第六章 微生物的代谢

合集下载

第六章 微生物代谢调控育种(4-29)

第六章 微生物代谢调控育种(4-29)

9、条件突变株的选育
10、营养缺陷型 ●生物素缺陷型 ●油酸缺陷型 ●甘油缺陷型
细胞膜渗透性
11、温度敏感菌株
34
8.3.1、组成型突变株的选育
1、限量诱导物恒化培养 2、循环培养 3、弱诱导型底物 4、诱导抑制剂 5、鉴别性培养基
35
组成酶变异株的筛选 许多水解酶是诱导酶,只有在含有底物或底 物类似物的培养环境中,微生物才会合成这些 酶类,所以,诱导酶的生产不仅需要诱导物, 而且受到诱导物的种类、数量以及分解产物的 影响。 具体的筛选方法有恒化器法、循环培养法和 诱导抑制物法。
第8章 推理育种
8.1 微生物代谢
一、代谢产物的分类
1、初级代谢产物
分解代谢体系的酶及产物
素材性生物合成体系的酶及底物
结构性生物合成体系的酶及产物
2、次级代谢产物 根据其作用,可将其分为 抗生素、激素、 生物碱、毒素及维生素色素等类型。
2
8.1.1、次级代谢产物与次级代谢调节
1.初级代谢和次级代谢
初级代谢:与生物生存有关的,涉及能量产生和能量消 耗的代谢类型。 生存必需;始终生产;不同种,相同;环境敏感性小; 酶专一。 次级代谢:某些生物为避免某种代谢物积累造成不利作 用而产生的一类有利生存的代谢。 根据其作用,可将其分为抗生素、激素、生物碱、毒素 及维生素色素等类型。 并非必需,但有一定价值;某一时产;不同种,不同; 受环境敏影响大;酶专一性不强。
成酶的阶段,两类菌株的生长就不同步,组成酶变异株所占的
比例将逐渐增大。
3、组成型突变株筛选
诱导型依赖诱导物。组成型不依赖诱导物。
突变发生在调节基因或操纵基因,解除对 诱导物的依赖,可获组成型突变株。 筛选方法:设计条件使组成型优势生长, 或通过菌落分辨。

第6章微生物的代谢

第6章微生物的代谢

又称厌氧呼吸,指一类呼吸链末端的氢受体为外源 无机或有机氧化物的生物氧化。 特点:底物经常规途径脱氢后,经部分呼吸链递氢, 最终由氧化态的无机物或有机物受氢,并完成氧化 磷酸化产能反应。
(1)硝酸盐呼吸 在厌氧条件下,兼性厌氧菌以硝酸盐作为最终电子受 体的生物氧化过程,也称为异化性硝酸盐还原作用、 反硝化作用。
第 六 章
微生物的代谢
代谢: 泛指发生在活细胞中的各种分解代谢(catabolism) 和合成代谢(anabolism)的总和 分解代谢酶系
复杂分子 简单分子 + ATP (有机物) 合成代谢酶系
分解代谢 物质代谢 合成代谢
+ [H]
代谢
能量代谢
产能代谢 耗能代谢
第一节 微生物的能量代谢
能量代谢: 是新陈代谢中的核心问题。 中心任务:把外界环境中的各种初级能源转换成 对一切生命活动都能使用的通用能源——ATP。
氧 化 磷 酸 化 与 质 子 梯 度 差
P/O比: 表示电子 传递链氧 化磷酸化 的产能效 率。
抑制氧化磷酸化的因素:
1)抑制电子传递链:KCN、NaN3、和CO等 细胞色素氧化酶抑制剂; 2)解偶联剂阻断ADP磷酸化:2,4二硝基 苯酚、短杆菌肽等
2. 无氧呼吸(anaerobic respiration)
1mol葡萄糖
1mol 乳酸+
1.5mol乙酸+ 2.5molATP
发酵途径的比较
2. 发酵类型
划分依据:发酵产物的种类 (1)乙醇发酵
类型:酵母菌乙醇发酵(EMP)和细菌乙醇发酵(ED)
A. 酵母菌乙醇发酵: 酵母的一型发酵 CO2 NADH
EMP
NAD+ 乙醇

微生物学-第六章-微生物的代谢课件

微生物学-第六章-微生物的代谢课件

G
6-磷酸-果糖
特征性酶 磷酸己糖酮解酶
4-磷酸-赤藓糖 + 乙酰磷酸
6-磷酸-果糖
5-磷酸-木酮糖 ,5-磷酸-核糖
戊糖酮解酶
乙酸
3--磷酸甘油醛+ 乙酰磷酸
乳酸
乙酸
1 G 乳酸 + 1.5乙酸 + 2.5 ATP
三、发酵(fermentantion)
1、定义
广义:利用微生物生产有用代谢一种生产方式。 狭义:厌氧条件下,以自身内部某些中间代谢
氧化氮还原酶
反硝化意义:
1)使土壤中的氮(硝酸盐NO3-)还原成氮气而消失,降低土壤的肥力;
2)反硝化作用在氮素循环中起重要作用。
硫酸盐呼吸(硫酸盐还原)
——厌氧时,SO42- 、SO32-、S2O32- 等为末端电 子受体的呼吸过程。
特点:
a、严格厌氧; b、大多为古细菌 c、极大多专性化能异氧型,少数混合型; d、最终产物为H2S;
用所需的硝酸盐还原酶A亚硝酸还原酶等 c 兼性厌氧 细菌:铜绿假单胞、地衣芽孢杆菌等。
硝酸盐作用
同化性硝酸盐作用:
NO3- NH3 - N R - NH2 异化性硝酸盐作用:
无氧条件下,利用NO3-为最终氢受体
NO3- NO2 NO N2O N2
硝酸盐还原酶
亚硝酸还原酶
氧化亚氮还原酶
a、a1、a2、a4、b、b1、c、c1、c4、c5、d、o等; 末端氧化酶:
cyt a1、a2、a3、d、o,H2O2酶、过氧化物酶;呼吸链组分多变 存在分支呼吸链:
细菌的电子传递链更短并P/O比更低,在电子传递链的几个位置进入链和 通过几个位置的末端氧化酶而离开链。 E.coli (缺氧) CoQ cyt.b556 cyt.o

第六章 微生物的代谢

第六章 微生物的代谢

+
3NAD+ + FAD+
+
3H2O
+
CoA
+ ATP +
FADH2 + 3NADH2
经过EMP和TCA循环,1分子葡萄糖被彻底氧化成水 和CO2,并可产生高达38分子的ATP。其总反应式如下:
C6H12O6
+
6O2
+
38ADP
+
38Pi
6CO2
+
6H2O
+
38ATP
在微生物的物质代谢中,TCA循环在分解代谢和合成 代谢中都占有枢纽地位,具有重要的生物学意义: (1)可产生多种有机酸,这些有机酸是合成细胞物质的
的营养物合成细胞自身大分子物质的过程。在同化作用过
程中产生能量(ATP)和还原力。
(2)分解代谢(Catabolism,异化作用):指将细胞自 身的物质分解的过程。异化作用是耗能的过程。 微生物的代谢活动包括能量代谢和物质代谢。
第一节 能量代谢
微生物与其它生物一样,在生命活动过程中需要消 耗大量的能量,这些能量有的来自于物质代谢过程中产生 的化学能,有的来源于微生物细胞吸收的光能。无论何种 二、能量代谢的方式
4、三羧酸循环(Tricarboxylic acid cycle,TCA)
又称为柠檬酸环。丙酮酸首先在丙酮酸脱氢酶的催化
下氧化脱羧并与辅酶A结合,形成乙酰辅酶A,同时产生1 进入TCA循环。TCA循环总反应式如下:
CH3COOCoA + ADP + Pi 2CO2
分子NADH2。然后,乙酰辅酶A与草酰乙酸缩合成柠檬酸,
C6H12O6+ADP+H3PO4 2CH3CH2OH+2CO2+ATP

第六章 微生物的新陈代谢 第二节 分解代谢与合成代谢的联系

第六章 微生物的新陈代谢 第二节 分解代谢与合成代谢的联系

苹果酸合酶 (malate synthase,MS)
异柠檬酸裂合酶 (isocitrate lyase,ICL)
在乙醛酸循环中有两个关键酶——它们可使丙酮酸和乙酸等化合物 合成4C二羧酸,以保证微生物正常生物合成的需要。
乙醛酸循环的总反应式:2丙酮酸→琥珀酸+2CO2 乙醛酸循环中的两个关键反应:
具有乙醛酸循环的微生物,普遍是好氧菌, 例如可用乙酸作唯一碳源生长的一些细菌,包括 Acetobacter(醋杆菌属)、 Azotobacter(固氮菌属)、 E.coli、 Enterobacteraerogenes(产气肠杆菌)、 Paracoccusdenitrificans(脱氮副球菌)、 Pseudomonasfluorescens(荧光假单胞菌)、 Rhodospirillum(红螺菌属)等; 真菌中的Saccharomyces(酵母属)、 Aspergillusniger(黑曲霉)、 Penicillium(青霉属)等。
微生物学
浙江工业大学生物技术系
裘娟萍 钟卫鸿 邱乐泉 汪琨
第二节 分解代谢和合成 代谢的联系
分解代谢与合成代谢在生物 体内是偶联进行的,它们解代谢与合成代谢的中间代谢物有12种。
一、两用代谢途径
凡在分解代谢和合成代谢中均具有功能的代谢途径,
称为两用代谢途径(amphibolic pathway)。
EMP、HMP和TCA循环等都是重要的两用途径。 Eg.葡糖异生作用(gluconeogenesis)。
① 在两用代谢途径中,合成途径并非分解途径的完 全逆转。
② 在分解代谢与合成代谢途径的相应代谢步骤中, 包含了完全不同的中间代谢物。
③ 在真核生物中,合成代谢和分解代谢一般在细胞 的不同区域中分隔进行;原核生物因其细胞结构上 的间隔程度低,故反应的控制主要在简单的酶分子 水平上进行。

第六章微生物的新陈代谢

第六章微生物的新陈代谢
大肠杆菌:— 产气杆菌:+
阳性
2020/4/21
阴性
甲 基 红 试 验
对照
大肠杆菌:+ 产气杆菌:—
2020/4/21
枸 橼 酸 利 用 试 验
大肠杆菌:— 产气杆菌:+
吲 哚 试 阳性 验
大肠杆菌:+ 产气杆菌:—
2020/4/21
2020/4/21
H2S 试验
尿

对照
阳性
阴性



2020/4/21
1.发酵
发酵是一种在厌氧条件下发生的、不具有以氧或 无机物为电子受体的通过电子传递链传递电子的 生物氧化过程。该发酵被称为生理学发酵,与工业 上所称发酵完全不同。
供微生物发酵的有机物质主要是葡萄糖和其它单糖
工业上所说的发酵是指微生物在有氧或无氧条件下 通过分解与合成代谢将某些原料物质转化为特定微 生物产品的过程。如酵母菌、苏云金杆菌菌体生产, 抗生素发酵、乙醇发酵及柠檬酸发酵等。
第六章 微生物的新陈代谢
第一节微生物的能量代谢 第二节微生物对有机物的分解 第三节 分解代谢和合成代谢的联系 第四节 微生物独特合成代谢途径举例 第五节 微生物的代谢调节与发酵生产
2020/4/21
第一节 微生物的能量代谢
产能和耗能
2020/4/21
一、化能异养微生物的能量代谢
• 按照有无电子传递链,可将其分为底物 水平磷酸化和电子传递磷酸化两种类型 。 1.底物水平磷酸化 2.电子传递磷酸化
2020/4/21
2、HMP途径:
2020/4/21
反应过程:
2020/4/21
3、ED途径:
2020/4/21

第六章微生物代谢

第六章微生物代谢

TCA循环的重要特点
为糖类、脂类、蛋白质三大物质转化中心枢纽。 循环中的某些中间产物是一些重要物质生物合成的前体; 生物体提供能量的主要形式; 为人类利用生物发酵生产所需产品提供主要的代谢途径。如 柠檬酸发酵;Glu发酵等。
(二)递氢和受氢 经过上述4条途径脱氢后,通过呼吸链等方式 传递,最终可与氧、无机氧或有机物等氢受体相结
2、HMP途径
磷酸戊糖进一步代谢有两种结局:
①磷酸戊糖经转酮—转醛酶系催化,又生成磷酸己糖 和磷酸丙糖(3-磷酸甘油醛),磷酸丙糖借EMP途径 的一些酶,进一步转化为丙酮酸。称为不完全HMP途 径。
②由六个葡萄糖分子参加反应,经一系列反应,最后 回收五个葡萄糖分子,消耗了1分子葡萄糖(彻底氧化 成CO2 和水),称完全HMP途径。
CO2、H2O 还原型中间代谢 产物醇、酸 NO2、N2 次之 少
电子传递链
完整
不完整
无,底物水平磷 酸化
二、自养微生物产ATP和产还原力 按能量来源不同可分为:
化能自养型
光能自养型
(一)化能自养微生物 还原CO2所需要的ATP和[H]是通过氧化无机物而获得的
硝化细菌、铁细菌、硫细菌、氢细菌
自养微生物氧化磷酸化效率低
葡萄糖 磷酸二羟丙酮
②异型乳酸发酵
乙醇
ATP ADP NAD+ NADH
乙醛
乙酰CoA
NAD+ NADH
乙酰磷酸
葡萄糖
6-磷酸 葡萄糖
6-磷酸葡 5-磷酸 萄糖酸 -CO2 木酮糖 3-磷酸 -2H 甘油醛
2ADP 2ATP
乳酸
(3)Stickland反应
1934年Stickland发现Closterdium sporogenes(生孢梭菌)能 利用一些氨基酸同时作为碳源、氮源和能源, 以一种氨基酸作供氢体,以另一种氨基酸作为受氢体而实现 产能的独特发酵类型。 CH3 CHNH2 + 2 CH2NH2 COOH ADP+Pi

第6章-微生物的代谢

第6章-微生物的代谢

新陈代谢 = 分解代谢 + 合成代谢 分解代谢:指复杂的有机物分子通过分解代谢酶系 的催化,产生简单分子、腺苷三磷酸(ATP)形式 的能量和还原力的作用。
合成代谢:指在合成代谢酶系的催化下,由简单小 分子、ATP形式的能量和还原力一起合成复杂的大 分子的过程。
合成代谢按产物在机体中作用不同分: 初级代谢: 提供能量、前体、结构物质等生命活动所 必须的代谢物的代谢类型;产物:氨基酸、核苷酸等。 次级代谢: 在一定生长阶段出现非生命活动所必需的代 谢类型;产物:抗生素、色素、激素、生物碱等。
•反应步骤简单,产能效率低.
• 此途径可与EMP途径、HMP途径和TCA循环相连接, 可互相协调以满足微生物对能量、还原力和不同中间 代谢物的需要。好氧时与TCA循环相连,厌氧时进行 乙醇发酵.
相关的发酵生产:细菌酒精发酵
葡萄糖三条降解途径在不同微生物中的分布
菌名 酿酒酵母 产朊假丝酵母 灰色链霉菌 产黄青霉 大肠杆菌 铜绿假单胞菌 嗜糖假单胞菌 枯草杆菌 氧化葡萄糖杆菌 真养产碱菌 运动发酵单胞菌 藤黄八叠球菌
氧被消耗而造成局部的厌氧环境
硝酸盐还原细菌进行厌氧呼吸
土壤中植物能利用的氮 (硝酸盐NO3-)还原成 氮气而消失,从而降低 了土壤的肥力。
松土,排除过多的水分, 保证土壤中有良好的通 气条件。
反硝化作用在氮素循环中的重要作用
硝酸盐是一种容易溶解于水的物质, 通常通过水从土壤流入水域中。如果 没有反硝化作用,硝酸盐将在水中积 累,会导致水质变坏与地球上氮素循 环的中断。
2、 HMP途径 (戊糖磷酸途径)
(Hexose Monophophate Pathway)
葡萄糖经转化成6磷酸葡萄糖酸后, 在6-磷酸葡萄糖酸 脱氢酶的催化下, 裂解成5-磷酸戊糖 和CO2。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章 微生物的代谢 习 题一、填空题1、微生物的4种糖酵解途径中, 是存在于大多数生物体内的一条主流代谢途径; 是存在于某些缺乏完整EMP 途径的微生物中的一种替代途径,为微生物所特有; 是产生4碳、5碳等中间产物,为生物合成提供多种前体物质的途径。

2、同型乳酸发酵是指葡萄糖经 途径降解为丙酮酸,丙酮酸在乳酸脱氢酶的作用下被NADH 还原为乳酸。

异型乳酸发酵经 、 和 途径分解葡萄糖。

代谢终产物除乳酸外,还有 。

3、微生物在糖酵解生成丙酮酸基础上进行的其他种类的发酵有丁二醇发酵、混合酸发酵、 发酵和 发酵等。

丁二醇发酵的主要产物是 , 发酵的主要产物是乳酸、乙酸、甲酸、乙醇。

4、产能代谢中,微生物通过 磷酸化和 磷酸化将某种物质氧化而释放的能量储存在ATP 等高能分子中;光合微生物则通过 磷酸化将光能转变成为化学能储存在ATP 中。

磷酸化既存在于发酵过程中,也存在于呼吸作用过程中。

5、呼吸作用与发酵作用的根本区别是呼吸作用中电子载体不是将电子直接传递给底物降解的中间产物,而是交给 系统,逐步释放出能量后再交给 。

6、巴斯德效应是发生在很多微生物中的现象,当微生物从 转换到 下,糖代谢速率 ,这是因为 比发酵作用更加有效地获得能量。

7、无氧呼吸的最终电子受体不是氧,而是外源电子受体,像22322423、CO O 、S 、SO 、NO NO ----等无机化合物,或 等有机化合物。

8、化能自养微生物氧化 而获得能量和还原力。

能量的产生是通过 磷酸化形式,电子受体通常是O 2。

电子供体是 、 、 和 ,还原力的获得是逆呼吸链的方向进行传递,能量。

9、微生物将空气中的N2还原为NH3的过程称为。

该过程中根据微生物和其他生物之间相互的关系。

固氮体系可以分为、和 3种。

10、次级代谢是微生物生长至或,以为前体,合成一些对微生物自身生命活动无明确生理功能的物质的过程。

次级代谢产物大多是分子结构比较复杂的化合物,如、、、、及等多种类别。

二、选择题(4个答案选1)1、化能自养微生物的能量来源于()。

(1)有机物(2)还原态无机化合物(3)氧化态无机化合物(4)日光2、下列葡萄糖生成丙酮酸的糖酵解途径中,()是最普遍的、存在于大多数生物体内的一条主流代谢途径。

(1)EMP途径(2)HEP途径(3)ED途径(4)WD途径3、下列葡萄糖生成丙酮酸的糖酵解途径中,()是存在于某些缺乏完整EMP 途径的(1)EMP途径(2)HEP途径(3)ED途径(4)WD途径4、酵母菌和运动发酵单胞菌乙醇发酵的区别是()。

(1)糖酵解途径不同(2)发酵底物不同(3)丙酮酸生成乙醛的机制不同(4)乙醛生成乙醇的机制不同5、由丙酮酸开始的其他发酵过程中,主要产物是丁酸、丁醇、异丙醇的发酵的是()。

(1)混合酸发酵(2)丙酸发酵(3)丁二醇发酵(4)丁酸发醇6、下列代谢方式中,能量获得最有效的方式是()。

(1)发酵(2)有氧呼吸(3)无氧呼吸(4)化能自养7、青霉素抑制金黄色葡萄球菌肽聚糖合成的()。

(1)细胞膜外的转糖基酶(2)细胞膜外的转肽酶(3)细胞质中的“Park”核苷酸合成(4)细胞膜中肽聚糖单体分子的合成8、下面对于好氧呼吸的描述()是正确的。

(1)电子供体和电子受体都是无机化合物(2)电了供体和电子受体都是有机化合物(3)电子供体是无机化合物,电子受体是有机化合物(4)电子供体是有机化合物,电子受体是无机化合物9、无氧呼吸中呼吸链末端的氢受体是()。

(1)还原型无机化合物(2)氧化型无机化合物(3)某些有机化合物(4)氧化型无机化合物和少数有机化合物10、硝化细菌是()。

(1)化能自养菌,氧化氨生成亚硝酸获得能量(2)化能自养菌,氧化亚硝酸生成硝酸获得能量(3)化能异养菌,以硝酸盐为最终的电子受体(4)化能异养菌,以亚硝酸盐为最终的电子受体三、是非题1、无氧呼吸和有氧呼吸一样也需要细胞色素等电子传递体,也能产生较多的能量用于命活动,但由于部分能量随电子转移传给最终电子受全,所以生成的能量不如有氧呼吸产生的多。

2、CO2是自养微生物的惟一碳源,异养微生物不能利用CO2作为辅助的碳源,3、由于微生物的固氮酶对氧气敏感,不可逆失活,所以固氮微生物一般都是厌氧或兼性厌氧菌。

4、光能营养微生物的光合磷酸化没有水的光解,不产生氧气。

5、与促进扩散相比,微生物通过主动运输吸收营养物质的优点是什么?6、反硝化作用是化能自养微生物以硝酸或亚硝酸盐为电子受体进行的无氧呼吸。

7、底物水平磷酸化只存在于发酵过程中,不存在于呼吸作用过程中。

8、发酵作用的最终电子受体是有机化合物,呼吸作用的最终电子受体是无机化合物。

9、发酵作用是专性厌氧菌或兼性厌氧菌在无氧条件下的一种有机物生物氧化形式,其产能机制都是底物水平磷酸化反应。

10、延胡索酸呼吸中,玻珀酸是末端氢受体延胡索酸还原后生成的还原产物,不是一般的中间代谢产物。

四、名词解释1 发酵2呼吸作用3有氧呼吸4无氧呼吸5异型乳酸发酵6生物固氮7硝化细菌8光合细菌五、简答题1、比较自生和共生生物固氮体系及其微生物类群。

2、比较光能营养微生物中光合作用的类型。

3、简述化能自养微生物的生物氧化作用。

4、蓝细菌是一类放氧性光合光物,又是一类固氮菌,说明其固氮酶的抗氧保护机制。

六、论述题1、比较酵母菌和细菌的乙醇发酵。

2、试比较底物水平磷酸化、氧化磷酸化和光合磷酸化中ATP的产生。

3、什么是无氧呼吸?比较无氧呼吸和有氧呼吸产生能量的多少,并说明原因。

4、说明革兰低阳性细菌细胞肽聚糖合成过程以及青霉素的抑制机制。

5、说明次级代谢及其特点。

如何利用次级代谢的诱导调节机制及氮和磷调节机制来提高抗生素的产量?6、如何利用营养缺陷突变株进行赖氨酸发酵工业化生产?习题答案一、填空题1.EMP ED HMP 2.EMP PK HK HMP 乙醇或乙酸 3.丙酸发酵丁酸发酵 2,3—丁二醇混合酸 4.底物水平氧化光合底物水平5.电子传递最终电子受体 6.厌氧条件有氧条件降低好氧呼吸7.延胡索酸 8.有机物氧化磷酸化 H2 NH4+ H2S Fe2+消耗 9.生物固氮共生固氮体系自生固氮体系联介固氮体系 10.指数期后期稳定期初级代谢产物抗生素激素生物碱毒素色素维生素二、选择题1. (2) 2. (1) 3. (3) 4. (1) 5.(4) 6. (2) 7. (2) 8.(4) 9. (4) 10. (2)三、是非题1. + 2.- 3.- 4.- 5.+ 6.- 7.- 8.+ 9. +1 0. +四、名词解释1 发酵:是指微生物细胞将有机物氧化释放的电子直接交给底物本身未完全氧化的某种中间产物,同时释放能量并产生各种不同的代谢产物。

2 呼吸作用:指从葡萄糖或其他有机基质脱下的电子(氢)经过一系列载体最终传递给外源分子氧或其他氧化型化合物并产生较多ATP的生物氧化过程。

3 有氧呼吸:以分子氧作为最终电子受体的呼吸。

4 无氧呼吸:以氧以外的其他氧化型化合物作最终电子受体的呼吸。

5 异型乳酸发酵:是指发酵终生物中除了乳酸外还有一些乙醇(或乙酸)等产物的发酵。

6 生物固氮:微生物将氮还原为氨的过程称为生物固氮。

7 硝化细菌:能利用还原无机氮化合物进行自养生长的细菌称为硝化细菌。

8 光合细菌:以光为能源,利用CO2或有机碳化合物作为碳源,通过电子传递产生ATP的细菌。

五、简答题1.共生固氮体系:根瘤菌(Rhizobium)与豆科植物共生;弗兰克氏细菌(Frankia) 与非豆科植物共生;蓝细菌(cyanobacteria)与某些植物共生;蓝细菌与某些真菌共生自生固氮体系:好氧自生固氮菌(Azotobacter,Azotomonas,etc);厌氧自生固氮菌(Clostridium):兼性厌氧自生固氮菌(Bacillus,Klebsiella,etc);大多数光合细菌(蓝细菌,光合细菌)2①光合细菌,环式光合磷酸化;②绿硫细菌的非环式光合磷酸化;.③嗜盐细菌的光合磷酸化是一种只有嗜盐菌才有的,无叶绿素或细菌叶绿素参与的独特的光合作用。

是目前所知的最简单的光合磷酸化。

嗜盐细菌紫膜上的细菌视紫红质吸收光能后,在膜内外建立质子浓度差。

非环式光合磷酸化是绿色植物、藻类和蓝细菌所共有的产氧型光合作用。

光能驱动下,电子从光反应中心I(PS 1)的叶绿素a出发,通过电子传递链,连同光反应中心Ⅱ(PSⅡ)水的光解生成的H’,生成还原力;光反应中心Ⅱ(PSⅡ)由水的光解产生氧气和电子,电子通过电子传递链,传给光反应中心PS I,期间生成ATP。

环式光合磷酸化为光合细菌所特有。

光能驱动下,电子从菌绿素分子出发,通过电子传递链的循环,又回到菌绿素,期间产生ATP,还原力来自环境中的无机化合物供氢,不产生氧气。

有些光合细菌虽只有一个光合系统,但也以非环式光合磷酸化的方式合成ATP,如绿硫细菌和绿色细菌,从光反应中心释放出的高能电子经铁硫蛋白、铁氧还蛋白、黄素蛋白,最后用于还原NAD’生成NADH。

反应中心的还原依靠外源电子供体如S2-、S2O32-等。

外源电子供体在氧化过程中放出电子,经电子传递系统传给失去了电子的光合色素,使其还原,同时偶联ATP的生成。

嗜盐细菌的光合磷酸化是一种只有嗜盐菌才有的,无叶绿素或细菌叶绿素参与的独特的光合作用。

是目前所知的最简单的光合磷酸化。

嗜盐细菌紫膜上的细菌视紫红质吸收光能后,在膜内外建立质子浓度差,再由它来推动ATP酶合成ATP。

3.化能自养微生物氧化无机物而获得能量和还原力。

能量的产生是通过电子传递链的氧化磷酸化形式,电子受体通常是O2,因此,化能自养菌一般为好氧菌。

电子供体是H2、NH4+、H2S和Fe2+,还原力的获得是逆呼吸链的方向进行传递,同时需要消耗能量。

(1)氨的氧化。

NH3和亚硝酸(NO2-)是作为能源的最普通的无机氮化合物,能被亚硝化细菌和硝化细菌氧化。

(2)硫的氧化。

硫杆菌能够利用一种或多种还原态或部分还原态的硫化合物(包括硫化物、元素硫、硫代硫酸盐、多硫酸盐和亚硫酸盐)作能源。

H2S首先被氧化成元素硫,随之被硫氧化酶和细胞色素系统氧化成亚硫酸盐,放出的电子在传递过程中可以偶联产生ATP。

(3)铁的氧化。

从亚铁到高铁的生物氧化,对少数细菌来说也是一种产能反应,但这个过程只有少量的能量被利用。

亚铁的氧化仅在嗜酸性的氧化亚铁硫杆菌(Thiobacillus ferrooxidans)中进行了较为详细的研究。

在低pH环境中这种细菌能利用亚铁氧化时放出的能量生长,在该菌的呼吸链中发现了一种含铜的铁硫菌蓝蛋白(rusticyanin),它与几种Cyt c和一种Cyta,氧化酶构成电子传递链。

(4)氢的氧化。

氢细菌能利用分子氢氧化产生的能量同化CO2,也能利用其他有机物生长。

相关文档
最新文档