加氢反应器及催化裂化反应器介绍(精选)
加氢裂化反应器的分类及构成

三、固定床反应器内部构件
滴流床反应器:气-液-固三相反应
滴流床反应器 内部构件
✓ 气液相流动状态 ✓ 液体的径向分布 ✓ 床层压力降
✓ 反应效果 ✓ 催化剂寿命 ✓ 操作周期
加氢裂化滴流床反应器的内部构件
✓ 入口扩散器
✓ 催化剂支撑盘
✓ 气液分配盘
✓ 冷氢管
✓ 去垢篮
✓ 冷氢箱
✓ 热电偶
✓ 出口收集器
腾
床 反 应
✓ 催化剂不易磨损,在不失 活情况下可长期使用
床 反 应
器
✓ 适用于处理金属、固体杂
器
质含量少的原料油
出料
固定床反应器(气液并流下流式)使用最为广泛
✓ 原料与氢气从反应器底 部进入并通过催化剂床 层,催化剂床层膨胀并 处于沸腾状态
✓ 反应器内温度均匀,压 降较小,运转周期长
✓ 适用于处理重金属、沥 青质及固体杂质含量较 高的渣油原料
知识点思考
1. 加氢裂化过程使用最多的反应器是哪种?该反应器由哪 几部分构成?其反应器壁的结构特征是什么?
谢谢观看
课程:石油炼制运行与操控 知识点:加氢裂化反应器的分类及构成
江苏高校品牌专业——石油化工技术
课程:石油炼制运行与操控 知识点:加氢裂化反应器的分类及构成
江苏高校品牌专业——石油化工技术
一、加氢反应器分类
加氢反应器是加氢装置的关键设备
固 定
按工艺特点分类:固定床反应器氢气)
氢 反
✓ 原料油和氢气流经反应器
应 器
固
中的催化剂床层时,催化
沸
定
剂床层处于静止状态
二、固定床加氢反应器构成
固定床反应器的构成:反应器筒体和内部构件
加氢反应器介绍 ppt课件

2. 分配盘
目前,国内加氢反应器所使用的反应物流分配器,按其作用原理大致可分为溢流 式和抽吸喷射式两类;反应物流分配盘应不漏液,安装后须进行测漏试验,即在 分配盘上充水至100mm高,在5分钟内其液位下降高度,以不大于5mm为合格;分配 盘安装的水平度要求,对于喷射式的分配器,包括制造公差和在载荷作用下的绕 度在内,其分配盘的水平度应控制为±5mm~±6mm;对于溢流式的分配器,其分配 盘安装的水平度要求更严格一些。
氢脆的敏感性一般是随钢材的强度的提高而增加,钢的显微组织 对氢脆也有影响。钢材氢脆化的程度还与钢中的氢含量密切相关。强 度越高,只要吸收少量的氢,就可引起很严重的脆化。
对于操作在高温高压氢环境下的设备,在操作状态下,器壁中会 吸收一定量的氢。在停工的过程中,由于冷却速度太快,钢中的氢来 不及扩散出来,造成过饱和氢残留在器壁内,就可能在温度低于150℃ 时引起亚临界裂纹扩展,对设备的安全使用带来威胁。
反应器内设置有入口扩散器、 积垢篮、卸料管、催化剂支撑盘、 出口捕集器、气液反应物流分配盘、 冷氢箱、熱电偶保护管和出口收集 器等反应器内构件。
1. 入口扩散器
来自反应器入口的介质首先经过入口扩散器, 在上部锥形体整流后,经上下两挡板的两层 孔的节流、碰撞后被扩散到整个反应器截面 上。
其主要作用为:一是将进入的介质扩散到反 应器的整个截面上;二是消除气、液介质对 顶分配盘的垂直冲击,为分配盘的稳定工作 创造条件;三是通过扰动,促使气液两相混 合
气中蠕变强度会下降。特别是由于二次应力(如热应力或由冷作加工所 引起的应力)的存在会加速高温氢腐蚀。
高温氢腐蚀的防止措施 高温高压氢环境下高温氢腐蚀的防止措施主要是选用耐高温氢腐
蚀的材料,工程设计上都是按照原称为“纳尔逊(Nelson)曲线”来选 择的。
加氢催化剂、加氢反应器基础知识

加氢催化剂、加氢反应器基础知识概述加氢精制催化剂是由活性组分、助剂和载体组成的。
其作用是加氢脱除硫、氮、氧和重金属以及多环芳烃加氢饱和。
该过程原料的分子结构变化不大,,根据各种需要,伴随有加氢裂化反应,但转化深度不深,转化率一般在10%左右。
加氢精制催化剂需要加氢和氢解双功能,而氢解所需的酸度要求不高。
工作原理催化加氢的机理(改变反应途径,降低活化能):吸附在催化剂上的氢分子生成活泼的氢原子与被催化剂削弱了键的烯、炔加成。
(1)双键碳原子上烷基越多,氢化热越低,烯烃越稳定:R2C=CR2 > R2C=CHR > R2C=CH2 > RCH=CH2 > CH2=CH2(2)反式异构体比顺式稳定(3)乙炔氢化热为-313.8kJ·mol-1,比乙烯的两倍(-274.4kJ·mol-1)大,故乙炔稳定性小于乙烯。
应用在Pt、Pd、Ni等催化剂存在下,烯烃和炔烃与氢进行加成反应,生成相应的烷烃,并放出热量,称为氢化热(heat of hydrogenation,1mol不饱和烃氢化时放出热量)。
催化加氢的机理(改变反应途径,降低活化能):吸附在催化剂上的氢分子生成活泼的氢原子与被催化剂削弱了键的烯、炔加成。
分类1、加氢裂化催化剂加氢裂化催化剂(hydrocracking catalyst)是石油炼制过程中,重油在360~450℃高温,15~18MPa高压下进行加氢裂化反应,转化成气体、汽油、喷气燃料、柴油等产品的加氢裂化过程使用的催化剂。
加氢裂化过程在石油炼制过程属于二次加工过程,加工原料为重质馏分油,也可以是常压渣油和减压渣油,加氢裂化过程的主要特点是生产灵活性大,产品的分布可由操作条件来控制,可以生产汽油、低凝固点的喷气燃料和柴油,也可以大量生产尾油用作裂解原料或生产润滑油。
所得的产品稳定性好,但汽油的辛烷值不高,。
由于操作条件苛刻,设备投资和操作费用高,应用不如催化裂化广泛。
加氢反应器介绍

加氢反应器介绍加氢反应器是加氢裂化装置的核心设备,它操作于高温、高压、临氢(含H2S)环境下,且进入反应器内的物料中往往含有硫和氮等杂质。
由于加氢反应器使用条件苛刻,在反应器的发展历史上主要围绕提高反应器使用的安全性。
所以无论是设计还是制造,除了需要强调使用性能外,还必须强调其安全性能。
1.影响加氢过程的因素1.1氢气分压提高氢分压有利于加氢过程反应的进行,加快反应速度。
在固定反应温度及其他条件下,压力对转化深度有正的影响。
产品的质量受氢分压影响较大。
1.2 反应温度影响反应速率和产品的分布和质量。
1.3 空速空速影响反应器的体积和催化剂用量,降低空速对于提高加氢过程反应的转化率是有利的。
1.4 氢油比氢油比对加氢过程的影响主要有三个方面:影响反应的过程;影响催化剂使用寿命;过高的氢油比将增加装置的操作费用及设备投资。
2.加氢反应器可能发生的主要损伤型式有哪些呢?2.1 高温氢腐蚀在高温高压操作状态下,侵入并扩散在钢中的氢与固溶碳或不稳定的碳化物发生化学反应,生成甲烷;即Fe3C+4[H]→CH4+3Fe。
影响高温氢腐蚀的主要因素温度、压力和暴露时间的影响、合金元素和杂质元素的影响、热处理的影响、应力的影响。
2.2 氢脆氢脆是由于氢残留在钢中所引起的脆化现象。
产生了氢脆的钢材,其延伸率和断面收缩率显著下降。
2.3 高温H2S腐蚀硫化氢和氢气共存条件下,比硫化氢单独存在时对钢材产生的腐蚀还要更为剧烈和严重。
其腐蚀速度一般随着温度的升高而增加。
2.4 连多硫酸应力腐蚀开裂连多硫酸(H2SXO6,x=3-6)与作用对象中存在的拉应力共同作用发生的开裂现象。
2.5 铬钼(Cr-Mo)钢的回火脆性铬钼钢在325~575℃温度范围内长时间保持或从此温度范围缓慢地冷却时,其材料的破坏韧性就引起劣化的现象,这是由于钢中的微量杂质元素和合金元素向原奥氏体晶界偏析,使晶界凝集力下降所至。
2.6 奥氏体不锈钢堆焊层的剥离反应器本体材料的Cr-Mo钢和堆焊层用的奥氏体不锈钢具有不同的氢溶解度和扩散速度,使堆焊层过渡区的堆焊层侧出现了很高的氢浓度;在高温高压操作状态下氢向反应器器壁侵入,在停工时氢会从器壁中逸出。
加氢反应器介绍

在催化剂床层上面,采用分配盘是为了均布反应介质,改善其流动状况,实 现与催化剂的良好接触,进而达到径向和轴向的均匀分布。
反应器顶部分配盘
3. 积垢篮
由不同规格的不锈钢金属网和骨架构成的篮框,置于反应器上部催化剂床层的顶 部,可为反应物流提供更大的流通面积,在上部催化剂床层的顶部扑集更多的机 械杂质的沉积物,而又不致引起反应器压力降过快地增长;积垢篮框在反应器内 截面上呈等边三角形均匀排列,其内是空的(不装填催化剂或瓷球),安装好后 要须用不锈钢链将其穿连在一起,并牢固地拴在其上部分配盘地支撑梁上,不锈 钢金属链条要有足够地长度裕量(按床层高度下沉5%考虑),以便能适应催化剂 床层的下沉。
括循环氢与新氢气)混合后一起进入换热器与反应生成物换热至300℃
左右,然后进加热炉预热(另一种流程是原料油不进加热炉而只有循 环氢进加热炉预热,在炉出口与换热后的原料油混合,这种流程可以
减少炉管结焦),预热后从反应器顶部进入,在反应器内反应后由底
部排出,经与新鲜原料、循环氢换热后再进入空冷器冷却,冷凝下来 的油和不冷凝的油气和氢气进入高压分离器,油气分离,氢气从高压
4)应力的影响 在高温氢腐蚀中,应力的存在肯定会产生不利的影响。在高温氢 气中蠕变强度会下降。特别是由于二次应力(如热应力或由冷作加工所 引起的应力)的存在会加速高温氢腐蚀。
高温氢腐蚀的防止措施 高温高压氢环境下高温氢腐蚀的防止措施主要是选用耐高温氢腐 蚀的材料,工程设计上都是按照原称为“纳尔逊(Nelson)曲线”来选 择的。 尽量减少钢材中对高温氢腐蚀不利影响的杂质元素(Sn、Sb)。 制造及在役中返修补焊后必须进行焊后热处理。 操作中严防设备超温。 控制外加应力水平。
防止氢脆的若干对策 要防止氢脆损伤发生,主要应从结构设计上、制造过程中和生 产操作方面采取如下措施: (1)尽量减少应变幅度,这对于改善使用寿命很有帮助。 (2)尽量保持TP347堆焊金属或焊接金属有较高的延性。为此,一是 要控制TP347中δ—铁素体含量,以避免含量过多时在焊后最终热处理 过程转变成较多的相而产生脆性;二是对于前述那些易发生氢脆的部 位,应尽量省略TP347堆焊金属或焊接金属的焊后最终热处理,以提 高其延性。 (3)装置停工时冷却速度不应过快,且停工过程中应有使钢中吸藏的 氢能尽量释放出去的工艺过程,以减少器壁中的残留氢含量。 (4)尽量避免非计划紧急停工(紧急放空)。
加氢反应器及催化裂化反应器介绍

2. 分配盘
目前,国内加氢反应器所使用的反应物流分配器,按其作用原理大致可分为溢流 式和抽吸喷射式两类;反应物流分配盘应不漏液,安装后须进行测漏试验,即在 分配盘上充水至100mm高,在5分钟内其液位下降高度,以不大于5mm为合格;分配 盘安装的水平度要求,对于喷射式的分配器,包括制造公差和在载荷作用下的绕 度在内,其分配盘的水平度应控制为±5mm~±6mm;对于溢流式的分配器,其分配 盘安装的水平度要求更严格一些。
反应器内设置有入口扩散器、 积垢篮、卸料管、催化剂支撑盘、 出口捕集器、气液反应物流分配盘、 冷氢箱、熱电偶保护管和出口收集 器等反应器内构件。
• 入口扩散器
来自反应器入口的介质首先经过入口扩散器, 在上部锥形体整流后,经上下两挡板的两层 孔的节流、碰撞后被扩散到整个反应器截面 上。
其主要作用为:一是将进入的介质扩散到反 应器的整个截面上;二是消除气、液介质对 顶分配盘的垂直冲击,为分配盘的稳定工作 创造条件;三是通过扰动,促使气液两相混 合
床层的下沉。
4. 催化剂支撑盘
催化剂支撑盘由T形大梁、格栅和丝网组成。大梁的两边搭在反应器 器壁的凸台上,而格栅则放在大梁和凸台上。格栅上平铺一层粗不锈钢丝 网,和一层细不锈钢丝网,上面就可以装填磁球和催化剂了。
催化剂支撑大梁和格栅要有足够的高温强度和刚度。即在420℃高温 下弯曲变形也很小,且具有一定的抗腐蚀性能。因此,大梁、格栅和丝网 的材质均为不锈钢。在设计中应考虑催化剂支撑盘上催化剂和磁球的重量、 催化剂支撑盘本身的重量、床层压力降和操作液重等载荷,经过计算得出 支撑大梁和格栅的结构尺寸。
冷氢加入系统的作用和要求是: 均匀、稳定地供给足够的冷氢量; 必须使冷氢与热反应物充分混合,在进入下一床层时有一 均匀的温度和物料分布。 冷氢管按形式分直插式、树枝状形式和环形结构。 对于直径较小的反应器,采用结构简单便于安装的直插式 结构即可。 对于直径较大的反应器,直插式冷氢管打入的冷氢与上层 反应后的油气混合效果就不好,直接影响了冷氢箱的再混合效 果。这时就应采用树枝状或环形结构。
加氢反应器简介

危险物质管理
对加氢反应器中使用的危 险物质进行严格管理,确 保储存和使用符合相关法 规和标准。
常见故障与排除
反应器压力异常
检查反应器压力表是否正常,确认压 力控制阀是否工作正常,如有问题及 时维修或更换。
催化剂失活
如催化剂失活,需及时更换催化剂, 并检查反应条件是否适宜,如温度、 压力、原料纯度等。
石油工业
石油加工
加氢反应器在石油工业中主要用 于将石油中的硫、氮等杂质去除 ,提高油品质量和清洁度。
燃料油生产
通过加氢反应器,可以生产低硫 、低氮的燃料油,满足环保要求 。
化学工业
合成氨
在合成氨工业中,加氢反应器用于将氮气和氢气合成氨气。
烯烃生产
加氢反应器在烯烃生产中用于将低碳烯烃转化为高碳烯烃。
加氢反应器简介
目录
CONTENTS
• 加氢反应器的基本概念 • 加氢反应器的应用领域 • 加氢反应器的操作原理 • 加氢反应器的设计与优化 • 加氢反应器的安全与维护 • 加氢反应器的未来发展与挑战
01 加氢反应器的基本概念
定义与功能
定义
加氢反应器是一种用于实现氢气与有 机化合物之间加氢反应的设备,广泛 应用于石油化工、煤化工等领域。
03 加氢反应器的操作原理
反应机理
氢气与有机物在催化剂的作用下 发生加成反应,将有机物中的不 饱和键转化为饱和键,生成新的
有机物。
加氢反应是一种还原反应,其中 氢气作为还原剂,将有机物中的
氧化态降低。
加氢反应的机理可以分为分子间 反应和分子内反应,具体取决于
有机物的结构和反应条件。
催化剂的作用
焊接工艺
焊接是加氢反应器制造中的关键环节,应采用高质量的焊接工艺和 材料,确保焊接接头的强度和密封性。
加氢反应器及催化裂化反应器介绍

反应条件控制
利用新型合金和高性能陶瓷等材料,提高反应器的耐腐蚀性能和使用寿命。
高强度耐腐蚀材料
研发新型高温和高压材料,满足加氢反应器和催化裂化反应器在高温高压下的操作需求。
耐高温和高压材料
探索具有特殊功能的材料,如光催化材料、电催化材料等,为加氢和催化裂化过程提供新的解决方案。
功能材料
THANKS
石油化工
煤化工
环保领域
在煤化工领域,加氢反应器可用于煤焦油加氢、煤液化等过程,生产清洁燃料和化学品。
加氢反应器还可用于处理含硫、氮、氧等杂质的废弃物,实现环保减排。
03
02
01
优点
加氢反应器能够脱除原料油中的硫、氮、氧等杂质以及重金属元素,提高油品质量;能够生产高清洁油品,满足环保要求;具有较高的处理能力和较低的投资成本。
缺点
催化裂化反应器需要使用催化剂,且催化剂容易失活和中毒,需要定期更换或再生。此外,催化裂化技术还需要消耗大量的能量和原料,生产成本较高。
加氢反应器与催化裂化反应器的比较
CATALOGUE
03
加氢反应器的工作原理是通过加氢反应将原料中的有害物质转化为无害物质,而催化裂化反应器则是通过催化剂的作用将重质油转化为轻质油。
总结词
加氢反应器主要用于石油化工和煤化工领域,如煤制油、柴油加氢精制、润滑油加氢精制等。而催化裂化反应器则广泛应用于炼油工业,将重质油转化为轻质油、气体和焦炭等,是炼油工业中最重要的加工方法之一。
详细描述
总结词:加氢反应器的优点在于能够提高产品质量、减少环境污染,缺点是工艺复杂、投资成本高。催化裂化反应器的优点在于能够将重质油转化为轻质油,缺点是会产生较多的副产品和废弃物。
加氢反应器和催化裂化反应器的未来发展