热力学一般关系(热学高等数学偏微分)word版本

合集下载

热力学一般关系

热力学一般关系

热力学一般关系本章提要及安排本章提要:1.工质的平衡热力性质是指工质状态参数间的函数关系,特别以可测参数为独立变量的热力学能、焓、熵函数在工程应用中尤为重要。

2.对热力学状态函数的研究通常从它们的偏微商着手。

在常用状态函数的偏微商中,有的是可以通过实验测定的,常将它们定义为各种热系数;有的则不能用实验的方法得出。

3.工质在准平衡变化中的热力学基本定律表达式同时也表达了热力学状态函数之间的基本关系,又称基本热力学关系式。

通过勒让德变换,基本热力学关系可以用不同的组合参数表达。

基本热力学关系的一阶偏微商和二阶混合偏微商给出状态函数偏微商之间的一般关系。

当然,与热力学基本定律一样这些一般关系对任何工质都是适用的。

4.按照基本热力学关系,可以用可测的状态参数和热系数来表达不能通过实验直接得出的偏微商,从而将各常用状态函数的全微分式用可测的参数及免系数表达出来。

这样,就为在实验测定数据的基础上得出工质的状态函数开辟了道路。

5.在工质热力性质研究中,并非所有热系数都是必需沤过实验测定的,应用热系数间的一般关系可以由少虽测得的热系数得到所需的其它热系数。

这样,可以大大减少研究中的实验工作量.同时减小由于有限的实验精确度带来的误差。

6.依据本章所导出的一般关系式,应用所讲述的推导方法,还可导得工程中需用的各种函数关系。

7.本章所导出的一般关系式只适用于简单可压缩系统。

本章要求:1.了解热力学一般关系的内容及其在工质热力性质研究中的地位和作用;2.掌握导出热力学一般关系的思路和推导方法;3.熟悉简单可压缩工质基本的和常用的热力学一般关系。

学习建议:本章学习时间建议共2学时:1.常用状态函数的偏微商;基本热力学关系; 1学时2.热力学能、焓和熵的微分式;热系数之间的一般关系; 1学时4.1 常用状态函数的偏微商本节知识点:状态方程的偏微商热力学能函数的偏微商焓函数的偏微商熵函数的偏微商本节参考图片:麦克斯韦汤姆逊汤姆逊实验本节疑问解答:思考题4.1.1 思考题4.1.2 思考题4.1.3本节基本概念:定温压缩系数压力的温度系数绝热压缩系数比定容热容比定压热容绝热节流系数工程中常用的状态函数有状态方程 F(p ,v ,T )=0,和以可测参数为独立变量的热力学能、焓、熵函数,通常热力学能函数u(T ,v ),焓函数h(T ,p),和熵函数s(T ,v),s(T ,p)的导得较为方便。

热力学基本关系式

热力学基本关系式

)S
(V S
)
p
(Sp)T (VT)p
第17页,本讲稿共62页
4.7热力学关系式的应用
18
4.7.1材料热力学中一些常见的定义公式
U T
V
CV
H T
P
CP
CI
T S T I
S C p T p T
S CV T V T
恒压膨胀 V 系 V 1数 V TP
恒容压力 系 1数 P
U T p p V T T V
对理想气体而言:
U VT
Tp TV
pTTnVRTV
p
TnRppp0 V
由U=U(T,V),已证明理想气体的热力学能在定温下与 体积无关,所以U只是温度的函数。
第27页,本讲稿共62页
28
4.7.6理想气体的内能和焓
同理:
H p
T
T V T
p
V
对应系数关系式讲的是特性函数与其某一特征变
量的偏微商关系,脚标为该特性函数的另一特征变量 ,结果等于偏微特征变量的共轭变量。
U H T S V S p
U F p V S V T
H p
S
G p
T
V
F G S T V T p
第16页,本讲稿共62页
dG -SdT VdP
G S T P
G V P T
H G TS G T G T P
U H - PV G - T G P G T P P T
F G PV G P G P T
常用的特性函数与特征变量为:
G(T ,P ) F(T ,V ) U( S ,V )
和教材 P52的推导 进行比较
H p T G p T T T 2 G p V T T G p T p V T V T p

热力学函数的基本关系式

热力学函数的基本关系式

dG = -SdT + Vdp
S p
T
V T
p
麦克斯韦关系式 :表示的是系统在同一状态的两种
变化率数值相等。 9
二阶混合偏导数
T p V S S V 麦氏方程记忆法:
T p
S
V S
p
① 对角乘积永远是pV,TS;
② 等式两边分母与外角标互换;
S p
T
V T
4
由四个热力学基本方程,分别加上相应的条件,可得到
8个派生公式:
dU = TdS- pdV
U S
V
T
U V
S
p
dH = TdS + Vdp
T V H
S p
H p S
dA = -SdT- pdV
A T
V
S
A V
T
p
dG = -SdT + Vdp
G T
P
S
G P

U T p p
V T T V
11
练习:由热力学基本方程出发证明,
H p
T
T
V T
p
V
证明:
dH=TdS+Vdp
定温下,等式两边除以dp
H p
T
T
S p
T
V
由麦克斯韦方程
S p
T
V T
p
返回
H p
T
T
V T
p
V
12
U T p p V T T V
S T p
T
T
定容
S CV T V T
S T V
15
T
V
5
2. 吉布斯 - 亥姆霍茨方程

热力学函数间的关系

热力学函数间的关系
则T = 1000 K, rG1000 = 61900 Jmol-1>0
计算结果说明,在给定条件下,298K时,合成氨反应可 以进行;而在1000K时,反应不能自发进行
再见!
H
U
TS
G
TS F
H U pV pV U H pV
G H TS F pV pV F U TS G pV
T1
T
T2 T1
H T2
dT
(1) 若温度变化范围不大,△H可近似为不随温度变化的常数
G T
T 2
G T
T 1
H
1 T2
1 T1
四、G与温度的关系—吉布斯-亥姆霍兹公式
25℃,反应 2SO3(g) 2SO2(g) O2(g)
rGm (298K) 1.400 10 5 J mol1 r Hm 1.966 105 J mol1
H T2
吉布斯-亥姆赫兹公式
G T
T
H T2
P
四、G与温度的关系—吉布斯-亥姆霍兹公式
吉布斯-亥姆赫兹方程式
Байду номын сангаас
G T
T
H T2
P
(微分形式)
应用:在等压下若已知反应在T1的rGm(T1),则可求得该反 应在T2时的rGm(T2)。
积分形式
T2 d ( G )
M 和N也是 x,y 的函数
二阶导数
M
2Z
( y )x xy ,
N
2Z
( x )y xy
所以
M N ( y )x ( x )y
三、Maxwell 关系式
热力学函数是状态函数,数学上具有全微分性质,将上述
关系式用到四个基本公式中, 就得到Maxwell关系式:

热力学函数间的关系

热力学函数间的关系
T2 G2 G1 H = ∫ 2 dT T1 T2 T1 T rGm 2 rGm1 1 1 = rHm( ) T2 T1 T2 T1
r Gm ,2
1.400 × 105 1 1 5 ) = 1.966 × 10 ( 873 298 873 298
r Gm ,2 = 30820J mol -1
吉布斯- 吉布斯-亥姆赫兹方程式
G T = H T2 T P
(微分形式)
应用:在等压下若已知反应在 应用:在等压下若已知反应在T1的rGm(T1),则可求得该反 应在T 时的 应在 2时的rGm(T2)。 积分形式

T2
T1
T2 G H ( ) = ∫ 2 dT T1 T T
( V V ) p dT = ( )T dp T p
1mol理想气体, PV = RT 理想气体, 理想气体 p T ( )p = , R V V V ( )T = , p p R p ( )V = V T 则 ( T ) p ( V )T ( p )V = 1
V p T
可写成
T V p ( )p( )T ( )V = 1 V p T
2010-8-2
三、Maxwell 关系式
证明: 例3证明:(
T V p )p( )T ( )V = 1 并以理想气体验证上式的正确。 并以理想气体验证上式的正确。 V p T
定量纯气体, 证: 定量纯气体, V = f (p,T)
dV = ( V V ) p dT + ( )T dp T p
当V恒定,dV = 0,则 恒定, , 恒定
dU = Td S pdV
U S 等温对V求偏微分 等温对 求偏微分 ( )T = T ( )T p V V
S p S 不易测定,根据Maxwell关系式 ( )T = ( ) V 关系式 ( )T 不易测定,根据 V T V

热力学函数间的普遍关系式

热力学函数间的普遍关系式

不可逆过程 可逆过程 不可能过程
此式热力学第二定律的数学表达式之一,其中δQ为微循环中系 统从外界吸收的热量,T为吸热时热源的温度。
孤立系统的熵增原理:
孤立系统所进行的一切实际过程都朝着系统熵增 加的方向进行,在有限的情况下,系统的熵维持 不变,任何使系统熵减小的过程都是不可逆的。
S iso
0 0 0
U P V S H V p S A P V T G V p T
下变量N常常省略
A S T V G S T
因为U、H、A和G为热力学函数,因此他们的微分式是全 微分,因全微分的二阶偏导数与求导次序无关,从而得 到下列麦克斯韦关系式:
U U (S ,V ) H H ( S , p) A A(T ,V ) G G(T , p)
上述热力学基本关系式仅适用于摩尔数不变的均匀 系,如果考虑单组元系统摩尔数的变化,系统的广 延参数将取决于其摩尔数,这样上式就可扩展为:
U U ( S ,V , N ) H H ( S , p, N ) A A(T ,V , N ) G G (T , p, N )
V , S p, T V , T V , T p, S p, T
S T T V S V pT
p
由于热熔:
CV T S
并有:

T
V
C p T S
dH d (U pV ) TdS Vdp
dG SdT Vdp
dA SdT pdV
这四个式子,是组成固定物质的热力学基本微分关系式。

5.一般关系式

5.一般关系式
p
从状态方程求得 ,V 与 p 的关系,就可求 ( S )T 或 S 。
Maxwell 关系式的应用
例如,对理想气体
pV nRT,
( S p )T
p2 p1
(
V T
) p V
nR p
nR p
S
nR p
dp nR ln
p1 p2
nR ln
所以 dA SdT pdV
(4) 因为
四个基本公式 dG SdT Vdp
G H TS dG dH TdS SdT
dH TdS Vdp
所以
dG SdT Vdp
从基本公式导出的关系式
(1) (2)
dU TdS pdV dH TdS Vdp
H U pV
H Q p
(dp 0,Wf 0)
(2)Helmholz 自由能定义式。在等温、可逆条件下, 它的降低值等于体系所作的最大功。
A U TS
A Wmax
(dT 0, 可逆)
几个函数的定义式
(3)Gibbs 自由能定义式。在等温、等压、可逆条件 下,它的降低值等于体系所作最大非膨胀功。
G H TS

G A pV
G Wf ,max (dT 0,dp 0, 可逆)
函数间关系的图示式
四个基本公式
(1)
dU TdS pdV
因为
dU Q pdV Q dS 代入上式即得。 T
这是热力学第一与第二定律的联合公式,适用 于组成恒定、不作非膨胀功的封闭体系。 虽然用到了Q TdS 的公式,但适用于任何可逆或 不可逆过程,因为式中的物理量皆是状态函数,其变 化值仅决定于始、终态。但只有在可逆过程中 TdS 才代 pdV 才代表 We 。 表 QR , 公式(1)是四个基本公式中最基本的一个。

第4章 热力学一般关系

第4章 热力学一般关系

第四章热力学一般关系4.1 常用状态函数的偏微商 (1)4.1.1 状态方程的偏微商 (1)4.1.2 热力学能函数u(T,v)的偏微商 (3)4.1.3 焓函数h(T , p )的偏微商 (4)4.1.4 熵函数的偏微商 (4)4.2 基本热力学关系 (5)4.2.1 基本热力学关系式 (5)4.2.2 特性函数 (6)4.2.3 麦克斯韦关系式 (6)4.3 热力学能、焓和熵的微分式 (7)4.3.1 热力学能、焓和熵的微分式 (7)4.3.2 偏微商关系的推导 (7)4.4 热系数之间的一般关系 (9)4.4.1 比热容的偏微商 (10)4.4.2 比热容差的一般关系 (10)4.4.3 绝热节流系数的一般关系式 (11)思考题及答案 (14)4.1 常用状态函数的偏微商工程中常用的状态函数有状态方程 F(p ,v ,T )=0,和以可测参数为独立变量的热力学能、焓、熵函数,通常热力学能函数u (T ,v ),焓函数h (T ,p ),和熵函数s(T ,v ),s(T ,p )的导得较为方便。

为导得这些状态函数,常常需要先得到它们的如下一些偏微商。

4.1.1 状态方程的偏微商由状态方程可得到、及、三个偏微商(还有三个分别是它们的倒数),常将它们定义成工质的三个热系数:热膨胀系数(4-1)热膨胀系数表征工质在定压下的热膨胀性质,单位是K-1。

定温压缩系数(4-2)定温压缩系数表征工质在恒定温度下的压缩性质。

对于所有物质恒为负值,故在定义式中引入负号,而使恒为正值。

的单位为Pa-1。

压力的温度系数(4-3)的单位为K-1按照二元函数偏微商的循环关系有=-1结合、及的定义式,整理可得= = (4-4)它表达了上述三个热系数之间的联系。

状态方程包含的是三个可测的基本状态参数,所以上述三个热系数是可以由实验直接测定的。

由实验测定出这些热系数数据,然后积分得出状态方程式,是由实验得出状态方程的一种基本方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二部分工质的热力性质六热力学函数的一般关系式由热力学基本定律引出的一些基本热力学状态函数(如内能U、熵S)及其为某一研究方便而设的组合函数(如焓H、自由能F、自由焓G等)许多都是不可测量,必须将它们与可测量(如压力p、体积V、温度T等)联系起来,否则我们将得不到实际的结果,解决不了诸如上一章讲的最大功计算等一些具体的问题。

这就需要发展热力学的数学理论以将热力学基本定律应用到各种具体问题中去。

热力学函数一般关系式 全微分性质+基本热力学关系式6.1 状态函数的数学特性对于状态参数,当我们强调它们与独立变量的函数关系时,常称它们为状态函数。

从数学上说,状态函数必定具有全微分性质。

这一数学特性十分重要,利用它可导出一系列很有实用价值的热力学关系式。

下面我们扼要介绍全微分的一些基本定理。

设函数),(y x f z =具有全微分性质dy y z dx x z dz xy ⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂= (6-1) 则必然有(1) 互易关系令式(6-1)中),(y x M x z y=⎪⎪⎭⎫ ⎝⎛∂∂, ),(y x N y z x =⎪⎪⎭⎫ ⎝⎛∂∂ 则 y x x N y M ⎪⎪⎭⎫ ⎝⎛∂∂=⎪⎪⎭⎫ ⎝⎛∂∂ (6-2)互易关系与⎰=0dz 等价。

它不仅是全微分的必要条件,而且是充分条件。

因此,可反过来检验某一物理量是否具有全微分。

(2) 循环关系当保持z 不变,即0=dz 时,由式(6-1),得0=⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂z xz y dy y z dx x z则 xy z y z x z x y ⎪⎪⎭⎫ ⎝⎛∂∂⎪⎪⎭⎫ ⎝⎛∂∂-=⎪⎪⎭⎫ ⎝⎛∂∂ 故有 1-=⎪⎪⎭⎫ ⎝⎛∂∂⎪⎪⎭⎫ ⎝⎛∂∂⎪⎪⎭⎫ ⎝⎛∂∂y z x z x x y y z (6-3)此式的功能是:若能直接求得两个偏导数,便可确定第三个偏导数。

结果也很容易记忆,只需将三个变量依上、下、外次序,即))()((xzy yxz zyx 循环就行了。

(3) 变换关系将式(6-1)用于某第四个变量ω不变的情况,可有ωωωdy y z dx x z dz xy ⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂= 两边同除以ωdx ,得ωω⎪⎭⎫ ⎝⎛∂∂⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂x y y z x z x z x y (6-4) 式中:yx z ⎪⎭⎫ ⎝⎛∂∂是函数),(y x z 对x 的偏导数;ω⎪⎭⎫ ⎝⎛∂∂x z 是以),(ωx 为独立变量时,函数),(ωx z 对x 的偏导数。

上面的关系可用于它们之间的变换。

这一关系式对于热力学公式的推导十分重要。

(4) 链式关系按照函数求导法则,可有下述关系:1=⎪⎭⎫ ⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂y y z x x z (6-5)1=⎪⎭⎫ ⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂yy y z x x z ωω (6-5a ) 这是在同一参数(如y )保持不变时,一些参数),,,(Λωx z 循环求导所得偏导数间的关系。

若将关系式中每个偏导数视为链的一环,则链式关系的环数可随所涉及参数的个数而增减。

以上这些关系式都是针对二元函数的,即以具有两个独立状态参数的简单系统为背景。

但对具有两个以上独立参数的系统即多元状态函数,其也有推广价值。

例题6-1 已知理想气体状态方程为RT pv =,试检验v 是否有全微分。

解 由状态方程得 pRT v =,故有 dp p v dT T v dv Tp ⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=dp p RT dT p R 2-=于是p R p T M =),(, 2),(p RT p T N -= 而2p R p R p p M T T -=⎪⎪⎭⎫ ⎝⎛∂∂=⎪⎪⎭⎫ ⎝⎛∂∂22p R p RT T T N p -=⎪⎪⎭⎫ ⎝⎛∂∂-=⎪⎪⎭⎫ ⎝⎛∂∂ 二者相等,可见v 有全微分,即其为状态函数。

6.2 基本热力学关系式6.2.1 基本热力学关系式为简单计,以下推导全部采用比参数。

由热力学第一定律,得w du q δδ+= (3 -18d )对简单可压缩系统,若过程可逆,则pdv w =δ,故pdv du q +=δ而由热力学第二定律Tds q =δ (4-14b ) 二式联立,最后得pdv Tds du -= (6-6)式(6-6)表达了热力学基本定律对系统状态参数变化的限制,是导出其它热力学关系式的基本依据,称为基本热力学关系式。

需要指出的是:虽然式(6-6)是从可逆变化推导而来,但因为du 是状态函数的变化,它只与变化前后的状态有关,而与实际过程的可逆与否无关,所以对于不可逆变化仍然适用。

但若作为能量平衡方程,它只适用于可逆过程。

由焓的定义 pv u h += 得vdp pdv du pv d du dh ++=+=)(将式(6-6)代入上式,可得vdp Tds dh += (6-7)同样,由自由能的定义 Ts u f -= 可得pdv sdT df --= (6-8)由自由焓的定义 Ts h g -= 可得vdp sdT dg +-= (6-9) 以上式(6-7)~(6-9)为基本热力学关系式用组合参数表达的形式,故式(6-6)~(6-9)可统称为基本热力学关系式。

6.2.2 特性函数基本热力学关系式(6-6)~(6-9)分别为以特定参数为独立变量的状态函数),(v s u 、),(p s h 、),(v T f 、),(p T g 的全微分表达式。

这些函数有一个很重要的性质,就是它们的偏导数各给出一个状态函数。

对于函数),(v s u ,将其全微分解析式dv v u ds s u du sv ⎪⎭⎫⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=与式(6-6)作对比,即得T s u v=⎪⎭⎫⎝⎛∂∂(6-10) p v u s-=⎪⎭⎫⎝⎛∂∂(6-11) 同样,由于式(6-7)是函数),(p s h 的全微分,则有T s h p=⎪⎭⎫⎝⎛∂∂(6-12) v p h s=⎪⎪⎭⎫ ⎝⎛∂∂(6-13) 式(6-8)是函数),(v T f 的全微分,有s T f v-=⎪⎭⎫⎝⎛∂∂(6-14)p v f T -=⎪⎭⎫ ⎝⎛∂∂ (6-15)式(6-9)是函数),(p T g 的全微分,有s T g p-=⎪⎭⎫ ⎝⎛∂∂ (6-16) v p g T =⎪⎪⎭⎫ ⎝⎛∂∂ (6-17)正因为如此,只需知道上述函数中的任意一个函数,就可确定出所有的状态函数。

如已知),(v T f ,则由式(6-14)可得),(v T s ;由式(6-15)可得),(v T p 即状态方程;由自由能的定义Ts u f -=可得vT f T f v T u ⎪⎭⎫ ⎝⎛∂∂-=),( 由焓的定义pv u h +=可得v v f T f T f v T h Tv ⎪⎭⎫ ⎝⎛∂∂-⎪⎭⎫ ⎝⎛∂∂-=),( 由自由焓的定义pv f Ts h g +=-=可得v v f f v T g T⎪⎭⎫ ⎝⎛∂∂-=),(由此可见,若状态函数的独立参数选择适当,则可由这个函数及其偏导数得到所有的状态函数,从而将工质的平衡性质完全确定。

这样的函数称为特性函数。

特性函数包含了系统平衡状态的所有信息,它的自变量是特定的。

一经变换虽然还是状态函数,但由于信息丢失而不再是特性函数了,这一点需特别注意。

除了上面已给出的),(v s u 、),(p s h 、),(v T f 、),(p T g 这四个特性函数,还可通过基本热力学关系式寻找其它的特性函数。

如将式(6-6)写成dv T pdu T ds +=1(6-18)则可知 ),(v u s 也是特性函数;将式(6-7)写成dp Tv dh T ds -=1 (6-19) 则可知 ),(p h s 也是特性函数,等等。

特性函数为联系各热力学函数的枢纽。

在许多实际问题中,常采用v T ,或p T ,这些可测量作独立变量,所以),(v T f 和),(p T g 是两个最重要的特性函数。

6.2.3 麦克斯韦关系由于基本热力学关系式(6-6)~(6-9)是各特性函数的全微分表达式,故可对它们应用互易关系式(6-2),因此可得v s s p v T ⎪⎭⎫ ⎝⎛∂∂-=⎪⎭⎫ ⎝⎛∂∂ (6-20)p s s v p T ⎪⎭⎫ ⎝⎛∂∂=⎪⎪⎭⎫ ⎝⎛∂∂ (6-21) vT T p v s ⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂ (6-22) p TT v p s ⎪⎭⎫ ⎝⎛∂∂-=⎪⎪⎭⎫ ⎝⎛∂∂ (6-23) 这四个关系式称为麦克斯韦关系。

借助它们可将包含不可测量熵s 的关系式代换成用可测量p 、v 、T 表达的关系式。

6.3 热系数状态函数的某些偏导数具有明确的物理意义,能表征工质的一定的热力性质,且可由实验测定,因而成为研究工质热力性质的重要数据,称为热系数。

常用的热系数有:热膨胀系数、定温压缩系数、绝热压缩系数、压力温度系数、定容比热、定压比热和绝热节流系数等。

1. 热膨胀系数pp T v v ⎪⎭⎫⎝⎛∂∂≡1α (6-24)热膨胀系数表征物质在定压下的体积随温度变化的性质,单位为1-K 。

2. 定温压缩系数TT p v v ⎪⎪⎭⎫⎝⎛∂∂-≡1κ (6-25)定温压缩系数表征物质在恒定温度下的体积随压力变化的性质。

由于所有物质的Tp v ⎪⎪⎭⎫⎝⎛∂∂均为负值,故在定义式中引入负号,而使T κ为正值。

其单位为1-Pa 。

3. 压力温度系数v v T p p ⎪⎭⎫⎝⎛∂∂≡1β (6-26)压力温度系数表征物质在定容下的压力随温度变化的性质,单位为1-K 。

由微分的循环关系式(6-3),有1-=⎪⎪⎭⎫⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂Tp v p v v T T p因而,上面的三个热系数之间有如下关系v T p p βκα=(6-27)显然,如果有了工质的状态方程,就可计算出这三个热系数。

反之,如果由实验测出这些热系数数据,就可积分得到状态方程式。

4. 绝热压缩系数ss p v v ⎪⎪⎭⎫⎝⎛∂∂-≡1κ (6-28)绝热压缩系数表征工质在可逆绝热(定熵)变化中体积随压力变化的性质,单位为1-Pa 。

5. 定容比热vv dT q c ⎪⎪⎭⎫ ⎝⎛≡δ (6-29)定容比热表征物质在定容下的吸收热量的能力,单位为)/(K kg kJ ⋅。

根据热力学第一定律解析式w du q δδ+= (3-18d )对简单可压缩系统,定容下的体积功0=w δ,故du q =δ,因而vv T u c ⎪⎭⎫ ⎝⎛∂∂= (6-30)6. 定压比热pp dT q c ⎪⎭⎫⎝⎛≡δ (6-31)定压比热表征物质在定压下的吸收热量的能力,单位为)/(K kg kJ ⋅。

相关文档
最新文档