .b a c <<B .a c b <<C .c b a <<D .c a b << 9.若R y x ∈,,且)()()(y f x f y x f +=+,则函数)(x fA .0)0(=f 且)(x f 为偶函数B .0)0(=f 且)(x f 为奇函数C .)(x f 为增函数且为奇函数D .)(x f 为增函数且为偶函数 10.设m 、n 是两条不同的直线,α、β是两个不同的平面,下列命题正确的是A .若α⊥m ,β⊥n ,且βα⊥,则n m ⊥B .若α//m ,β//n ,且βα//,则n m //C .若α⊥m ,β⊂n ,且n m ⊥,则βα⊥D .若α⊂m ,α⊂n ,且β//m ,β//n ,则βα//11.已知函数xy )21(=的图象与函数x y a log =(0>a ,1≠a )的图象交于点),(00y x P ,如果20≥x ,那么a 的取值范围是A .),2[∞+B .),4[∞+C .),8[∞+D .),16[∞+12.如图,周长为1的圆的圆心C 在y 轴上,一动点M 从圆上的点)1,0(A 开始按逆时针方向绕圆运动一周,记走过的弧长为x ,直线AM 与x 轴交于点)0,(t N ,则函数)(x f t =的图像大致为513.空间两点)4,5,2(A 、)5,3,2(-B 之间的距离等于_________.14.已知1182)1(2+-=-x x x f ,则函数=)(x f .主视图俯视图左视图N x x x x15.已知函数1||)(2-+-=a x x x f 有四个零点,则a 的取值范围是 .16. 已知点),(y x P 是直线04=++y kx (0>k )上一动点,PA 、PB 是圆C :0222=-+y y x 的两条切线,A 、B 是切点,若四边形PACB 的最小面积是2,则=k ______.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)计算:327log 4lg 25lg )5.0()49()5.7(4325.00-++-+--.18.(本小题满分12分)已知直线l 的方程为012=+-y x .(Ⅰ)求过点)23(,A ,且与l 垂直的直线的方程; (Ⅱ)求与l 平行,且到点)03(,P 的距离为5的直线的方程.19.(本小题满分12分)光线通过一块玻璃,其强度要损失10%,把几块这样的玻璃重叠起来,设光线原来的强度为k ,通过x 块玻璃以后强度为y .(Ⅰ)写出y 关于x 的函数关系式;(Ⅱ)通过多少块玻璃以后,光线强度减弱到原来的13以下.(lg3≈0.4771).20.(本小题满分12分)如图,在四棱锥A CDFE -中,底面CDFE 是直角梯形,DF CE //,EC EF ⊥, DF CE 21=,AF ⊥平面CDFE ,P 为AD 中点.(Ⅰ)证明://CP 平面AEF ;(Ⅱ)设2=EF ,3=AF ,4=FD ,求点F 到平面ACD 的距离.A PDF21.(本小题满分12分)已知()()1,011log ≠>-+=a a xxx f a且. (Ⅰ)求函数()x f 的定义域; (Ⅱ)证明函数()x f 为奇函数;(Ⅲ)求使()x f >0成立的x 的取值范围.22.(本小题满分12分)已知圆C 的方程为04222=-+-+m y x y x .(I )若点)2,(-m P 在圆C 的外部,求m 的取值范围;(II )当4=m 时,是否存在斜率为1的直线l ,使以l 被圆C 截得的弦AB 为直径所作的圆过原点?若存在,求出l 的方程;若不存在,说明理由.2016-2017学年陕西省高一上学期期末调研考试数学试题参考答案与评分标准一、选择题:本大题共12小题,每小题5分,共60分.二、填空题:本大题共4小题,每小题5分,共20分. 13.21 14.5422+-x x 15.)45,1( 16.2 三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)解:327log 4lg 25lg )5.0()49()5.7(4325.00-++-+--)143(24231--+-+=. 43=. …………………………………………………………………………………………………………10分 18.(本小题满分12分) 解:(Ⅰ)∵直线l 的斜率为2, ∴所求直线斜率为21-. ………………………………………………………………………………2分又∵过点)23(,A , ∴所求直线方程为)3(212--=-x y . 即:072=-+y x . (6)分(Ⅱ)依题意设所求直线方程为02=+-c y x , …………………………………………………………8分∵点)03(,P 到该直线的距离为5, ∴5)1(2|6|22=-++c .………………………………………………………………………………10分解之得1-=c 或11-.∴所求直线方程为012=--y x 或0112=--y x . ………………………………………………12分19.(本小题满分12分)解:(Ⅰ)光线经过1块玻璃后强度为(1-10%)k =0.9k ;………………………………………………1分光线经过2块玻璃后强度为(1-10%)·0.9k =0.92k光线经过3块玻璃后强度为(1-10%)·0.92k =0.93k (3)光线经过x 块玻璃后强度为0.9xk .∴y =y =0.9xk (x ∈N *). (5)分(Ⅱ)由题意:0.9xk <3k ,∴0.9x<31,………………………………………………………………7分两边取对数,x lg0.9<lg 31.…………………………………………………………………………8分∵lg0.9<0,∴x >9.0lg 31lg……………………………………………………………………………10分∵9.0lg 31lg≈10.4,∴x min =11. 答:通过11块玻璃以后,光线强度减弱到原来的31以下.………………………………………12分 20.(本小题满分12分)证明:(I )作AF 中点G ,连结PG 、EG ,∴DF PG //且DF PG 21=.∵DF CE //且DF CE 21=, ∴EC PG //,EC PG =.∴四边形PCEG 是平行四边形.………………………………………………………………………2分∴EG CP //.∵⊄CP 平面AEF ,⊂EG 平面AEF ,∴//CP 平面AEF . (4)分(II )作FD 的中点Q ,连结CQ 、FC . ∵4=FD , ∴2==FQ EC .APCDFEG APDFQ又∵FQ EC //,∴四边形ECQF 是正方形. ∴2222=+=EC EF CF .∴CQD Rt ∆中,2222=+=QD CQ CD .∵4=DF ,1622=+CD CF .∴CF CD ⊥.∵AF ⊥平面CDEF ,⊂CD 平面CDEF , ∴CD AF ⊥,F FC AF = . ∴⊥CD 平面ACF .∴AC CD ⊥.…………………………………………………………………………………………8分设点F 到平面ACD 的距离为h , ∴ACF D ACD F V V --=. ∴ACF ACD S CD S h ⋅⋅=⋅⋅3131. ∴173461726223212122==+⋅=⋅⋅⋅⋅⋅=FC AF AC CD FCAF CD h .……………………………………12分21.(本小题满分12分) (Ⅰ)解:101x x +>-,∴ ()()10,110.1x x x x +<+-<-即 解得11x -<<. ∴函数)(x f 的定义域为()1,1-. ……………………………………………………………………2分(Ⅱ)证明:()1log 1axf x x+=- ,且定义域为(-1,1)关于原点对称 ∴ ()()1111log log log 111a a a x x x f x f x x x x --++⎛⎫-===-=- ⎪+--⎝⎭. ∴ 函数()f x 为奇函数.…………………………………………………………………………………6分(Ⅲ)解:当a >1时, 由()x f >0,得111>-+x x ,则012,0111<-<+-+x xx x ,()012<-∴x x ,10<<∴x . (8)分10<<a 当时, ()1110,0<-+<>x x x f 则.即101111xxx x+⎧>⎪⎪-⎨+⎪<⎪-⎩,解得1101x x x -<<⎧⎨<>⎩或, ∴01<<-x .综上可知,10<<a 当时, 使()0>x f 的x 的取值范围为(-1,0);当a >1时,使()0>x f 的x 的取值范围为(0,1).………………………………………………12分22.(本小题满分12分)解:(I )∵04222=-+-+m y x y x ,∴整理得:5)2()1(22+=++-m y x .由05>+m 得:5->m . (2)分∵点)2,(-m P 在该圆的外部, ∴5)22()1(22+>+-+-m m .∴0432>--m m . ∴4>m 或1-<m . 又∵5->m ,∴m 的取值范围是),4()1,5(∞+-- . (4)分(II )当4=m 时,圆C 的方程为9)2()1(22=++-y x .…………………………………………………5分如图:依题意假设直线l 存在,其方程为0=+-p y x ,N 是弦AB 的中点.………………………6分∴CN 的方程为)1(2--=+x y . 联立l 的方程可解得N 的坐标为)21,21(-+-p p . (7)∵原点O 在以AB 为直径的圆上,∴||||AN ON =.∴22222)2|3|(9||3)021()021(p CN p p +-=-=--+-+-. 化简得:0432=-+p p ,解得:4-=p 或1.………………………………………………………11分∴l 的方程为04=--y x 或01=+-y x .……………………………………………………………12分。
【全国百强校】陕西省西安中学2016-2017学年高一(平行班)上学期期末考试数学试题解析(解析版)
陕西省西安中学2016-2017学年高一(平行班)上学期期末考试数学试题(时间:100分钟满分:100分)一、选择题:(本大题共10小题,每小题4分,共40分.每小题有且只有一个正确选项, 请将答案填写在答题卡相应位置.)1. 直线错误!未找到引用源。
的倾斜角为()A. 错误!未找到引用源。
;B. 错误!未找到引用源。
;C. 错误!未找到引用源。
;D. 错误!未找到引用源。
【答案】C2. 正方体错误!未找到引用源。
中,直线错误!未找到引用源。
与错误!未找到引用源。
所成的角为()A. 30oB. 45oC. 60oD. 90o【答案】C【解析】连结错误!未找到引用源。
,由正方体的性质可得错误!未找到引用源。
,所以直线错误!未找到引用源。
与错误!未找到引用源。
所成的角为错误!未找到引用源。
,在错误!未找到引用源。
中由正方体的性质可知错误!未找到引用源。
,错误!未找到引用源。
,选C.点睛:由异面直线所成角的定义可知求异面直线所成角的步骤:第一步,通过空间平行的直线将异面直线平移为相交直线,第二步,确定相交直线所成角,第三步,通过解相交直线所成角所在的三角形可求得角的大小;最后要注意异面直线所成角的范围是错误!未找到引用源。
.3. 在空间直角坐标系中,点A(1,-2,3)与点B(-1,-2,-3)关于( )对称A. x轴B. y轴C. z轴D. 原点【答案】B【解析】由两点坐标可知线段错误!未找到引用源。
的中点坐标为错误!未找到引用源。
,该点在错误!未找到引用源。
轴上,所以两点关于错误!未找到引用源。
轴对称,选B.4. 圆错误!未找到引用源。
:错误!未找到引用源。
与圆错误!未找到引用源。
:错误!未找到引用源。
的位置关系是()A. 内切B. 外切C. 相交D. 相离【答案】A点睛:判断两圆的位置关系需要通过判断圆心距与半径的大小关系来确定,如:圆错误!未找到引用源。
的半径为错误!未找到引用源。
,圆错误!未找到引用源。
陕西省西安市高一上学期期末数学试卷
陕西省西安市高一上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2016高一上·太原期中) 若M∪{1}={1,2,3},则M集合可以是()A . {1,2,3}B . {1,3}C . {1,2}D . {1}2. (2分)(2013·北京理) 函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=ex关于y轴对称,则f(x)=()A . ex+1B . ex﹣1C . e﹣x+1D . e﹣x﹣13. (2分)已知a=20.3 , b=, c=2log52,则a,b,c的大小关系为()A . c<b<aB . c<a<bC . b<a<cD . b<c<a4. (2分) (2017高一上·焦作期末) 函数y=e|x|﹣x3的大致图象是()A .B .C .D .5. (2分) (2017高二下·赤峰期末) 如图,在三棱柱中,底面为正三角形,侧棱垂直底面,.若分别是棱上的点,且,,则异面直线与所成角的余弦值为()A .B .C .D .6. (2分) (2016高一下·榆社期中) 设tanα、tanβ是方程x2+3 x+4=0的两根,且,,则α+β的值为()A . -B .C .D .7. (2分) (2016高一上·昆明期中) 设函数f(x)= ,若f(a)=1,则实数a的值为()A . ﹣1或0B . 2或﹣1C . 0或2D . 28. (2分) (2016高一下·天水期末) 已知tan(α+β)= ,tan(β﹣)= ,则tan(α+ )的值为()A .B .C .D .9. (2分)要测量底部不能到达的电视塔AB的高度,在C点测得塔顶A的仰角是45°,在D点测得塔顶A 的仰角是30°,并测得水平面上的∠BCD=120°,CD=40m,则电视塔的高度为()A . 10mB . 20mC . 20mD . 40m10. (2分)在等腰直角三角形ABC中,AC=BC=1,点M,N分别为AB,BC的中点,点P为△ABC内部任一点,则取值范围为()A .B .C .D .11. (2分) (2015高二下·赣州期中) 已知函数f(x)的导函数f′(x)的图象如图所示,那么函数f(x)的图象最有可能的是()A .B .C .D .12. (2分)(2017·舒城模拟) 已知θ∈[0,2π),当θ取遍全体实数时,直线xcosθ+ysinθ=4+ sin (θ+ )所围成的图形的面积是()A . πB . 4πC . 9πD . 16π二、填空题 (共4题;共5分)13. (1分) (2017高一上·白山期末) log2sin(﹣)=________.14. (1分)设函数f(x)=|2x﹣1|,实数a<b,且f(a)=f(b),则a+b的取值范围是________.15. (2分) (2016高三上·平湖期中) 已知sinα= ,α∈(0,),则cos(π﹣α)=________,cos2α=________.16. (1分)(2017·祁县模拟) 直线x=a分别与曲线y=2x+1,y=x+lnx交于A,B,则|AB|的最小值为________.三、解答题 (共5题;共40分)17. (5分) (2016高一上·普宁期中) 计算:① ﹣()﹣(π+e)0+();②2lg5+lg4+ln .18. (10分) (2017高一下·景德镇期末) 已知平面向量 =(1,x), =(2x+3,﹣x)(x∈R).(1)若∥ ,求| ﹣ |(2)若与夹角为锐角,求x的取值范围.19. (10分) (2016高一下·广州期中) 已知函数f(x)=2cosx(sinx﹣cosx)+1,x∈R.(1)求函数f(x)的单调递增区间;(2)将函数y=f(x)的图象向左平移个单位后,再将图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)的最大值及取得最大值时的x的集合.20. (5分)为振兴苏区发展,赣州市2016年计划投入专项资金加强红色文化基础设施改造.据调查,改造后预计该市在一个月内(以30天记),红色文化旅游人数f(x)(万人)与日期x(日)的函数关系近似满足:,人均消费g(x)(元)与日期x(日)的函数关系近似满足:g(x)=60﹣|x﹣20|.(1)求该市旅游日收入p(x)(万元)与日期x(1≤x≤30,x∈N*)的函数关系式;(2)当x取何值时,该市旅游日收入p(x)最大.21. (10分) (2018高二下·台州期中) 已知函数,其中 .(1)求的单调递增区间;(2)若在区间上的最大值为6,求实数的值.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共5分)13-1、14-1、15-1、16-1、三、解答题 (共5题;共40分)17-1、18-1、18-2、19-1、19-2、20-1、21-1、21-2、。
陕西省西安交通大学附属中学2016-2017学年高一上学期期末考试数学试题(word版含答案)
2016-2017学年陕西省西安市交大附中高一(上)期末数学试卷一、选择题(每小题3分,共36分)1.已知直线的斜率是2,在y轴上的截距是3-,则此直线方程是().A.230++=D.230x y+-=x yx y--=B.230x y-+=C.230【答案】A【解答】解:∵直线的斜率为2,在y轴上的截距是3-,∴由直线方程的斜截式得直线方程为23=-,y x即230--=.x y故选:A.2.在空间,下列说法正确的是().A.两组对边相等的四边形是平行四边形B.四边相等的四边形是菱形C.平行于同一直线的两条直线平行D.三点确定一个平面【答案】C【解答】解:四边形可能是空间四边形,故A,B错误,由平行公理可知C正确,当三点在同一直线上时,可以确定无数个平面,故D错误.故选C.3.点(,)+-=上,O是原点,则OP的最小值是().x yP x y在直线40A B.C D.2【答案】B【解答】解:由题意可知:过O作已知直线的垂线,垂足为P,此时OP最小,则原点(0,0)到直线40+-=的距离d==x y即OP的最小值为故选B.4.两圆229-+=的位置关系是().+++=和228690x y x yx yA.相离B.相交C.内切D.外切【答案】B【解答】解:把228690-++=,又229x y+=,x yx y x y++(4)(3)16-+=化为22所以两圆心的坐标分别为:(4,3)r=,-和(0,0),两半径分别为4R=和3则两圆心之间的距离5d,因为43543-<<+,所以两圆的位置关系是相交.-<<+即R r d R r故选B.5.若l,m,n是互不相同的空间直线,α,β是不重合的平面,下列命题正确的是().A .若αβ∥,l α⊂,n β⊂,则l n ∥B .若αβ⊥,l α⊂,则l β⊥C .若l n ⊥,m n ⊥,则l m ∥D .若l α⊥,l β∥,则αβ⊥【答案】D【解答】解:若αβ∥,l α⊂,n β⊂,则l 与n 平行、相交或异面,故A 不正确;若αβ⊥,l α⊂,则l β∥或l 与β相交,故B 不正确; 若l n ⊥,m n ⊥,则l 与m 相交、平行或异面,故C 不正确;若l α⊥,l β∥,则由平面与平面垂直的判定定理知αβ⊥,故D 正确. 故选:D .6.若直线20(0)ax my a a ++=≠过点(1,,则此直线的斜率为( ).A B . C D . 【答案】D【解答】解:∵直线20(0)ax my a a ++=≠过点(1,,∴20a a +=,m =,∴这条直线的斜率是a k m =-= 故选D .7.已知直线12:0l ax y a -+=,221:()0l a x ay -+=互相垂直,则a 的值是( ).A .0B .1C .0或1D .0或1-【答案】C【解答】解:∵直线12:0l ax y a -+=,221:()0l a x ay -+=互相垂直,∴(21)(1)0a a a -+-=, 解得0a =或1a =. 故选C .8.如图,已知正六棱柱的最大对角面的面积为24m ,互相平行的两个侧面的距离为2m ,则这个六棱柱的体积为( ).A .33mB .36mC . 312mD .315m【答案】B【解答】解:由题意,设正六棱柱的底面边长为m a ,高为m h ,∵正六棱柱的最大对角面的面积为24m ,互相平行的两个侧面的距离为 2m ,∴24ah =2=,解得,a =,h ,故2316sin606(m )2V Sh ==⨯⨯⨯⎝⎭. 故选:B .9.若(2,1)P -为圆2212)5(x y -+=的弦AB 的中点,则直线AB 的方程为( ).A .230x y +-=B .10x y +-=C .30x y --=D .250x y --=【答案】C【解答】解:圆2212)5(x y -+=的圆心(1,0)C ,点(2,1)P -为 弦AB 的中点,PC 的斜率为01112+=--, ∴直线AB 的斜率为1,点斜式写出直线AB 的方程11(2)y x +=⨯-, 即30x y --=, 故选C .10.如图长方体中,AB AD ==1CC 1C BD C --的大小为( ).A .30︒B .45︒C .60︒D .90︒【答案】A【解答】解:取BD 的中点E ,连接1C E ,CE ,由已知中AB AD ==1CC易得CB CD ==11C B C D = 根据等腰三角形三线合一的性质,我们易得: 1C E BD ⊥,CE BD ⊥,则1C EC ∠即为二面角1C BD C --的平面角,在1C EC △中,1C E =1CC =CE = 故130C EC ∠=︒,故二面角1C BD C --的大小为30︒. 故选A .11.已知P 为ABC △所在平面外一点,PA PB ⊥,PB PC ⊥,PC PA ⊥,PH ⊥平面ABC ,则H 为ABC △的( ).HDCBAA .重心B .垂心C .外心D .内心【解答】证明:连结AH 并延长,交BC 与D 连结BH 并延长,交AC 与E ,因PA PB ⊥,PA PC ⊥,故PA ⊥面PBC ,故PA BC ⊥, 因PH ⊥面ABC ,故PH BC ⊥,故BC ⊥面PAH , 故AH BC ⊥即AD BC ⊥; 同理:BE AC ⊥, 故H 是ABC △的垂心. 故选:B .12.已知点(1,3)A ,(2,1)B --.若直线:(2)1l y k x =-+与线段AB 相交,则k 的取值范围是( ). A .1,2⎡⎫+⎪⎢⎣⎭∞B .(],2-∞-C .1],2(,2⎡⎫+⎪⎢⎣-∞-⎭U ∞D .12,2⎡⎤-⎢⎥⎣⎦【答案】D【解答】解:∵直线:(2)1l y k x =-+过点(2,1)P ,连接P 与线段AB 上的点(1,3)A 时直线l 的斜率最小,为13221PA k -==--, 连接P 与线段AB 上的点(2,1)B --时直线l 的斜率最大,为111222PB k --==--.∴k 的取值范围是12,2⎡⎤-⎢⎥⎣⎦.故选:D .二、填空题(每小题4分,共20分)13.在空间直角坐标系中,点(1,2,0)A -关于平面yOz 的对称点坐标为__________. 【答案】(1,2,0)【解答】解:根据关于坐标平面yOz 对称点的坐标特点,可得点(1,2,0)A -关于坐标平面yOz 对称点的坐标为:(1,2,0). 故答案为:(1,2,0).14.已知某个几何体的三视图如图,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是__________3cm .俯视图左视图主视图【答案】80003【解答】解:由已知中的三视图可得:该几何体是一个以侧视图为底面的四棱锥, 其底面面积22020400cm S =⨯=, 高20cm h =,故体积318000cm 33V Sh ==,故答案为:80003.15.一个水平放置的平面图形的斜二测直观图是一个底角为45︒,上底面为1的等腰梯形,则这个平面图形的面积是__________.【答案】【解答】解:如图所示:由已知斜二测直观图根据斜二测化法画出原平面图形,所以1BC B C ''==,13OA O A ''==,2OC O C ''==,所以这个平面图形的面积为:1(13)2⨯+⨯.故答案为:16.已知过点(3,0)M -的直线l 被圆22(2)25x y ++=所截得的弦长为8,那么直线l 的方程为__________.【答案】3x =-或512150x y -+=【解答】解:设直线方程为(3)y k x =+或3x =-,∵圆心坐标为(0,2)-,圆的半径为5,∴圆心到直线的距离3d ,3=,∴512k =,∴直线方程为5(3)12y x =+,即512150x y -+=; 直线3x =-,圆心到直线的距离33d =-=,符合题意, 故答案为:3x =-或512150x y -+=.17.已知实数x ,y 满足223(3))(8x y -+-=,则x y +的最大值为__________. 【答案】10【解答】解:∵223(3))(8x y -+-=,则可令3x θ=+,3y θ=+,∴6sin )64cos(45)x y θθθ+=++=+-︒, 故cos(45)1θ-︒=,x y +的最大值为10, 故答案为10.三、解答题(18,19题各10分,20,21题各12分)18.如图,在直三棱柱111ABC A B C -中,5AB AC ==,16BB BC ==,D ,E 分别是1AA 和1B C 的中点.(1)求证:DE ∥平面ABC . (2)求三棱锥E BCD -的体积.E DCBAC 1B 1A 1【解答】解:(1)证明:取BC 中点G ,连接AG ,EG ,因为E 是1B C 的中点,所以1EG BB ∥,且112EG BB =.由直棱柱知,11AA BB ∥,11AA BB =,而D 是1AA 的中点, 所以EG AD ∥,EG AD =, 所以四边形EGAD 是平行四边形,所以ED AG ∥,又DE ⊄平面ABC ,AG ⊂平面ABC , 所以DE ∥平面ABC .(2)解:因为1AD BB ∥,所以AD ∥平面BCE , 所以E BCD D BCE A BCE E ABC V V V V ----===, 由(1)知,DE ∥平面ABC ,所以11136412326E ABC D ABC V V AD BC AG --==⋅⋅=⨯⨯⨯=.G A 1B 1C 1AB CDE19.求满足下列条件的曲线方程:(1)经过两条直线280x y +-=和210x y -+=的交点,且垂直于直线6830x y -+=的直线. (2)经过点(1,1)C -和(1,3)D ,圆心在x 轴上的圆. 【解答】解:(1)由280210x y x y +-=⎧⎨-+=⎩,解得3x =,2y =,∴点P 的坐标是(3,2),∵所求直线l 与860x y C ++=垂直, ∴可设直线l 的方程为860x y C ++=.把点P 的坐标代入得83620C ⨯+⨯+=,即36C =-.∴所求直线l 的方程为86360x y +-=, 即43180x y +-=.(2)∵圆C 的圆心在x 轴上,设圆心为(,0)M a , 由圆过点(1,1)A -和(1,3)B ,由MA MB =可得22MA MB =,即2211(()1)9a a ++=-+,求得2a =, 可得圆心为(2,0)M,半径为MA ,故圆的方程为2221)0(x y -+=.20.在四棱锥P ABCD -中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD DC =,E是PC 的中点,过E 点做EF PB ⊥交PB 于点F .求证: (1)PA ∥平面DEB .(2)PB ⊥平面DEF .ACDEF P【解答】证明:(1)连接AC ,AC 交BD 于O .连接EO .∵底面ABCD 是正方形,∴点O 是AC 的中点.∴在PAC △中,EO 是中位线, ∴PA EO ∥,∵EO ⊂平面EDB ,且PA ⊄平面EDB , ∴PA ∥平面EDB .(2)∵PD ⊥底面ABCD ,且DC ⊂底面ABCD , ∴PD BC ⊥.∵底面ABCD 是正方形,∴DC BC ⊥,可得:BC ⊥平面PDC . ∵DE ⊂平面PDC , ∴BC DE ⊥.又∵PD DC =,E 是PC 的中点, ∴DE PC ⊥.∴DE ⊥平面PBC . ∵PB ⊂平面PBC ,∴DE PB ⊥. 又∵EF PB ⊥,且DE EF E =I , ∴PB ⊥平面EFD .OPF EDCA21.已知圆22:2440C x y x y ++-=-,是否存在斜率为1的直线l ,使l 被圆C 截得的弦长AB为直径的圆过原点,若存在求出直线的方程l ,若不存在说明理由. 【答案】见解析【解答】解:圆C 化成标准方程为221(2))(9x y -++=,假设存在以AB 为直径的圆M ,圆心M 的坐标为(,)a b . ∵CM l ⊥,即2111CM l b k k a +=⨯=--⋅, ∴1b a =--,∴直线l 的方程为y b x a -=-,即210x y a ---=,∴2222(1)CM a ==-,∴2222247MB CB CM a a ==-++-, ∵MB OM =,∴222247a a a b -++=+,得1a =-或32, 当32a =时,52b =-,此时直线l 的方程为40x y --=.当1a =-时,0b =,此时直线l 的方程为10x y -+=. 故这样的直线l 是存在的,方程为40x y --=或10x y -+=.三、附加题:(22题,23题各5分,24题10分)22.已知正三棱柱111ABC A B C -的所有棱长都等于6,且各顶点都在同一球面上,则此球的表面积等于__________.【解答】解:由题意可知:正三棱柱的底面中心的连线的中点就是外接球的球心,底面中心到顶点的距离为:所以外接球的表面积为:24π84π=. 故答案为:84π.23.已知04k <<直线:2280L kx y k --+=和直线22:2440M x k y k +-=-与两坐标轴围成一个四边形,则这个四边形面积最小值时k 值为( ). A .2B .12C .14D .18【解答】解:如图所示: 直线:2280L kx y k --+= 即(2)280k x y --+=,过定点(2,4)B , 与y 轴的交点(0,4)C k -,直线22:2440M x k y k +-=-,即 2()2440x k y +-=-, 过定点(2,4),与x 轴的交点2(22,0)A k +,由题意,四边形的面积等于三角形ABD 的面积和梯形OCBD 的面积之和,∴所求四边形的面积为22114(222)(44)24822k k k k ⨯⨯+-+⨯-+⨯=-+,∴当18k =时,所求四边形的面积最小,故选:18.24.已知以点2,C t t ⎛⎫⎪⎝⎭(t ∈R 且0t ≠)为圆心的圆经过原点O ,且与x 轴交于点A ,与y 轴交于点B .(1)求证:AOB △的面积为定值.(2)设直线240x y +-=与圆C 交于点M ,N ,若OM ON =,求圆C 的方程. (3)在(2)的条件下,设P ,Q 分别是直线:20l x y ++=和圆C 上的动点,求PB PQ+的最小值及此时点P 的坐标. 【答案】见解析【解答】(1)证明:由题意可得:圆的方程为:222224()x t y t t t ⎛⎫-+-=+ ⎪⎝⎭,化为:22024x tx y y t-+-=.与坐标轴的交点分别为:(2,0)A t ,40,B t ⎛⎫⎪⎝⎭.∴14242OAB S t t=⋅=△,为定值. (2)解:∵OM ON =,∴原点O 在线段MN 的垂直平分线上,设线段MN 的中点为H ,则C ,H ,O 三点共线,OC 的斜率222t k t t==, ∴22(2)1t ⨯-=-,解得2t =±,可得圆心(2,1)C ,或(2,1)--. ∴圆C 的方程为:222(1))(5x y -+-=,或222(1))(5x y +++=. (3)解:由(2)可知:圆心(2,1)C,半径r (0,2)B 关于直线20x y ++=的对称点为(4,2)B '--,则PB PQ PB PQ B Q ''+=+≥,又点B '到圆上点Q 的最短距离为B C r '=- 则PB PQ +的最小值为.直线B C '的方程为:12y x =,此时点P 为直线B C '与直线l 的交点, 故所求的点42,33P ⎛⎫-- ⎪⎝⎭.。
西安中学2016-2017学年度第一学期期末考试
西安中学2016-2017学年度第一学期期末考试高二数学(理科平行班)试题一.选择题1.下列语句是命题的是( )A.梯形是四边形B.做直线ABC.x 是整数D.今天雾霾严重吗? 2.命题“对任意0,2≥∈x R x 都有”的否定为( )A.对任意R x ∈,都有02<x B.不存在R x ∈,都有02<xC.存在R x ∈0,使得02≥x D.存在R x ∈0,使得020<x3.“0)1(,0<+<x In x 是”的( )A.充分不必要B.必要不充分C.充要D.既不充分也不必要 4.在正方体1111D C B A ABCD -中,向量表达式DD +-1化简后的结果为( )A.1BDB.D 1C.D B 1D.1DB 5.已知点)1,4,1(),4,2,2()1,5,2(---C B A ,,则AB AC ,的夹角为 A.30 B.45 C.60 D.906.若方程12222=--m y m x 表示焦点在y 轴上的椭圆,则m 的取值范围为( )A.0>mB.10<<mC.12<<-mD.21≠>m m 且 7.已知双曲线C :)0,0(12222>>=-b a b y a x 的离心率为25,则C 的渐近线为方程为( ) A.x y 41±= B.x y 31±= C.x y 21±= D.x y ±=8.过点)1,0(p 与抛物线x y =2有且只有一个交点的直线有( )条A.4B.3C.2D.1 9.已知点)13,0(),13,0(21F F -,动点p 到21,F F 的距离之差的绝对值为26,则动点p 的轨迹为( )A.一条直线B.一条线段C.两条射线D.以上都不对 10.已知直线l 过抛物线x y82=的焦点且与它交于B A ,两点,若AB 中点的横坐标为3,则=AB ( )A.7B.5C.8D.1011.已知00(,)M x y 是双曲线C :2212x y -=上的一点,12,F F 是C 的两个焦点,若120MF MF ⋅<,则0y 的取值范围是 A.( B.( C.( D.( 12.已知椭圆()01:2222>>=+b a b y a x C 的左右焦点为)0,()0,(21c F c F ,-,过点2F 且斜率为ab 2的直线l 交直线02=+aybx 与点M,若M 在以线段21F F 为直径的圆上,则椭圆的离心率为( )A.31B.32C. 21D.33二.填空题13.在正四面体ABC O -中,c OC b OB a OA ===,,,D 是BC 的中点,AD E 是的中点,则OE =( )(用c b a ,,表示)14.已知点)0,3(M ,椭圆1422=+y x 与直线)3(+=x k y 交于B A ,两点,ABM∆的周长为( )15.如果椭圆193622=+y x 的弦被点)2,4(平分,则这条弦所在的直线方程为( )16.若椭圆()012222>>=+b a by a x 与曲线2222b a y x -=+恒有公共点,则椭圆的离心率的取值范围为( ) 三:解答题 17. (10分)已知R x m x x p ∈<-+-对:022恒成立,01:2=++mx x q 有两个正跟,若q p 且为假命题,q p 或为真命题,求实数m 的取值范围18. (10分)求下列椭圆你的标准方程 (1)椭圆的焦点在x 轴上,且短轴长为32,离心率为21(2)椭圆的两个焦点坐标为)1,0(),1,0(-,椭圆上一点到两焦点的距离之和为2219. (12分)已知点)20()40(-,,,B A 动点),(y x p 满足082=+-⋅y(1)求动点的轨迹方程(2)设(1)中所求的轨迹与直线2+=x y 交于D C ,两点,求证:OD OC ⊥(O 为原点)20.(12分)已知在平行六面体1111D C B A ABCD -中,5,34'===AA AD AB ,,︒=∠=∠︒=∠60,90''DAA BAA BAD(1)求线段'AC 的长(2)求直线'AC 与直线AC 夹角的余弦值21.(12分)在直三棱柱111C B A ABC -中,31,90==︒=∠CA CB ACB ,,61=AA ,M是棱1CC 上一点,1BA AM ⊥(1)求证:BC A AM1平面⊥(2)求二面角C AM B --的大小(3)求点C 到平面ABM 的距离22.(14分)在直角坐标系中,已知双曲线12:221=-y xC(1)过1C 的左顶点引1C 的一条渐近线的平行线,求该直线与另一条渐近线及x 轴围成的三角形的面积 (2)设椭圆,14:222=+y xC 若N M ,分别是21C C ,上的动点,且ON OM ⊥,求证:O 到直线MN 的距离为定值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017学年陕西省西安中学高一(上)期末数学试卷(实验班)一、选择题:(本大题共10小题,每小题4分,共40分.请将正确答案填写在答题卡相应位置)1.(4.00分)一水平放置的平面图形,用斜二测画法画出了它的直观图,此直观图恰好是一个边长为2的正方形,如图则原平面图形的面积为()A.2 B.3 C.8 D.2.(4.00分)如果AB>0,BC>0,那么直线Ax﹣By﹣C=0不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.(4.00分)一个圆锥的底面圆半径为3,高为4,则这个圆锥的侧面积为()A.B.24πC.15πD.20π4.(4.00分)如图,将无盖正方体纸盒展开,直线AB,CD在原正方体中的位置关系是()A.平行B.相交且垂直C.异面D.相交成60°5.(4.00分)已知两圆x2+y2=1和x2+y2﹣6x﹣8y+9=0,那么这两个圆的位置关系是()A.相离B.相交C.外切D.内切6.(4.00分)下列命题中正确的个数是()①有两个面平行,其余各面都是平行四边形的几何体叫棱柱②有一个面是多边形,其余各面都是三角形的几何体叫棱锥③若有两个侧面垂直于底面,则该四棱柱为直四棱柱④圆台所有的轴截面是全等的等腰梯形.A.1个 B.2个 C.3个 D.4个7.(4.00分)已知两条直线a,b,两个平面α,β,下面四个命题中不正确的是()A.a⊥α,α∥β,b⊂β⇒a⊥b B.α∥β,a∥b,a⊥α⇒b⊥βC.a∥b,b⊥β⇒a⊥βD.a∥b,a∥α⇒b∥α8.(4.00分)已知圆C:x2+y2+mx﹣4=0上存在两点关于直线x﹣y+3=0对称,则实数m的值()A.8 B.﹣4 C.6 D.无法确定9.(4.00分)将正三棱柱截去三个角(如图1所示A,B,C分别是△GHI三边的中点)得到几何体如图2,则该几何体按图2所示方向的侧视图(或称左视图)为()A.B.C.D.10.(4.00分)曲线y=1+与直线y=k(x﹣2)+4有两个交点,则实数k的取值范围是()A.B.C.D.二、填空题:(本大题共5小题,每小题4分,共20分.请将正确答案填写在答题卡相应位置)11.(4.00分)已知直线l1:ax+(a+2)y+2=0和l2:x+ay+1=0,若l1∥l2则a=.12.(4.00分)已知三角形的三个顶点为A(2,﹣1,4),B(3,2,﹣6),C(5,0,2),则BC边上的中线长为.13.(4.00分)已知三棱锥S﹣ABC的各项顶点都在一个表面积为4π的球表面上,球心O在AB上,SO⊥平面ABC,AC=,则三棱锥S﹣ABC的表面积为.14.(4.00分)过点(0,1)的直线l被圆(x﹣1)2+y2=4所截得的弦长最短时,直线l的方程为.15.(4.00分)如图,正方体ABCD﹣A1B1C1D1的棱长为1,P为BC的中点,Q为线段CC1上的动点,过点A,P,Q的平面截该正方体所得的截面记为S.则下列命题正确的是(写出所有正确命题的编号).①当0<CQ时,S为四边形②当CQ=时,S为等腰梯形③当CQ=时,S与C1D1的交点R满足C1R=④当CQ=1时,S的面积为.三、解答题:(本大题共4小题,共40分.请将正确答案填写在答题纸相应位置)16.(10.00分)已知函数y=x2﹣4x+3与x轴交于M、N两点,与y轴交于点P,圆心为C的圆恰好经过M、N、P三点.(1)求圆C的方程;(2)若圆C与直线x﹣y+n=0交于A、B两点,且线段|AB|=4,求n的值.17.(10.00分)如图,多面体ABCDEF中,已知ABCD是边长为3的正方形,△FBC中BC边上的高为FH,EF⊥FH,EF∥AB,(1)求证:平面FBC⊥平面ABCD;(2)若FH=2,EF=,求该多面体的体积.18.(10.00分)如图,AA1、BB1为圆柱OO1的母线,BC是底面圆O的直径,D、E分别是AA1、CB1的中点,BA=2,AC=1,B1C=3(1)证明:DE∥平面ABC;(2)求圆柱OO1的体积和表面积.19.(10.00分)已知圆O:x2+y2=2,直线l过两点A(1,﹣),B(4,0)(1)求直线l的方程;(2)若P是直线l上的动点,过P作圆O的两条切线PC,PD,切点为C,D,求证:直线CD过定点,并求出定点坐标.2016-2017学年陕西省西安中学高一(上)期末数学试卷(实验班)参考答案与试题解析一、选择题:(本大题共10小题,每小题4分,共40分.请将正确答案填写在答题卡相应位置)1.(4.00分)一水平放置的平面图形,用斜二测画法画出了它的直观图,此直观图恰好是一个边长为2的正方形,如图则原平面图形的面积为()A.2 B.3 C.8 D.【分析】由题意求出直观图中OB的长度,根据斜二测画法,求出原图形平行四边形的高,即可求出原图形的面积.【解答】解:由题意正方形OABC的边长为1,它是水平放置的一个平面图形的直观图,所以OB=2,对应原图形平行四边形的高为:4,所以原图形的面积为:2×4=8.故选:D.2.(4.00分)如果AB>0,BC>0,那么直线Ax﹣By﹣C=0不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【分析】化直线的方程为斜截式,由已知条件可得斜率和截距的正负,可得答案.【解答】解:由题意可知B≠0,故直线的方程可化为,由AB>0,BC>0可得>0,<0,由斜率和截距的几何意义可知直线不经过第二象限,故选:B.3.(4.00分)一个圆锥的底面圆半径为3,高为4,则这个圆锥的侧面积为()A.B.24πC.15πD.20π【分析】首先根据底面半径和高利用勾股定理求得母线长,然后直接利用圆锥的侧面积公式代入求出即可.【解答】解:∵圆锥的底面半径为3,高为4,∴母线长为5,∴圆锥的侧面积为:πrl=π×3×5=15π,故选:C.4.(4.00分)如图,将无盖正方体纸盒展开,直线AB,CD在原正方体中的位置关系是()A.平行B.相交且垂直C.异面D.相交成60°【分析】将无盖正方体纸盒还原后,点B与点D重合,由此能求出结果.【解答】解:如图,将无盖正方体纸盒还原后,点B与点D重合,此时AB与CD相交,且AB与CD的夹角为60°.故选:D.5.(4.00分)已知两圆x2+y2=1和x2+y2﹣6x﹣8y+9=0,那么这两个圆的位置关系是()A.相离B.相交C.外切D.内切【分析】分别求出两圆的圆心坐标和半径大小,利用两点的距离公式算出它们的圆心距为5,恰好等于两圆的半径之和,由此可得两圆相外切.【解答】解:∵x2+y2﹣6x﹣8y+9=0化成标准方程,得(x﹣3)2+(y﹣4)2=16,∴圆x2+y2﹣6x﹣8y+9=0的圆心为C1(3,4),半径r1=4.同理可得圆x2+y2=1的圆心为C2(0,0),半径r2=1.∵两圆的圆心距为|C1C2|==5,r1+r2=5,∴|C1C2|=r1+r2,可得两圆相外切.故选:C.6.(4.00分)下列命题中正确的个数是()①有两个面平行,其余各面都是平行四边形的几何体叫棱柱②有一个面是多边形,其余各面都是三角形的几何体叫棱锥③若有两个侧面垂直于底面,则该四棱柱为直四棱柱④圆台所有的轴截面是全等的等腰梯形.A.1个 B.2个 C.3个 D.4个【分析】根据棱柱的定义可得①错误;根据棱锥的定义可得②错误;两个侧面不是相邻的时,侧棱与底面不一定垂直,可得③错误;圆台所有的轴截面是全等的等腰梯形,即④正确,从而得出结论.【解答】解:有两个面平行,其余各面都是平行四边形,并且相邻的两个平行四边形的公共边都相互平行,这些面围成的几何体叫棱柱,故①错误.有一个面是多边形,其余各面都是有公共顶点三角形的几何体叫棱锥,故②错误.当有两个侧面垂直于底面时,该四棱柱不一定为直四棱柱,如两个侧面不是相邻的时,侧棱与底面不一定垂直,∴③错误;④圆台所有的轴截面是全等的等腰梯形,正确.故选:A.7.(4.00分)已知两条直线a,b,两个平面α,β,下面四个命题中不正确的是()A.a⊥α,α∥β,b⊂β⇒a⊥b B.α∥β,a∥b,a⊥α⇒b⊥βC.a∥b,b⊥β⇒a⊥βD.a∥b,a∥α⇒b∥α【分析】对于A,a⊥α,α∥β,可得a⊥β,根据b⊂β,可得a⊥b;对于B,a∥b,a⊥α,可得b⊥α,利用α∥β,可得b⊥β;对于C,根据两条平行线中一条垂直于一个平面,则另一条也垂直于这个平面,正确;对于D,a∥b,a∥α⇒b∥α或b⊂α.【解答】解:对于A,a⊥α,α∥β,可得a⊥β,∵b⊂β,∴a⊥b,正确;对于B,a∥b,a⊥α,可得b⊥α,∵α∥β,∴b⊥β,正确;对于C,根据两条平行线中一条垂直于一个平面,则另一条也垂直于这个平面,正确;对于D,a∥b,a∥α⇒b∥α或b⊂α,不正确.故选:D.8.(4.00分)已知圆C:x2+y2+mx﹣4=0上存在两点关于直线x﹣y+3=0对称,则实数m的值()A.8 B.﹣4 C.6 D.无法确定【分析】因为圆上两点A、B关于直线x﹣y+3=0对称,所以直线x﹣y+3=0过圆心(﹣,0),由此可求出m的值.【解答】解:因为圆上两点A、B关于直线x﹣y+3=0对称,所以直线x﹣y+3=0过圆心(﹣,0),从而﹣+3=0,即m=6.故选:C.9.(4.00分)将正三棱柱截去三个角(如图1所示A,B,C分别是△GHI三边的中点)得到几何体如图2,则该几何体按图2所示方向的侧视图(或称左视图)为()A.B.C.D.【分析】图2所示方向的侧视图,由于平面AED仍在平面HEDG上,故侧视图中仍然看到左侧的一条垂直下边线段的线段,易得选项.【解答】解:解题时在图2的右边放扇墙(心中有墙),图2所示方向的侧视图,由于平面AED仍在平面HEDG上,故侧视图中仍然看到左侧的一条垂直下边线段的线段,可得答案A.故选:A.10.(4.00分)曲线y=1+与直线y=k(x﹣2)+4有两个交点,则实数k的取值范围是()A.B.C.D.【分析】要求的实数k的取值范围即为直线l斜率的取值范围,主要求出斜率的取值范围,方法为:曲线表示以(0,1)为圆心,2为半径的半圆,在坐标系中画出相应的图形,直线l与半圆有不同的交点,故抓住两个关键点:当直线l与半圆相切时,圆心到直线的距离等于圆的半径,利用点到直线的距离公式列出关于k的方程,求出方程的解得到k的值;当直线l过B点时,由A和B的坐标求出此时直线l的斜率,根据两种情况求出的斜率得出k的取值范围.【解答】解:根据题意画出图形,如图所示:由题意可得:直线l过A(2,4),B(﹣2,1),又曲线图象为以(0,1)为圆心,2为半径的半圆,当直线l与半圆相切,C为切点时,圆心到直线l的距离d=r,即=2,解得:k=;当直线l过B点时,直线l的斜率为=,则直线l与半圆有两个不同的交点时,实数k的范围为.故选:D.二、填空题:(本大题共5小题,每小题4分,共20分.请将正确答案填写在答题卡相应位置)11.(4.00分)已知直线l1:ax+(a+2)y+2=0和l2:x+ay+1=0,若l1∥l2则a=﹣1.【分析】由a•a﹣(a+2)=0,解得a,检验此时两条直线是否重合即可得出.【解答】解:由a•a﹣(a+2)=0,解得a=﹣1或2,经过检验a=2时两条直线重合,舍去.因此l1∥l2,则a=﹣1.故答案为:﹣1.12.(4.00分)已知三角形的三个顶点为A(2,﹣1,4),B(3,2,﹣6),C(5,0,2),则BC边上的中线长为2.【分析】根据B,C两点的坐标和中点的坐标公式,写出BC边中点的坐标,利用两点的距离公式写出两点之间的距离,整理成最简形式,得到BC边上的中线长.【解答】解:∵B(3,2,﹣6),C(5,0,2),∴BC边上的中点坐标是D(4,1,﹣2)∴BC边上的中线长为=,故答案为:2.13.(4.00分)已知三棱锥S﹣ABC的各项顶点都在一个表面积为4π的球表面上,球心O在AB上,SO⊥平面ABC,AC=,则三棱锥S﹣ABC的表面积为2+.【分析】如图所示,设球的半径为r,则4πr2=4π,解得r=1.由OC2+OA2=AC2,可得OC⊥OA.球心O在AB上,SO⊥平面ABC,可得SO⊥OC,进而得到SA=SC=SB.再利用等边三角形与直角三角形的面积计算公式即可得出.【解答】解:如图所示,设球的半径为r,则4πr2=4π,解得r=1.∵OC2+OA2=2=AC2,∴OC⊥OA.∵球心O在AB上,SO⊥平面ABC,∴SO⊥OC,∴SA=SC=SB==.∴△SAC与△SBC都为边长为的等边三角形,∴S=S△SBC==.△SACS△SAB=S△ABC==1.则三棱锥S﹣ABC的表面积=2+.故答案为:2+.14.(4.00分)过点(0,1)的直线l被圆(x﹣1)2+y2=4所截得的弦长最短时,直线l的方程为x﹣y+1=0.【分析】设A(0,1),求出圆心C的坐标为(1,2),从而得到AC的斜率.由圆的性质,得当直线被圆截得弦长最短时,直线与经过A点的直径垂直,由此算出直线的斜率,即可得到所求直线的方程.【解答】解:∵圆(x﹣1)2+y2=4的圆心为C(1,0),∴设A(0,1),得AC的斜率k AC==﹣1,∵直线l经过点A(0,1),且l被圆(x﹣1)2+y2=4截得的弦长最短∴直线l与经过点A(0,1)的直径垂直的直线由此可得,直线l的斜率为k=﹣=1,因此,直线l方程为y﹣1=x﹣0,即x﹣y+1=0故答案为:x﹣y+1=0.15.(4.00分)如图,正方体ABCD﹣A1B1C1D1的棱长为1,P为BC的中点,Q为线段CC1上的动点,过点A,P,Q的平面截该正方体所得的截面记为S.则下列命题正确的是①②④(写出所有正确命题的编号).①当0<CQ时,S为四边形②当CQ=时,S为等腰梯形③当CQ=时,S与C1D1的交点R满足C1R=④当CQ=1时,S的面积为.【分析】如图所示,②当CQ=时,即Q为CC1中点,此时可得PQ∥AD1,AP=QD1,即可判断出真假.①由上图当点Q向C移动时,满足0<CQ<,只需在DD1上取点M满足AM∥PQ,即可判断出真假.③当CQ=时,如图,延长DD1至N,使D1N=,连接AN交A1D1于S,连接NQ 交C1D1于R,连接SR,可证AN∥PQ,由△NRD1∽△QRC1,可得C1R:D1R=C1Q:D1N=1:2,可得C1R,即可判断出真假;④当CQ=1时,Q与C1重合,取A1D1的中点F,连接AF,可证PC1∥AF,且PC1=AF,可知截面为APC1F为菱形,可得其面积.【解答】解:如图所示,②当CQ=时,即Q为CC1中点,此时可得PQ∥AD1,AP=QD1==,故可得截面APQD1为等腰梯形,故②正确;①由上图当点Q向C移动时,满足0<CQ<,只需在DD1上取点M满足AM∥PQ,即可得截面为四边形APQM,故①正确;③当CQ=时,如图,延长DD1至N,使D1N=,连接AN交A1D1于S,连接NQ交C1D1于R,连接SR,可证AN∥PQ,由△NRD1∽△QRC1,可得C1R:D1R=C1Q:D1N=1:2,故可得C1R=,故③不正确;④当CQ=1时,Q与C1重合,取A1D1的中点F,连接AF,可证PC1∥AF,且PC1=AF,可知截面为APC1F为菱形,故其面积为AC1•PF=×=,故④正确.综上可得:只有①②④正确.故答案为:①②④.三、解答题:(本大题共4小题,共40分.请将正确答案填写在答题纸相应位置)16.(10.00分)已知函数y=x2﹣4x+3与x轴交于M、N两点,与y轴交于点P,圆心为C的圆恰好经过M、N、P三点.(1)求圆C的方程;(2)若圆C与直线x﹣y+n=0交于A、B两点,且线段|AB|=4,求n的值.【分析】(1)由题意与坐标轴交点为M(3,0),N(1,0),P(0,3),由此能求出圆的方程.(2)由题意|AB|=4:设圆心到直线距离为d,则,由此能求出结果.【解答】解:(1)由题意与坐标轴交点为M(3,0),N(1,0),P(0,3),设圆的方程为:(x﹣a)2+(y﹣b)2=r2代入点,得,解得a=2,b=2,r=,∴圆的方程为:(x﹣2)2+(y﹣2)2=5.(2)由题意|AB|=4:设圆心到直线距离为d,则,即:,解得:.17.(10.00分)如图,多面体ABCDEF中,已知ABCD是边长为3的正方形,△FBC中BC边上的高为FH,EF⊥FH,EF∥AB,(1)求证:平面FBC⊥平面ABCD;(2)若FH=2,EF=,求该多面体的体积.【分析】(1)推导出FH⊥BC,FH⊥AB,从而FH⊥平面ABCD,由此能证明平面FBC⊥平面ABCD.(2)连结BE,CE,该多面体的体积:V ABCDEF=V E﹣ABCD+V E﹣BCF,由此能求出结果.【解答】证明:(1)∵多面体ABCDEF中,已知ABCD是边长为3的正方形,△FBC中BC边上的高为FH,EF⊥FH,EF∥AB,∴FH⊥BC,FH⊥AB,∵BC∩AB=B,∴FH⊥平面ABCD,∵FH⊂平面FBC,∴平面FBC⊥平面ABCD.解:(2)连结BE,CE,∵FH=2,EF=,EF⊥FH,EF∥AB,AB⊥BC,∴EF⊥BC,∵BC∩FH=H,∴BC⊥平面BCF,∴该多面体的体积:V ABCDEF=V E﹣ABCD+V E﹣BCF==+=+=.18.(10.00分)如图,AA1、BB1为圆柱OO1的母线,BC是底面圆O的直径,D、E分别是AA1、CB1的中点,BA=2,AC=1,B1C=3(1)证明:DE∥平面ABC;(2)求圆柱OO1的体积和表面积.【分析】(1)连结EO、OA,由圆柱的性质得四边形AA1B1B是平行四边形,所以DA∥BB1且DA=BB1.△B1BC中利用中位线定理,得到EO∥BB1且EO=BB1,从而证出四边形AOED是平行四边形,得DE∥OA,结合线面平行的判定定理即可证出DE∥面ABC;(2)根据BA=2,AC=1,B1C=3,BC是底面圆O的直径,求出BC=,B1B=2,即可求圆柱OO1的体积和表面积.【解答】(1)证明:连结EO、OA,∵E、O分别为B1C、BC的中点,∴EO∥BB1,EO=BB1又∵AA1、BB1为圆柱OO1的母线,∴AA1∥BB1、AA1=BB1,可得四边形AA1B1B是平行四边形,∵平行四边形AA1B1B中,DA∥BB1,DA=BB1,∴DA∥EO,且DA=EO四边形AOED是平行四边形,可得DE∥OA∵DE⊄面ABC,OA⊂面ABC,∴DE∥面ABC;…(4分)(2)解:∵BA=2,AC=1,B1C=3,BC是底面圆O的直径,∴BC=,B1B=2,∴圆柱OO1的体积==,表面积S=+=+2π.19.(10.00分)已知圆O:x2+y2=2,直线l过两点A(1,﹣),B(4,0)(1)求直线l的方程;(2)若P是直线l上的动点,过P作圆O的两条切线PC,PD,切点为C,D,求证:直线CD过定点,并求出定点坐标.【分析】(1)利用两点式求直线l的方程;(2)由题意可知:O、P、C、D四点共圆且在以OP为直径的圆上,C、D在圆O:x2+y2=2上可得直线C,D的方程,即可求得直线CD是否过定点【解答】解:(1)∵直线l过两点A(1,﹣),B(4,0),∴直线l的方程为,即y=﹣2;证明:(2)由题意可知:O、P、C、D四点共圆且在以OP为直径的圆上,设P(t,),其方程为:x(x﹣t)+y(y﹣+2)=0,又C、D在圆O:x2+y2=2上∴l CD:=0,即(x+)t﹣2y﹣2=0,由,得x=,y=﹣1,∴直线CD过定点(,﹣1).第21页(共21页)。