利用栈实现表达式求解
C++实例(表达式求值(栈的应用))

表达式求值: 设计⼀个程序实现输⼊⼀个表达式如3*(3+4),以”#”结尾,求出其值。
分析: 先分析⼀下四则运算的规则: 1. 先乘除后加减; 2. 从左到右计算; 3. 先括号内后括号外; 于是我们要把运算符的优先级确定清楚。
这⾥我只⽤这⼏个运算符:+-*/(), 可以知道+-的优先级低于*/,⽽对于(),当第⼀次遇到’(‘时,’(‘后⾯的就优先计算,直到遇到’)’为⽌,可以先把’(’的优先级定为⽐其它⼏个都⾼,然后遇到’)’时把⾥⾯的先算出来,再算括号外⾯的,具体实现在代码中会表现得很清楚。
考试2⼤提⽰这个程序还是⽤栈来实现,具体代码如下。
代码: #include #include using namespace std; const int STACK_INIT_SIZE=100; //The maximize length of stack template class Stack //A class of stack { public: Stack() //Constructor function { base = new int[STACK_INIT_SIZE]; if (!base) { cerr< exit(-1); } top=base; stacksize=STACK_INIT_SIZE; } ~Stack() //Destructor function { if (base) delete[] base; } T GetTop() { if (top==base) { cerr< exit(-1); } return *(top-1); } void Push(T e) { if (top-base>=stacksize) { base=new int[STACK_INIT_SIZE]; if(!base) { cerr< exit(-1); } top=base+STACK_INIT_SIZE; stacksize+=STACK_INIT_SIZE; } *top++=e; } void Pop(T& e) { if (top==base) { cerr< exit(-1); } e=*--top; } private: int *base; int *top; int stacksize; }; string op("+-*/()#"); //The set of operator bool In(char c,string op) //Judge the character whether belong to the set of operator { string::iterator iter=op.begin(); for (;iter!=op.end();++iter) if (*iter==c) return true; return false; } char Precede(char top,char c) //Confirm the precedence of operator { int grade_top=0,grade_c=0; switch (top) { case '#':grade_top=0;break; case ')':grade_top=1;break; case '+':grade_top=2;break; case '-':grade_top=2;break; case '*':grade_top=3;break; case '/':grade_top=3;break; case '(':grade_top=4;break; } switch (c) { case '#':grade_c=0;break; case ')':grade_c=1;break; case '+':grade_c=2;break; case '-':grade_c=2;break; case '*':grade_c=3;break; case '/':grade_c=3;break; case '(':grade_c=4;break; } if (grade_top>=grade_c) { if (top=='('&&c!=')') return ' else if (top=='('&&c==')') return '='; return '>'; } else if (top=='#'&&c=='#') return '='; else return ' } int Operate(int a,char theta,int b) //Calculate { if (theta=='+') return a+b; else if (theta=='-') return a-b; else if (theta=='*') return a*b; else if (theta=='/') return a/b; return 0; } int EvaluateExpression(Stack& OPTR,Stack& OPND) { int a=0,b=0,n=0; char x; char theta; string c; cin>>c; OPTR.Push('#'); while (c[0]!='#'||OPTR.GetTop()!='#') { if (!In(c[0],op)){ n=atoi(&c[0]); OPND.Push(n); cin>>c; } else switch (Precede(OPTR.GetTop(),c[0])) { case ' OPTR.Push(c[0]); cin>>c; break; case '=': OPTR.Pop(x); cin>>c; break; case '>': OPTR.Pop(theta); OPND.Pop(b); OPND.Pop(a); OPND.Push(Operate(a,theta,b)); break; } } return OPND.GetTop(); } int main() { Stack OPTR; Stack OPND; cout< cout< return 0; }。
数据结构-表达式求值

数据结构:线性结构—栈实现表达式求值一.问题分析利用栈这种数据结构存储数字和运算符,并实现表达式求值。
为实现按运算符优先顺序进行计算,需要在执行程序的过程中对运算符的优先顺序做出判断。
利用栈先进后出的特点,同时保证优先级最高的运算符始终在栈顶。
当栈顶元素优先级低于读入的运算符时,将该栈顶运算符推出。
这就保证了优先级高的运算符先计算。
二.数据结构—栈1.优先关系表:prior[7][7]={// +-*/()#'>','>','<','<','<','>','>','>','>','<','<','<','>','>','>','>','>','>','<','>','>','>','>','>','>','<','>','>','<','<','<','<','<','=',' ','>','>','<','>',' ','>','>','<','<','<','<','<',' ','='};将关系表直接用字符型的二维数组存储。
实验二--栈的应用---算术表达式的计算

浙江大学城市学院实验报告课程名称数据结构与算法实验项目名称实验二栈的应用---算术表达式的计算实验成绩指导老师(签名)日期一.实验目的和要求1.进一步掌握栈的基本操作的实现。
2.掌握栈在算术表达式的计算方面的应用。
二. 实验内容1. 编写程序利用栈将中缀表达式转换成后缀表达式,即从键盘输入任一个中缀表达式(字符串形式),转换成后缀表达式后,将后缀表达式输出。
假设:中缀表达式包含圆括号( ) 及双目运算符+、-、*、/、^(乘方)。
要求:把栈的基本操作的实现函数存放在头文件stack1.h中(栈元素的类型为char),在主文件test6_2.cpp中包含将中缀表达式S1转换成后缀表达式S2的转换函数void Change( char *S1, char *S2 )及主函数,在主函数中进行输入输出及转换函数的调用。
2. 选做:编写利用栈对后缀表达式进行求值的函数double Compute(char *str),以计算从前述程序得到的后缀表达式的值。
要求:把栈的基本操作的实现函数存放在头文件stack2.h中(栈元素的类型为double),在主文件test6_2.cpp中添加后缀表达式求值函数,并在主函数中增加调用求值函数及输出结果值的语句。
3. 填写实验报告,实验报告文件取名为report2.doc。
4. 上传实验报告文件report2.doc与源程序文件stack1.h、stack2.h(若有)及test6_2.cpp到Ftp服务器上你自己的文件夹下。
二.函数的功能说明及算法思路(算法思路见源程序的注释部分)//栈的顺序存储结构定义struct Stack{ElemType *stack;int top;int MaxSize;};//初始化栈S为空void InitStack(Stack &S)//元素item进栈,即插入到栈顶void Push(Stack &S,ElemType item)//删除栈顶元素并返回ElemType Pop(Stack &S)//读取栈顶元素的值ElemType Peek(Stack &S)//判断S是否为空,若是则返回true,否则返回false bool EmptyStack(Stack &S)//清除栈S中的所有元素,释放动态存储空间void ClearStack(Stack &S)//将中缀算术表达式转换为后缀算术表达式void Change(char *S1,char *&S2)//返回运算符op所对应的优先级数值int Precedence(char op)//计算由str所指字符串的后缀表达式的值double Compute(char *str)四. 实验结果与分析五. 心得体会【附录----源程序】test6_2.cpp#include<iostream.h>#include<stdlib.h>#include<math.h>#include"stack1.h"#include"stack2.h"void main(){char x[30],y[30];double r;while(1){cout<<"请输入一个中缀算术表达式:";cin.getline(x,sizeof(x));Change(x,y);cout<<"对应的后缀算术表达式为:";cout<<y<<endl;r=Compute(y);cout<<"后缀算术表达式值为:"<<r<<endl<<endl;}}stack1.htypedef char ElemType1;struct Stack1{ElemType1 *stack;int top;int MaxSize;};void InitStack(Stack1 &S){S.MaxSize=10;S.stack=new ElemType1[S.MaxSize];if(!S.stack){cerr<<"动态储存分配失败"<<endl;exit(1);}S.top=-1;}void Push(Stack1 &S,ElemType1 item)if(S.top==S.MaxSize-1){int k=sizeof(ElemType1);S.stack=(ElemType1*)realloc(S.stack,2*S.MaxSize*k);S.MaxSize=2*S.MaxSize;}S.top++;S.stack[S.top]=item;}ElemType1 Pop(Stack1 &S){if(S.top==-1){cerr<<"Stack is empty! "<<endl;exit(1);}S.top--;return S.stack[S.top+1];}ElemType1 Peek(Stack1 &S){if(S.top==-1){cerr<<"Stack is empty! "<<endl;exit(1);}return S.stack[S.top];}bool EmptyStack(Stack1 &S){return S.top==-1;}void ClearStack(Stack1 &S){if(S.stack){delete []S.stack;S.stack=0;}S.top=-1;S.MaxSize=0;}//返回运算符op所对应的优先级数值int Precedence(char op){switch(op){case'+':case'-':return 1;case'*':case'/':return 2;case'^':return 3;case'(':case'@':default:return 0;}}//将中缀算术表达式转换为后缀算术表达式void Change(char *S1,char *S2){Stack1 R;InitStack(R);Push(R,'@');int i=0,j=0;char ch=S1[i];while(ch!='\0'){//对于空格字符不做任何处理,顺序读取下一个字符if(ch==' ')ch=S1[++i];//对于左括号,直接进栈else if(ch=='('){Push(R,ch);ch=S1[++i];}//对于右括号,使括号内的仍停留在栈中的运算符依次出栈并写入S2else if(ch==')'){while(Peek(R)!='(')S2[j++]=Pop(R);Pop(R);//删除栈顶的左括号ch=S1[++i];}//对于运算符,使暂存于栈顶且不低于ch优先级的运算符依次出栈并写入S2else if(ch=='+'||ch=='-'||ch=='*'||ch=='/'||ch=='^'){char w=Peek(R);while(Precedence(w)>=Precedence(ch)){S2[j++]=w;Pop(R);w=Peek(R);}Push(R,ch);//把ch运算符写入栈中ch=S1[++i];}else{if((ch<'0'||ch>'9')&&ch!='.'){cout<<"中缀表达式表示错误!"<<endl;exit(1);}while((ch>='0'&&ch<='9')||ch=='.'){S2[j++]=ch;ch=S1[++i];}S2[j++]=' ';}}//把暂存在栈中的运算符依次退栈并写入到S2中ch=Pop(R);while(ch!='@'){if(ch=='('){cerr<<"expression error!"<<endl;exit(1);}else{S2[j++]=ch;ch=Pop(R);}}S2[j++]='\0';}stack2.htypedef double ElemType2;struct Stack2{ElemType2 *stack;int top;int MaxSize;};void InitStack(Stack2 &S){S.MaxSize=10;S.stack=new ElemType2[S.MaxSize];if(!S.stack){cerr<<"动态储存分配失败"<<endl;exit(1);}S.top=-1;}void Push(Stack2 &S,ElemType2 item){if(S.top==S.MaxSize-1){int k=sizeof(ElemType2);S.stack=(ElemType2*)realloc(S.stack,2*S.MaxSize*k);S.MaxSize=2*S.MaxSize;}S.top++;S.stack[S.top]=item;}ElemType2 Pop(Stack2 &S){if(S.top==-1){cerr<<"Stack is empty! "<<endl;exit(1);}S.top--;return S.stack[S.top+1];}ElemType2 Peek(Stack2 &S){if(S.top==-1){cerr<<"Stack is empty! "<<endl;exit(1);}return S.stack[S.top];}bool EmptyStack(Stack2 &S){return S.top==-1;}void ClearStack(Stack2 &S){if(S.stack){delete []S.stack;S.stack=0;}S.top=-1;S.MaxSize=0;}//计算由str所指字符串的后缀表达式的值double Compute(char *str){Stack2 S;InitStack(S);double x,y;int i=0;while(str[i]){if(str[i]==' '){i++;continue;}switch(str[i]){case '+':x=Pop(S)+Pop(S);i++;break;case'-':x=Pop(S);x=Pop(S)-x;i++;break;case'*':x=Pop(S)*Pop(S);i++;break;case'/':x=Pop(S);if(x!=0)x=Pop(S)/x;else{cerr<<"Divide by 0!"<<endl;exit(1);}i++;break;case'^':x=Pop(S);x=pow(Pop(S),x);i++;break;default:x=0;while(str[i]>=48&&str[i]<=57){x=x*10+str[i]-48;i++;}if(str[i]=='.'){i++;y=0;double j=10.0;while(str[i]>=48&&str[i]<=57){y=y+(str[i]-48)/j;i++;j*=10;}x+=y;}}Push(S,x);}if(EmptyStack(S)){cerr<<"expression error!"<<endl;exit(1);}x=Pop(S);if(EmptyStack(S))return x;else{cerr<<"expression error!"<<endl;exit(1);}ClearStack(S);}(注:可编辑下载,若有不当之处,请指正,谢谢!)。
基于栈的后缀算术表达式求值c语言

基于栈的后缀算术表达式求值c语言1. 引言1.1 概述本文将讨论基于栈的后缀算术表达式求值的实现过程。
后缀算术表达式(也称为逆波兰表达式)是一种无需括号即可进行运算的表达式表示方法,它将操作符置于操作数之后。
相较于传统的中缀表达式,在计算机程序中处理后缀表达式更为高效和简洁。
1.2 文章结构文章分为五个主要部分:引言、栈的概念及原理、后缀算术表达式的定义和转换、基于栈的后缀算术表达式求值算法实现以及结论与总结。
在引言部分,我们将首先介绍本文的概述和目标,对后续内容进行简要说明。
1.3 目的通过本文,我们旨在让读者了解栈数据结构的基本概念和原理,并且掌握如何利用栈来实现对后缀算术表达式进行求值的算法。
同时,我们将介绍后缀算术表达式的定义和转换方法,并给出基于栈实现该计算方式的详细步骤与示例代码。
通过深入研究并学习这些内容,读者可以加深对栈数据结构和后缀算术表达式的理解,并且能够应用所学知识解决实际问题。
本文不仅适用于计算机科学或相关专业的学生,也适合对数据结构和算法感兴趣的读者阅读和学习。
2. 栈的概念及原理2.1 栈的定义栈是一种具有特定限制条件的线性数据结构,它具备“先进后出”(Last-In-First-Out,LIFO)的特性。
栈可以看作是一个容器,其中可以存储各种类型的数据。
与实际生活中的堆栈类似,栈只允许在其末尾进行插入和删除操作。
在栈中,最后加入的元素首先被访问和处理。
这是由于栈内元素之间的相对位置关系决定的。
插入操作称为“压栈”(Push),删除操作称为“弹栈”(Pop),而从栈顶读取元素或获取栈顶元素但不删除它称为“查看”(Peek)。
2.2 栈的基本操作推入元素:将一个元素添加到栈顶。
如果已经存在满员条件,则无法执行此操作。
弹出元素:从栈顶移除一个元素,并返回移除的值。
如果没有任何元素存在,则无法执行此操作。
查看栈顶元素:获取位于栈顶处的元素值,但不对其进行删除。
判断是否为空:检查栈是否为空。
表达式求值算法总结(C++)

表达式求值算法总结(C++)表达式求值,一般采用栈和队列的方式来求值,下面介绍表达式求值的两种算法。
方法一、使用两个栈,一个为操作符栈OPTR(operator),一个是操作数栈OPND(operand)算法过程:当输入3 * ( 4 - 1 * 2 ) + 6 / ( 1 + 1 )时,为简单方便,我们输入时,按照字符的顺序一个一个的处理,比如ch = getchar()。
然后根据ch 的值判断:若ch 是数字,直接压入操作数栈OPND;若ch 是'(',直接入栈OPTR;若ch 是')',若OPTR 和OPND 非空,弹出OPTR的栈顶操作符,弹出OPND栈顶的两个操作数,做运算,然后见个结果压入栈OPND,直到弹出的OPTR栈顶元素时')';若ch 是操作符(比如+, -, *, /),如果OPTR栈顶元素是(,直接入栈OPTR,如果不是'('且OPTR栈非空且栈顶元素操作符的优先级大于ch,那么弹出OPTR的栈顶操作符,并弹出OPND中栈顶的两个元素,做运算,将运算结果入栈OPND,此时,重复这一步操作;否则将ch入栈OPTR;若ch为EOF,说明表达式已经输入完成,判断OPTR是否为空,若非空,一次弹出OPTR 栈顶操作符,并与OPND栈顶两个元素做运算,将运算结果入栈OPND,最后表达式的结果即OPND的栈底元素。
以表达式3 * ( 4 - 1 * 2 ) + 6 / ( 1 + 1 )为例,计算过程如下所示:通过上述的计算过程,写出伪代码如下所示:void GetExpress(Stack * OPTR, Stack * OPND){char ch;while ((ch = getchar ()) != EOF) {if (IsDigit (ch)) {PushStack (OPND, ch);}else if (ch == '(')PushStack (OPTR, ch);else if (ch == ')') {while (!IsStackEmpty(OPTR)) {PopStack (OPTR, op);if (op == ')')break;PopStack (OPND, num2);PopStack (OPND, num1);res = Calc (num1, num2, op);PushStack (OPND, res);}}else if (ch == '+' || ch == '-'|| ch == '*' || ch == '/') {while (!IsStackEmpty (OPTR) && GetTop (OPTR)!='(' && GetTop (OPTR)>ch) { PopStack (OPTR, op);PopStack (OPND, num2);PopStack (OPND, num1);res = Calc (num1, num2, op);PushStack (OPND, res);}if (IsStackEmpty (OPTR) || GetTop(OPTR)=='(')PushStack (OPTR, ch);}}}// 当表达式输入完成后,需要对OPTR栈和OPND中的元素进行运算int GetValue(Stack * OPTR, Stack * OPND){while (!IsStackEmpty (OPTR)) {PopStack (OPTR, op);PopStack (OPND, num2);PopStack (OPND, num1);res = Calc (num1, num2, op);PushStack (OPND, res);}// 最后的操作数栈OPND栈顶元素即是表达式的值return GetTop(OPND);}PS: 上面没有指出表达式非法的情况方法二:采用中缀表达式的方法,求取表达式的中缀表达式,借用一个操作符栈OPTR和中缀表达式队列Queue,求取中缀表达式,然后对中缀表达式求值。
利用栈来实现算术表达式求值的算法

利用栈来实现算术表达式求值的算法利用栈来实现算术表达式求值的算法算术表达式是指按照一定规则组成的运算式,包含数字、运算符和括号。
在计算机中,求解算术表达式是一项基本的数学运算任务。
根据算术表达式的性质,我们可以考虑利用栈这一数据结构来实现求值算法。
一、算法思路首先,我们需要明确一个重要概念——逆波兰表达式(ReversePolish notation)。
逆波兰表达式是一种没有括号的算术表达式,其运算规则是先计算后面的数字和运算符,再计算前面的数字和运算符。
例如,对于算术表达式“3+4*5-6”,其对应的逆波兰表达式为“3 45 * +6 -”。
那么,我们可以利用栈来实现将中缀表达式转化为逆波兰表达式的过程,具体步骤如下:1. 创建两个栈——操作数栈和操作符栈。
2. 从左到右扫描中缀表达式的每一个数字和运算符,遇到数字则压入操作数栈中,遇到运算符则进行如下操作:(1)如果操作符栈为空或当前运算符的优先级大于栈顶运算符的优先级,则将当前运算符压入操作符栈中。
(2)如果当前运算符的优先级小于或等于栈顶运算符的优先级,则将栈顶运算符弹出并加入操作数栈中,重复此过程直到遇到优先级较低的运算符或操作符栈为空为止,然后将当前运算符压入操作符栈中。
3. 扫描完中缀表达式后,若操作符栈不为空,则将其中所有运算符弹出并加入操作数栈中。
4. 最终,操作数栈中存放的就是逆波兰表达式,我们可以按照逆波兰表达式的计算规则来计算其结果。
二、算法优点利用栈来实现算术表达式求值的算法具有以下优点:1. 代码简洁易懂,易于实现和维护。
2. 由于将中缀表达式转化为逆波兰表达式后,可以减少运算符的优先级关系而消除括号,从而减少求值的复杂度,提高程序的执行效率。
三、代码实现下面是利用栈来实现算术表达式求值的算法的Python代码实现:```pythonclass Stack:def __init__(self):self.items = []def push(self, item):self.items.append(item)def pop(self):return self.items.pop()def peek(self):return self.items[-1]def is_empty(self):return len(self.items) == 0def size(self):return len(self.items)def calculate(op_num1, op_num2, operator):if operator == "+":return op_num1 + op_num2elif operator == "-":return op_num1 - op_num2elif operator == "*":return op_num1 * op_num2elif operator == "/":return op_num1 / op_num2def infix_to_postfix(infix_expr):opstack = Stack()postfix_expr = []prec = {"+": 1, "-": 1, "*": 2, "/": 2, "(": 0} token_list = infix_expr.split()for token in token_list:if token.isdigit():postfix_expr.append(token)elif token == '(':opstack.push(token)elif token == ')':top_token = opstack.pop()while top_token != '(':postfix_expr.append(top_token)top_token = opstack.pop()else:while (not opstack.is_empty()) and(prec[opstack.peek()] >= prec[token]):postfix_expr.append(opstack.pop())opstack.push(token)while not opstack.is_empty():postfix_expr.append(opstack.pop())return " ".join(postfix_expr)def postfix_eval(postfix_expr):opstack = Stack()token_list = postfix_expr.split()for token in token_list:if token.isdigit():opstack.push(int(token))else:op_num2 = opstack.pop()op_num1 = opstack.pop()result = calculate(op_num1, op_num2, token) opstack.push(result)return opstack.pop()infix_expr = "3 + 4 * 5 - 6"postfix_expr = infix_to_postfix(infix_expr)print(postfix_expr)print(postfix_eval(postfix_expr))```四、总结算术表达式求值是一项常见的数学运算任务,利用栈这一数据结构来实现求值算法是一种简单有效的方法,它将中缀表达式转化为逆波兰表达式后,可以消除括号并减少运算符的优先级关系,从而提高程序的执行效率。
栈的应用实验报告心得

栈的应用实验报告心得栈的应用实验报告心得一、引言栈(Stack)是一种常用的数据结构,具有先进后出(Last In First Out,简称LIFO)的特点。
在实际应用中,栈有着广泛的应用,例如函数调用、递归、表达式求值、括号匹配等。
为了更好地理解栈的应用,我们进行了一系列实验。
二、实验目的理解栈的基本概念和特点;掌握栈的基本操作,包括入栈、出栈、判空、读栈顶等;熟悉栈的应用场景,如逆波兰表达式求值、中缀表达式转后缀表达式等。
三、实验内容实现栈的基本操作:入栈、出栈、判空、读栈顶;实现逆波兰表达式求值算法;实现中缀表达式转后缀表达式算法;运用栈解决实际问题,如括号匹配等。
四、实验步骤及结果实验步骤(1)根据实验要求,设计栈的数据结构,并实现基本操作;(2)实现逆波兰表达式求值算法,通过入栈、出栈操作进行运算;(3)实现中缀表达式转后缀表达式算法,通过栈的特性进行转换;(4)运用栈解决括号匹配问题,通过入栈、出栈操作进行判断。
实验结果通过实验,我们成功实现了栈的基本操作,并运用栈解决了逆波兰表达式求值、中缀表达式转后缀表达式以及括号匹配等问题。
实验结果表明,栈在解决这些问题上具有很好的效果和应用价值。
五、实验心得通过本次实验,我对栈的概念和特点有了更深入的理解。
栈的先进后出特点使得其在很多实际问题中具有很好的应用场景。
在实现栈的过程中,我学会了如何设计栈的数据结构,并实现其基本操作。
通过实现逆波兰表达式求值算法和中缀表达式转后缀表达式算法,我进一步加深了对栈的理解,并熟悉了栈在算法中的应用。
同时,通过解决括号匹配问题,我认识到栈在实际问题中的实用性和重要性。
在实验过程中,我遇到了一些困难,如算法的设计和实现过程中的错误,以及对栈操作的理解等。
但通过努力和与同学的讨论,我逐渐克服了这些困难,并取得了较好的实验结果。
这次实验让我深刻认识到了理论与实践的关系,只有通过实际操作,才能更好地理解和应用理论知识。
基于栈结构的中缀表达式求值

实验三基于栈结构的中缀表达式求值班级:计科131、问题描述从键盘输入一中缀表达式字符串,读字符串,利用栈结构实现表达式求值。
2、输入与输出输入:从键盘中缀表达式如: 32+5×(6-4)输出:计算结果423、需求分析1.定义两个栈结构,数栈用于存放表达式中的数,符号栈用于存放表达式中的符号,实现栈的运算2.在读数的时候考虑多位运算3.实现表达式求值4、开发工具与环境硬件设备:微型计算机系统软件环境:操作系统Windows,开发工具等等5、概要设计1.结构定义typedef struct /* 运算符栈 */{ char *base,*top;int stacksize;}SqStack;typedef struct /* 运算数栈 */{ int *base,*top;int stacksize;}SqStack1;int priority[7][7]={{'>', '>', '<', '<', '<', '>', '>'}, // +{'>', '>', '<', '<', '<', '>', '>'}, // -{'>', '>', '>', '>', '<', '>', '>'}, // *{'>', '>', '>', '>', '<', '>', '>'}, // /{'<', '<', '<', '<', '<', '=', }, // ({'>', '>', '>', '>', ' ', '>', '>'}, // ){'<', '<', '<', '<', '<', ' ', '='} // #};/*用于比较符号优先级的全局二维数组*/2.各函数模块void InitStack(SqStack *s);操作结果:初始化运算符栈。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2 C语言
C语言既有高级语言的特点,又具有汇编语言的特点;既是一个成功的系统设计语言,有时一个使用的程序设计语言;既能用来编写不依赖计算机硬件的应用程序,又能用来编写各种系统程序;是一种受欢迎、应用广泛的程序设计语言。
1.4任务与分析
本程序用于解决一个可以带括号的表达式求值的问题,要运用到栈,而且会用到一种简单直观,广为使用的算法,通常称为“算符优先法”。进行表达式求值首先要了解算术四则运算的规则。即:(1)先乘除,后加减;(2)从左算到右;(3)先括号内后括号外;算符优先法根据这个算符优先关系的规定来实现对表达式的编译或解释执行的。任何一个表达式都是由操作数、运算符和界限符组成。
/*'('*/'<','<','<','<','<','=',' ',
/*')'*/'>','>','>','>',' ','>','>',
/*'#'*/'<','<','<','<','<',' ','=',
};
//==========对两操作数进行运算
floatOperate(floata,unsignedchartheta,floatb)
{
// 算术表达式求值的算符优先算法。
// 设OPTR和OPND分别为运算符栈和运算数栈,OPSET为运算符集合。
栈是一种重要的线性结构,栈可以用作数制转换、括号匹配的检验、行编辑程序等等问题中。从数据结构角度看,栈也是线性表,其特殊性在于栈的基本操作是线性表操作的子集,它是操作受限的线性表,因此,可称为限定性的数据结构。但从数据类型角度看,它是和线性表大不相同的两类重要的抽象数据类型。
栈实限定仅在表尾进行插入或删除操作的线性表。因此,对栈来说,表尾端有其特殊含义,称为栈顶,相应地,表头端称为栈底。不含元素的空表称为空栈。栈又称为后进先出的线性表。
printf("\n");
printf ("运算结果是:%d\n", nResult );
printf("\n");
break;
case0:
exit(0);
break;
}
}
return0;
}
3.4
//==========预定义
#defineok 1
#defineerror 0
#defineoverflow -1
这次的课程设计是利用栈实现表达式求解,要求只考虑+、-、*、/四种数学运算还有只考虑圆括号参与运算。
关键词:数据结构与算法, 栈, 表达式求解,最优
1.1问题的提出
栈作为一种数据结构,是一种只能在一端进行插入和删除操作的特殊线性表。它按照后进先出的原则存储数据,先进入的数据被压入栈底,最后的数据在栈顶,需要读数据的时候从栈顶开始弹出数据(最后一个数据被第一个读出来)。栈具有记忆作用,对栈的插入与删除操作中,不需要改变栈底指针。
cout<<"请输入选项:";
cin>>n;
switch(n)
{
case1:
puts ("**************************************************");
puts ("请输入一个运算式,以#结尾:");
printf("\n");
nResult = EvaluateExpression();
理学院
课程设计说明书
课 程 名 称:数据结构与算法A设计实践
课 程 代 码:6015059
题 目 二:利用栈实现表达式求解
开 始 时 间:2015年12月28日
完 成 时 间:2016年01月10日
课程设计成绩:
学习态度及平时成绩(30)
技术水平与实际能力(20)
创新(5)
说明书撰写质量(45)
总 分(100)
EvaluateExpression():用运算符优先级对算术表达式求值
最后,通过主函数对以上几个函数的调用,实现该系统的功能。
2.2 数据需求
输入一个表达式,利用优先级表对表达式求值。
3
3.1
为了实现算符优先算法使用两个工作栈,一个称作OPTR,以寄存运算符;另一个称作OPND,用以寄存操作数或运算结果。在操作数和操作符入栈前,通过一个函数来判别,输入的是操作数还是操作符,操作数入OPND,操作符入OPTR。在输入表达式的最后输入‘#’,设定‘#’的优先级最低,代表表达式输入结束。在表达式输入过程中,遇操作数则直接入栈,遇到运算符则与栈顶运算符比较优先级,若当前运算符优先级高,则当前运算符入栈,扫描下一符号;否则栈顶运算符出栈,两操作数出栈,进行运算,所得结果入数栈,重新比较当前运算符与新栈顶运算符。如此重复直到栈顶运算符与当前符号均为‘#’,运算结束。
(2)只考虑圆括号()参与运算
测试数据及测试结果请在上交的资料中写明;必须上机调试通过
按《数据结构课程设计大纲》中的要求完成课程设计报告格式。
设计结束后,每个学生必须上交的材料有:
1《课程设计报告》打印稿一份2.课程设计的源代码电子文档一份
四、主要技术路线提示
根据运算符号的优先级来决定当前符号是否入栈;注意考虑多重括号匹配的问题。
2 系统分析
2.1功能要求
2.1.1 总体要求
利用教材3.2.5节的理论实现表达式求解。
(1)只考虑+、-、*、/四种数学运算
(2)只考虑圆括号()参与运算
2.1.2本人所做模块
根据这次课程设计题目的要求,将这次任务分为了几个小的模块,具体模块的功能如下:
Push(&S,e):入栈函数模块
Pop(&S,&e):出栈函数模块
}
*S.top++=e;
returnok;
}
//===========出栈函数模板
template<typenameT1,typenameT2>
Status Pop(T1 &S,T2 &e)
{
if(S.top==S.base)
returnerror;
e=*--S.top;
returnok;
}
//===========获取栈顶元素模板
exit (overflow);
S.top=S.base;
S.stacksize=STACK_INIT_SIZE;
returnok;
}
//==========入栈函数模板
template<typenameT1,typenameT2>
Status Push(T1 &S,T2 e)
{
if(S.top-S.base>=S.stacksize)
2.严蔚敏等著,《数据结构》,清华大学出版社,2003
3.李芸芳等著,《软件技术基础》(第二版),清华大学出版社,2000
4.徐孝凯等著,《数据结构(C语言描述)》,清华大学出版社,2004
指导教师签名日期年月日
系 主 任审核日期年月日
摘
随着计算机的普遍应用与日益发展,其应用早已不局限于简单的数值运算,数据结构与算法的学习就是为以后利用计算机资源高效地开发非数值处理的计算机程序打下坚实的理论、方法和技术基础。数据结构与算法旨在分析研究计算机加工的数据对象的特性,以便选择适当的数据结构和存储结构,从而使建立在其上的解决问题的算法达到最优。
In(Test,* TestOp):判断是否为运算符
Operate(a,theta,b):根据theta对a、b进行四则运算操作
ReturnOpOrd(op,* TestOp):若TestOp为运算符,则返回此运算符在数组的下标
precede( Aop, Bop):根据运算符优先级表返回Aop与Bop之间的优先级
{
boolFind=false;
for(inti=0; i< OPSETSIZE; i++)
{
if(Test == TestOp[i])
Find=true;
}
returnFind;
}
//===========比较运算符间的优先关系
unsignedcharPrior[7][7] =
{
// 运算符优先级表
#defineOPSETSIZE 7
#defineSTACKINCREMENT 100
#defineSTACK_INIT_SIZE 10
//==========定义顺序栈结构模板
template<typenameT>
structSqStack
{
T *top;
T *base;
intstacksize;
{
switch(theta)
{
case'+':returna+b;
case'-':returna-b;
case'*':returna*b;