光合作用 (2)
2022生物浙科版必修1学案:第三章 19 光合作用(二)

第19课时光合作用(二)[目标导读] 1.概述光反应发生的变化和碳反应的过程,并分析二者的联系。
2.结合光合作用过程,阐明不同条件下光合作用中间产物的含量变化状况。
[重难点击] 1.光合作用的过程。
2.CO2或光照骤变时,叶绿体中物质的变化。
一光反应和碳反应的过程光合作用分两个阶段进行,称为光反应和碳反应,请结合下面的材料探讨二者的过程。
1.光反应(1)场所:叶绿体的类囊体膜。
(2)条件:光能、色素、酶等。
(3)产物:氧气、NADPH、ATP等。
(4)光反应中发生的变化主要有:①光能被吸取并转化为ATP和NADPH中的化学能。
②水在光下裂解为H+、O2和电子。
③水中的氢(H++e-)在光下将NADP+还原为NADPH。
2.碳反应(1)场所:叶绿体的基质。
(2)条件:酶、ATP、NADPH等。
(3)产物:三碳糖等。
(4)碳反应过程(卡尔文循环)①一个五碳糖分子(RuBP)与一个二氧化碳结合,形成一个六碳分子,它随即分解成2个三碳酸分子。
②每个三碳酸分子接受来自NADPH的氢和来自A TP的磷酸基团,形成1分子三碳糖。
③生成的三碳糖中,5/6再生为RuBP,1/6可以在叶绿体中合成淀粉、蛋白质和脂质,或者到叶绿体外转变成蔗糖。
特殊提示光反应与碳反应的比较(1)光反应必需在光下才能进行,碳反应虽不直接需要光,但也只有在有光的条件下才能循环往复地进行。
(2)碳反应的产物是三碳糖,三碳糖可以在叶绿体中转化为淀粉等,更多的在叶绿体外转变为蔗糖,运输到植物体被全部细胞利用,因此蔗糖是光合产物的主要运输形式。
(3)色素只存在于光反应部位——叶绿体类囊体膜上,但光反应和碳反应都需要酶参与,所以与光合作用有关的酶存在于两个部位——叶绿体类囊体膜上和基质中。
活学活用1.光合作用过程中,水的分解及三碳化合物形成糖类所需要的能量分别来自()A.细胞呼吸产生的A TP和光能B.都是细胞呼吸产生的A TPC.光能和光反应产生的A TPD.都是光反应产生的ATP答案 C解析光合作用中水的分解发生在光反应阶段,需光能作能源,三碳化合物是在碳反应中被还原,其动力来自光反应产生的A TP,还原剂是光反应产生的NADPH。
11光合作用(二)光合作用的原理和应用知识讲解

光合作用(二)光合作用的原理和应用知识讲解【学习目标】1、理解光合作用的过程及原理,掌握光反应、暗反应的过程及其相互关系2、描述叶绿体的结构、说明叶绿体的功能。
3、理解环境因素对光合作用强度的影响。
4、重点:光合作用的发现及研究历史、光合作用的光反应和暗反应过程及其相互关系5、重点:影响光合作用强度的外界因素。
6、难点:光反应和暗反应的过程、探究影响光合作用的环境因素【要点梳理】要点一、光合作用及其探究历程1、光合作用光合作用是指绿色植物通过叶绿体,利用光能,把二氧化碳和水转换成储存着能量的有机物,并且释放出氧气的过程。
要点二、光合作用过程及原理的应用1、光合作用过程图解2、光反应阶段和暗反应阶段的区别和联系项目 光反应暗反应 区 别场所 类囊体囊状结构的薄膜上叶绿体基质 条件需色素、光、酶不需色素、光,需要酶物质变化(1)水的光解(2)ATP 的生成(1)CO 2的固定 (2)C 3的还原能量变化叶绿素将光能转化为活跃的化学能储存在ATP 中。
ATP 中活跃的化学能转化为有机物中稳定的化学能。
两者联系(1)光反应为暗反应提供ATP 和还原剂[H],暗反应为光反应提供ADP 和Pi (2)没有光反应,暗反应无法进行;没有暗反应,有机物无法合成。
总之,光反应是暗反应的物质和能量的准备阶段,暗反应是光反应的继续,是物质和能量转化的完成阶段。
二者是光合作用全过程的两个阶段,是相辅相成的。
要点诠释:①光反应必须在光下进行,而暗反应有光无光都可以进行。
②催化光反应与暗反应的酶,其种类和场所均不同,前者分布在类囊状膜上,后者分布在叶绿体基质中。
3、光合作用反应式及其元素去向6CO 2+12H 2O −−−→光能叶绿体C 6H 12O 6+6H 2O +6O 2要点诠释:上述方程式表示光合产物只是单糖,实际上光合产物主要是糖类,包括单糖(葡萄糖和果糖)、二糖(蔗糖)、多糖(淀粉),其中以蔗糖和淀粉最为普遍,但也有一些实验证明,蛋白质、脂肪也是光合作用的直接产物。
第四章 植物的光合作用(2)

Rubisco只有先与 CO2、Mg2+作用才能 成为活化型的ECM, 如果先与RuBP(或 RuBP类似物)结合, 就会成为非活化型 的E-RuBP。
活化反应可以被叶绿体基质中pH和Mg2+浓度增加的促进
Rubisco活化酶(activase)
Rubisco活化酶(activase):调节Rubisco活性的酶。 活化酶的作用:在暗中钝化型Rubisco与RuBP结合形成E-RuBP 后不能发生反应;在光下 ,活化酶由ATP活化,让RuBP与 Rubisco解离,使Rubisco发生氨甲酰化,然后与CO2 和Mg2+ 结 合形成ECM,促进RuBP的羧化。
乙醇酸从叶绿体转入过氧化体由乙醇酸氧化酶催化氧化成乙醛乙醛酸经转氨作用转变为甘氨酸甘氨酸在进入线粒体后发生氧化脱羧和羟甲基转移反应转变为丝氨酸丝氨酸再转回过氧化体并发生转氨作用转变为羟基丙酮酸后者还原为甘油酸转入叶绿体后在甘油酸激酶催化下生成的3磷酸甘油酸又进入途径整个过程构成一个循环
第五节 碳 同 化
(一) C3途径的 反应过程
C3途径是光合碳代谢中最 基本的循环,是所有放氧 光合生物所共有的同化CO2 的途径。
1.过程
整个循环如图所示,由 RuBP开始至RuBP再生结束, 共有14步反应,均在叶绿 体的基质中进行。 全过程分为羧化、还原、 再生3个阶段。
一分子C02固定需要消耗2分子 NADPH和3分子ATP
试验分以下几步进行:
(1)饲喂14CO2与定时取样 向正在进行光合作用的藻 液 中 注 入 14CO2 使 藻 类 与 14CO 接 触, 每 隔 一 定 时 间 2 取样,并立即杀死。
H14CO3-+H+→14CO2+H2O
光合作用 (2)

基质 主要成分是可溶性蛋白质及
其它代谢活跃物质。羧化酶约占可
溶性蛋白质的50﹪,还DNA、
RNA、核糖体、淀粉体、嗜锇颗粒
(叶绿体的脂类仓库)等。
二、光合色素的结构与性质 光合色素主要有三类:叶绿素、类胡 萝卜素、藻胆素。它们存在于类囊体上。 前两类为高等植物的叶绿体色素。 1、叶绿素(chlorophyll,chl) 主要有Chla和Chlb,不溶于水,易溶 于乙醇、丙酮等有机溶剂。
类胡萝卜素的最大吸收峰在蓝紫光区。不 吸收长波光
(三)荧光现象和磷光现象
荧光现象:叶绿素溶液在透射光下呈 绿色,而在反射光下呈红色的现象。
Chl + hν chl* 激发态
基态 光子能量
蓝 光
红 光
荧光(fluorescence): CHL从第一
-
单线态回到基态所发射的光。
磷光(phosphorescence):CHL从 第一三单线态回到基态所发射的光。 叶绿素的荧光和磷光现象说明叶 绿素能被光所激发,而叶绿素的激发 是将光能转变为化学能的第一步。
吸收光谱:叶绿素对不同波长光吸收后 形成的光谱。
叶绿素在红光区(640~660nm)和蓝紫 光区( 430~450nm)有最强吸收。叶绿素 对绿光吸收最少,故叶绿素溶液呈绿色。
类胡箩卜素在蓝紫光区有最强的吸收。
chla与chlb吸收光谱的区别: ▽ chla在红光区的吸收带偏向长波方向, 吸收带较宽,吸收峰较高。在蓝紫光区吸收 带偏向短波方向,吸收带较窄,吸收峰较低。 对蓝紫光的吸收为对红光的吸收的1.3倍。 ▽ chlb在红光区的吸收带偏向短波方向, 吸收带较窄,吸收峰较低。在蓝紫光区吸收 带偏向长波方向,吸收带较宽,吸收峰较高。 对蓝紫光的吸收为对红光的吸收的3倍,说明 chlb吸收短波蓝紫光的能力较chla 强。
4.2光合作用(2)

2012-2013学年度第一学期高一生物备课组4.2光合作用(2)学案编号:15 编制:王云审核:徐德杰【学习目标】概述光合作用的过程。
【自学质疑】一、知识准备二、探究光合作用的过程1.光合作用是一步完成的还是分阶段进行的?2.光反应发生的场所在哪里?需要什么条件?整个过程存在哪些物质和能量的变化?3.水在植物细胞外并不能被光自然分解,而在基粒上却很容易分解,你认为是与基粒中什么物质最有关系?CO2中的碳元素最终去向可能是什么?8.总结描述光合作用概念并书写总反应式。
9.试分析下列情况对光合作用过程的影响:①停止光照:②气孔关闭:【矫正反馈】1.光合作用的实质是( )A.把CO2转变成ATP B.产生化学能,贮藏在ATP中C.把光能转变成化学能,贮藏在A TP D.无机物转变成有机物,光能转变成化学能2.在叶绿体中ADP和ATP的运动方向是( )A.ADP和A TP同时由基粒囊状结构的薄膜向基质运动B.ADP和A TP同时由基质向基粒囊状结构的薄膜运动C.ATP由基粒囊状结构的薄膜向基质运动,ADP的运动方向正好相反D.ADP的基粒囊状结构的薄膜向基质运动,ATP的运动方向正好相反3.光合作用包括光反应和暗反应两个阶段,下列参与暗反应必需的物质是()A.H2O、CO2、ADP B.H2O、CO2、A TPC.CO2、[H]、A TP D.[H]、H2O、ADP4.下列关于光合作用的叙述中,正确的是A.光反应不需要酶,暗反应需要多种酶B.光反应消耗ATP,暗反应形成A TPC.光反应固定CO2,暗反应还原CO2 D.光反应消耗水,暗反应消耗ATP5.光合作用过程中,被光反应产生的[H]还原的物质是( )A.CO2B.三碳化合物C.五碳化合物D.六碳化合物【迁移应用】1.图是光合作用过程的图解,请据图回答:(1)图中未标出的能吸收光能和转变光能的物质是。
(2)图中B是,C是。
它被传递到叶绿体的部位,用于,最终形成。
光合作用 (2) PPT

正常幼苗 能进行光 合作用制 造有机养
料
正常苗
白化苗
白化苗不 能进行光 合作用, 无法制造 有机养料
这说明光合作用需要色素去捕获光能。
【实 验】
叶绿体中色素的提取和分离
一、实验原理 1.叶绿体中的色素能溶解在有机溶剂无水 乙醇中,所以用无水乙醇可提取叶绿体中 色素。 2.色素在层析液中溶解度不同,溶解度高 的色素分子随层析液在滤纸条上的扩散得 快,溶解度低的色素分子随层析液在滤纸 条上的扩散得慢,因而可用层析液将不同 的色素分离。(纸层析法)
例如绿色植物。
异养生物
只能利用环境中现成的有机物来维持自身的生 命活动。例如人、动物、真菌及大多数的细菌。
化能合成作用
化能自养生物
利用环境中某些无机物氧化时所释放的能量来 制造有机物。少数的细菌,如硝化细菌。
所需的能量来源不同(光能、化学能)
科学家
海尔蒙特 普利斯特利 英格豪斯
R.梅耶 萨克斯 恩格尔曼 鲁宾卡门 卡尔文
结论
水分是植物建造自身的原料 植物可以更新空气
只有在光照下只有绿叶才可以更 新空气
植物在光合作用时把光能转变成 了化学能储存起来
绿色叶片光合作用产生淀粉
氧由叶绿体释放出来。叶绿体是 光合作用的场所。
产生的氧全部来源于水
卡尔文循环
方法与步骤:称
取5g左右的鲜叶,剪碎, 放入研钵中。
加少许的二氧化硅 (充分研磨) 碳酸钙 (防止色素被破坏)
10ml无水乙醇
在研钵中快速研磨。 Ø将研磨液进行过滤。
2.制备滤纸条:将干燥的定性滤纸剪成滤纸条, 将滤纸条的一端各剪去一个角,并在距这端1cm 处用铅笔画一条细的横线。
3.画滤液细线:用毛细吸管吸取少量滤液,沿 铅笔线均匀地画出一条细线。等滤液干后再重 复画若干次。
六年级科学光合作用的解释 (2)

六年级科学:光合作用的解释
在自然界中,光合作用是一种至关重要的生物化学过程。
具体来说,光合作用是植物利用阳光能量将二氧化碳和水转化成为氧气和葡萄糖的过程。
这一过程发生在叶绿体中,其中的叶绿素是起关键作用的色素。
光合作用的过程
光合作用分为光能反应和暗反应两个阶段。
在光能反应中,叶绿体内的叶绿体色素吸收光能,然后将光能转化为化学能,并释放氧气,这是氧气的来源之一。
在暗反应中,植物利用光合成的ATP和NADPH将二氧化碳还原成为葡萄糖,这是植
物生长和维持生命所必需的。
光合作用的意义
光合作用是整个生态系统中最基础的生物化学过程之一,
对地球上的生物多样性和气候稳定具有重要影响。
通过光合作用,植物能够提供氧气供其他生物呼吸,同时利用光合作用产生的能量支持自身生长和维持生命。
此外,光合作用还能够帮助植物吸收二氧化碳,并减少地球上的温室气体,从而在一定程度上缓解气候变化。
在六年级的学生学习中,了解光合作用的基本原理以及其
在自然界中的重要性是极为关键的。
通过深入理解和探究光合作用,学生不仅可以掌握生物学和化学方面的知识,还能够培养对环境保护和生态平衡的意识,从而更好地保护我们共同的家园——地球。
总结
光合作用是植物为了生长和维持生命所进行的生物化学过程,通过光合作用,植物能够利用太阳能将二氧化碳和水转化
为氧气和葡萄糖。
这一过程不仅为地球上的生态系统提供了基础的能量转化,还为人类和其他生物提供了必要的氧气和营养物质。
因此,光合作用对于整个生物界的生存和繁荣都至关重要,我们每个人都应该珍惜并理解这一重要的生物化学过程。
光合作用(II)碳同化

第七章 光合作用(II): 碳同化 Photosynthesis(II) Carbon Assimilation
1.3 光呼吸(photorespiration)
植物绿色细胞在光下有一个与光合作用相互联系的吸 收氧气释放CO2的反应。由于这种反应需在光下发生,需 叶绿体参与,并与光合作用同时发生,故称光呼吸。
1.3.1 光呼吸的发现 Warburg 效应(Warburg O.,1920):O2抑制小球藻光合作用. CO2 猝发现象 (Decker J.P., 1955):烟草 代谢途径阐明 (Tolbert,N.E.,1971)
+H2O
2
3-Phosphoglycerate 3PGA
(2) 还原阶段(Reduction phase)
+ ATP
PGA kinase
+ ADP
Glyceraldehyde 3-phosphate 3-PGA
1,3-Bisphosphoglycerate 1,3-BPGA NADP:GAP dehydrogenase
研究方法:
14C
同位素标记和测定技术
双向纸层析技术
研究碳同化途径的实验装置
1.1
C3 途径的反应过程
C3整个循环分14步反应,均在叶绿体基质中进行 ,分为羧化(固定),还原和RuBP再生3个阶段.
+
(1)羧化阶段 (carboxylation phase)