动态规划
动态规划

=MIN(3+12,4+10)=14
最短路线: A—— B2 ——C2——D2——E2——F 最优解: d1*(A)= B2,最短用时14
1
B2
C3
4 2
D3
5
E2
4
A
2
C2
3 3 3
D2
2
F
3
B1
5 4
C1
4
2
E1
最优解: d2*(B1)= C1
1
B2
C3
4 2
D3
5
E2
4
A
2
C2
3 3 3
D2
2
F
3
B1
5 4
C1
4
2
E1
4
3
D1
A
B
C
D
E
F
如果S2=B2,则下一步能取C2或C3,故
f2(B2)=MIN r(B2,C2)+ f3(C2)
r(B2,C3)+ f3(C3) =MIN(2+8,1+11)=10
最短路线: B2 ——C2——D2——E2——F
1
B2
C3
4 2
D3
5
E2
4
A
2
C2
3 3 3
D2
2
F
3
B1
5 4
C1
4
2
E1
4
3
D1
A
B
C
D
E
F
如果S4=D3,则下一步只能取E2,故
动态规划

多阶段决策问题中,各个阶段采取的决策,一般来说是与时间有关的,决策依赖于当前状态,又随即引起状 态的转移,一个决策序列就是在变化的状态中产生出来的,故有“动态”的含义,称这种解决多阶段决策最优化 问题的方法为动态规划方法 。
任何思想方法都有一定的局限性,超出了特定条件,它就失去了作用。同样,动态规划也并不是万能的。适 用动态规划的问题必须满足最优化原理和无后效性 。
动态规划
运筹学的分支
01 原理
03 局限性
目录
02 分类
动态规划(Dynamic Programming,DP)是运筹学的一个分支,是求解决策过程最优化的过程。20世纪50年 代初,美国数学家贝尔曼(R.Bellman)等人在研究多阶段决策过程的优化问题时,提出了著名的最优化原理, 从而创立了动态规划。动态规划的应用极其广泛,包括工程技术、经济、工业生产、军事以及自动化控制等领域, 并在背包问题、生产经营问题、资金管理问题、资源分配问题、最短路径问题和复杂系统可靠性问题等中取得了 显著的效果 。
最优化原理可这样阐述:一个最优化策略具有这样的性质,不论过去状态和决策如何,对前面的决策所形成 的状态而言,余下的诸决策必须构成最优策略。简而言之,一个最优化策略的子策略总是最优的。一个问题满足 最优化原理又称其具有最优子结构性质 。
将各阶段按照一定的次序排列好之后,对于某个给定的阶段状态,它以前各阶段的状态无法直接影响它未来 的决策,而只能通过当前的这个状态。换句话说,每个状态都是过去历史的一个完整总结。这就是无后向性,又 称为无后效性 。
状态:状态表示每个阶段开始面临的自然状况或客观条件,它不以人们的主观意志为转移,也称为不可控因 素。在上面的例子中状态就是某阶段的出发位置,它既是该阶段某路的起点,同时又是前一阶段某支路的终点 。
第6章动态规划

第6章 动态规划动态规划(Dynamic Programming )是解决多阶段决策过程最优化的一种有用的数学方法。
它是由美国学者Richard .Bellman 在1951年提出的,1957年他的专著《动态规划》一书问世,标志着运筹学的一个重要分支-动态规划的诞生.动态规划也是一种将多变量问题转化为单变量问题的一种方法。
在动态规划中,把困难的多阶段决策问题变换成一系列相互联系的比较容易的单阶段问题一个个地求解。
动态规划是考察解决问题的一种途径 ,而不是一种特殊的算法,不像线性规划那样有统一的数学模型和算法(如单纯形法).事实上,在运用其解决问题的过程中还需要运用其它的优化算法。
因此,动态规划不像其它方法局限于解决某一类问题,它可以解决各类多阶段决策问题。
动态规划在工程技术、经济管理等社会各个领域都有着广泛的应用,并且获得了显著的效果。
在经济管理方面,动态规划可以用来解决最优路径问题、资源分配问题、生产调度问题、库存管理问题、排序问题、设备更新问题以及生产过程最优控制问题等,是经济管理中一种重要的决策技术。
许多规划问题用动态规划的方法来处理,常比线性规划或非线性规划更有效。
特别是对于离散的问题,由于解析数学无法发挥作用,动态规划便成为了一种非常有用的工具。
动态规划可以按照决策过程的演变是否确定分为确定性动态规划和随机性动态规划;也可以按照决策变量的取值是否连续分为连续性动态规划和离散性动态规划。
本教材主要介绍动态规划的基本概念、理论和方法,并通过典型的案例说明这些理论和方法的应用。
6.1动态规划的基本理论6.1.1多阶段决策过程的数学描述有这样一类活动过程,其整个过程可分为若干相互联系的阶段,每一阶段都要作出相应的决策,以使整个过程达到最佳的活动效果。
任何一个阶段(stage ,即决策点)都是由输入(input )、决策(decision )、状态转移律(transformation function )和输出(output )构成的,如图6-1(a )所示.其中输入和输出也称为状态(state ),输入称为输入状态,输出称为输出状态。
动态规划.pdf

第三章:动态规划3.1 动态规划的基本概念一、动态决策问题:决策过程具有阶段性和时序性(与时间有关)的决策问题。
即决策过程可划分为明显的阶段。
二、什么叫动态规划(D.P.–Dynamic Program):多阶段决策问题最优化的一种方法。
广泛应用于工业技术、生产管理、企业管理、经济、军事等领域。
三、动态规划(D.P.)的起源:1951年,(美)数学家R.Bellman等提出最优化原理,从而建立动态规划,名著《动态规划》于1957年出版。
四、动态决策问题分类:1、按数据给出的形式分为:•离散型动态决策问题。
•连续型动态决策问题。
2、按决策过程演变的性质分为:•确定型动态决策问题。
•随机型动态决策问题。
五1、阶段(stage)n :作出决策的若干轮次。
n = 1、2、3、4、5。
2、状态(state)S n :每一阶段的出发位置。
构成状态集,记为S nS 1={A},S 2={B 1,B 2,B 3},S 3={C 1,C 2,C 3},S 4={D 1,D 2,D 3},S 5={E 1,E 2}。
阶段的起点。
3、决策(decision)X n :从一个阶段某状态演变到下一个阶段某状态的选择。
构成决策集,记为D n (S n )。
阶段的终点。
D 1(S 1)={X 1(A)}={B 1,B 2,B 3}= S 2,D 2(S 2)={X 2(B 1),X 2(B 2),X 2(B 3)}={C 1,C 2,C 3}=S 3,D 3(S 3)={X 3(C 1),X 3(C 2),X 3(C 3)}={D 1,D 2,D 3}=S 4,D 4(S 4)={X 4(D 1),X 4(D 2),X 4(D 3)}={E 1,E 2}=S 5D 5(S 5)={X 5(E 1),X 5(E 2)}={F;F}={F}。
4、策略(policy):全过程中各个阶段的决策Xn 组成的有序总体{Xn }。
如 A àB2àC1àD1àE2àF5、子策略(sub-policy):剩下的n个阶段构成n子过程,相应的决策系列叫n子策略。
动态规划

(3)决策(Decision)
(4)策略(Policy)各阶段的决策组成的一个决策序列称为
一个策略,记为: p x1, x2 ,, xn
从阶段i开始的过程,称为i子过程,它包含阶段i,阶 段i+1,…,阶段n。i子过程的决策序列称为i子策略,记
为 pi xi , xi1,, xn i 1, 2 ,, n 1
,
3 资源分配问题
设有数量为a的资源,计划分配给n 个项目。设xi (i=1, 2, …, n)为分配给第i 个项目的资源量,gi(xi)为第i个项目得到 数量为xi的资源后可提供的收益,问如 何分配资源a,可使总收益为最高?
►静态规划模型
n
max f gi (xi )
i 1
n xi a
1.3 动态规划的基本方程
(1) 动态规划的基本方程(逆序递推公式)
si1
g(si , xi )
,f
* n 1
(
x
n 1
)
0
fi* (si )
opt
v(si , xi )
f
i
* 1
(si
1
)
xi
i n, n 1,,1
(2) 动态规划的基本方程(正序递推公式)
si1 g(si , xi ) ,f1*(s1) opt{v(s1, x1)}
1
6
7
X
2
(
B2
,
C3
)
f
3
(C3
)
1 6
最短路线B2C3D。
C1
5
5
4
B1 5
3
A
C2
3
D
4
6
第6章-动态规划

求解过程
由最后一个阶段的优化开始,按逆向顺序逐步 向前一阶段扩展,并将后一阶段的优化结果带 到扩展后的阶段中去,以此逐步向前推进,直 至得到全过程的优化结果。
f1
(
A)
min
dd11
( (
A, A,
B1) B2 )
ff22((BB12))
min
4 9
9 11
13
d1( A, B3) f2 (B3)
5 13
其最短路线是A→ B1→C2 →D2 →E ,相应的决 策变量是u1(A)=B1
因此,最优策略序列是:
u1(A) =B1, u2(B1)=C2, u3(C2)=D2, u4(D2)=E
5 8 C2 4 6 4
4 C3 2
C3
D1 4 2 6
D2 9 7
D3 5
D4
E1 1 F
E2 2
E5
F
动态规划的逆序解法与顺序解法
逆序(递推)解法:即由最后一段到第一段逐步 求出各点到终点的最短路线,最后求出A点到E点 的最短路线。运用逆序递推方法的好处是可以始 终盯住目标,不致脱离最终目标。 顺序解法:其寻优方向与过程的行进方向相同, 求解时是从第一段开始计算逐段向后推进,计算 后一阶段时要用到前一段求优的结果,最后一段 的计算结果就是全过程的最优结果。
B1
A
4+9=13
d(u1)+f2
B2
B3
f1(s1) u1*
动态规划(完整)
主要内容:
§7.1多阶段决策问题 §7.2 动态规划的基本概念和基本原理
§7.3 动态规划应用举例
例 求解最短路问题
A1 2 Q 4 3 A3 A2 6 3 7 4 B1 1 4 2 4 4 1 5 6 B2 3 B3 3 3 C2 C1 3 4 T
Ⅰ
Ⅱ
Ⅲ
Ⅳ
分阶段的最短路径
• • • • • • • Ⅳ : C1—T Ⅲ --Ⅳ : B1—C1—T Ⅱ--Ⅲ--Ⅳ :A2—B1—C1—T Ⅰ--Ⅱ--Ⅲ --Ⅳ: Q—A2—B1—C1—T Q--A3—B1—C1—T Q--A3—B2—C2—T 3 4 7
决策为 xk 时的指标,则它就是第 k 段指标函
数,简记为vk 。 (2)过程指标函数(也称目标函数) 用f(sk , xk)表示第k子过程的指标函数。表
示处于第 k 段 sk 状态且所作决策为xk时,
从 sk 点到终点的距离。由此可见, f(sk , xk)
不仅跟当前状态 sk 有关,
还跟该子过程策略 pk(sk) 有关,严格说来,应
(6) 指标函数
用来衡量策略或子策略或决策的效果的 某种数量指标,就称为指标函数。它是定义 在全过程或各子过程或各阶段上的确定数量 函数。对不同问题,指标函数可以是诸如费 用、成本、产值、利润、产量、耗量、距离、 时间、效用,等等。
(1)阶段指标函数(也称阶段效应)
用vk(sk , xk)表示第 k 段处于状态 sk且所作
资规划, 排序问题和生产过程的最优控制
等问题;
§7.2 动态规划的基本概念和基本思想
一、基本概念
使用动态规划方法求解决策问题首先要将 问题改造成符合动态规划求解要求的形式, 要涉及以下概念: (1)阶段 (3)决策与策略 (2)状态 (4)状态转移方程
动态规划-动态规划-美国数学家贝尔曼-动态规划领域
物品
1 2 … j …n
重量(公斤/件) a1 a2 … aj … an
每件使用价值 c1 c2 … cj … cn
类似问题:工厂里的下料问题、运输中的 货物装载问题、人造卫星内的物品装载问题等。
生产决策问题:企业在生产过程中,由于需求 是随时间变化的,因此企业为了获得全年的最佳 生产效益,就要在整个生产过程中逐月或逐季度 地根据库存和需求决定生产计划。
描述状态的变量称为状态变量,它可用一个数、 一组数或一向量(多维情形)来描述,第k阶段 的状态变量常用sk表示,通常一个阶段有若干个 状态。
第k阶段的状态就是该阶段所有始点的集合, 用Sk表示。在第1阶段状态变量s1是确定的,称初 始状态。如引例中:
S1 A,S2 B1, B2, B3,S3 C1,C2,C3,S4 D1, D2
min
4
9
12
决策点为B3
AB3
f2
B3
3 9*
f1(A)=12说明从A到E的最短距离为12,最短路 线的确定可按计算顺序反推而得。即
A→B3→C2→D2→E 上述最短路线问题的计算过程,也可借助于图
形直观的表示出来:
12 2 A4
3
11
B1
7 4
6
93
B2 2
4
96
B3
2 5
6
C1 3
多阶段决策过程特点:
(1)根据过程的特性可以将过程按空 间、时间等标志分为若干个互相联系又互相 区别的阶段。
(2)在每一个阶段都需要做出决策,从 而使整个过程达到最好的效果。
(3)在处理各阶段决策的选取上,不仅只 依赖于当前面临的状态,而且还要注意对以后 的发展。即是从全局考虑解决局部(阶段)的 问题。
第9章-动态规划
最小费用流问题来求解。通过建立一个网络图来代
表这个问题。首先根据四个季度建立四个产量节点
和四个需求节点。每个产量节点由一个流出弧连接
对应的需求节点。
产量节点
2
弧 的 流 量 代 表 了 600 1季度产量
需求节点 1季度需求 400
该季度所生产的
毛 毯 数 量 。 相 对 300 2季度产量
5
于每个需求节点
本问题是要确定该公司明年每个季度的生产 计划,所以设
公司每个季度生产xi(i=1,2,3,4)双皮鞋; 还有,设辅助决策变量:每个季度的期末库存 为si(i=1,2,3,4)双皮鞋。
RUC, Information School, Ye Xiang
9.2.1 生产与存贮问题 第9章 动态规划
(2) 目标函数
RUC, Information School, Ye Xiang
9.2.1 生产与存贮问题 第9章 动态规划
例9.3 某皮鞋公司根据对去年的市场需求
分析预测明年的需求:一季度3000双,二 季 度 4000 双 , 三 季 度 8000 双 、 四 季 度 7000双。企业现在每个季度最多可以生产 6000双皮鞋。为了满足所有的预测需求, 前两个季度必须有一定的库存才能满足后 两个季度的需求。已知每双皮鞋的利润为 20元,每个季度的库存成本8元。请确定 该公司明年每个季度的生产计划,使公司 的年利润最大。
9.2.1 生产与存贮问题
第9章 动态规划
例9.5 某厂根据订货合同在今后四个季度对某 产品的需求量如表9-4所示。如果该季度生产 ,需要生产准备费用为3千元,每件产品的生 产成本为1千元,由于生产能力的限制,每季 度最多不超过6件。又设每一件产品存贮一个 季度的费用为0.5千元,并且第一季度开始与 第四季度末均没有产品库存。
第10章 动态规划
管理运筹学
7
缺点
①没有统一的处理方法,求解时要根据问题的 性质,结合多种数学技巧。因此实践经验及 创造性思维将起重要的引导作用;
②“维数障碍”,当变量个数太多时,由于计 算机内存和速度的限制导致问题无法解决。 有些问题由于涉及的函数没有理想的性质使 问题只能用动态规划描述,而不能用动态规 划方法求解。
盈利 工厂 设备台数
0 1 2
3 4 5
甲厂
0 3 7 9 12 13
乙厂
0 5 10 11 11 11
管理运筹学
29
第一阶段:只有1个始点A,终点有B1,B2,B3,B4 。对始点和终 点进行分析和讨论分别求A到B1,B2,B3,B4的最短路径问题:
表10-4
本阶段始 点(状态)
A
阶段1 本阶段各终点(决策)
B1
B2
B3
B4
4+12=16 3+13=16 3+14=17 2+12=14
到E的最 本阶段最优终 短距离 点(最优决策)
第四阶段:两个始点D1和D2,终点只有一个;
表10-1
阶段4
本阶段始点 本阶段各终点(决策) 到E的最短距离
(状态)
E
D1
10
10
D2
6
6
分析得知:从D1和D2到E的最短路径唯一。
本阶段最优终点 (最优决策)
E E
管理运筹学
27
第三阶段:有三个始点C1,C2,C3,终点有D1,D2,对始点
和终点进行分析和讨论分别求C1,C2,C3到D1,D2 的最短路
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动态规划一、背包问题1、0/1背包[问题背景及描述]Bessie 正在减肥,所以她规定每天不能吃超过C (10 <= C <= 35,000)卡路里的食物。
农民John 在戏弄她,在她面前放了B (1 <= B <= 21) 捅食物。
每桶内都有某个单位卡路里(范围:1..35,000)的食物(不一定相同)。
Bessie 没有自控能力,一旦她开始吃一个桶中的食物,她就一定把这桶食物全部吃完。
Bessie 对于组合数学不大在行。
请确定一个最优组合,使得可以得到最多的卡路里,并且总量不超过C。
例如,总量上限是40卡路里,6 桶食物分别含有7, 13, 17, 19, 29, 和31卡路里的食物。
Bessie可以吃7 + 31 = 38卡路里,但是可以获取得更多:7 + 13 + 19 = 39卡路里。
没有更好的组合了。
[输入]共两行。
第一行,两个用空格分开的整数:C 和 B第二行,B个用空格分开的整数,分别表示每桶中食物所含的卡路里。
[输出]共一行,一个整数,表示Bessie能获得的最大卡路里,使她不违反减肥的规则。
[输入样例]40 67 13 17 19 29 31[样例输出]392、固定次数的0/1背包有N种物品和一个容量为V的背包。
第i种物品最多有n[i]件可用,每件体积是c[i],价值是w[i]。
求解将哪些物品装入背包可使这些物品的体积总和不超过背包容量,且价值总和最大。
V〈30000,n〈100,n[i]〈50。
输入输出格式:第1行,两个用空格分开的整数:v 和n第2—n+1行,每件体积是c[i],价值是w[i],最多有n[i]件可用[输入样例]40 210 20 520 30 6[样例输出]803、重复背包货币系统money母牛们不但创建了他们自己的政府而且选择了建立了自己的货币系统。
[In their ownrebellious way],,他们对货币的数值感到好奇。
传统地,一个货币系统是由1,5,10,20 或25,50, 和100的单位面值组成的。
母牛想知道有多少种不同的方法来用货币系统中的货币来构造一个确定的数值。
举例来说, 使用一个货币系统{1,2,5,10,...}产生18单位面值的一些可能的方法是:18x1, 9x2, 8x2+2x1, 3x5+2+1,等等其它。
写一个程序来计算有多少种方法用给定的货币系统来构造一定数量的面值。
保证总数将会适合long long (C/C++) 和Int64 (Free Pascal)。
输入格式:money.in货币系统中货币的种类数目是V 。
(1<= V<=25)要构造的数量钱是N 。
(1<= N<=10,000)第1 行:二整数,V 和N第2 ..V+1行:可用的货币V 个整数(每行一个每行没有其它的数)。
输入格式:money.out单独的一行包含那个可能的构造的方案数。
[输入样例]3 101 2 5输出:104、多个限定条件的背包NASA(美国航空航天局)因为航天飞机的隔热瓦等其他安全技术问题一直大伤脑筋,因此在各方压力下终止了航天飞机的历史,但是此类事情会不会在以后发生,谁也无法保证,在遇到这类航天问题时,解决方法也许只能让航天员出仓维修,但是多次的维修会消耗航天员大量的能量,因此NASA便想设计一种食品方案,让体积和承重有限的条件下多装载一些高卡路里的食物.描述Description航天飞机的体积有限,当然如果载过重的物品,燃料会浪费很多钱,每件食品都有各自的体积、质量以及所含卡路里,在告诉你体积和质量的最大值的情况下,请输出能达到的食品方案所含卡路里的最大值,当然每个食品只能使用一次.输入格式Input Format第一行两个数体积最大值(<400)和质量最大值(<400)第二行一个数食品总数N(<50).第三行-第3+N行每行三个数体积(<400) 质量(<400) 所含卡路里(<500)输出格式Output Format一个数所能达到的最大卡路里(int范围内)样例输入Sample Input320 3504160 40 12080 110 240220 70 31040 400 220样例输出Sample Output550二、最长上升或下降序列1、拦截导弹某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统。
但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于前一发的高度。
某天,雷达捕捉到敌国的导弹来袭。
由于该系统还在试用阶段,所以只有一套系统,因此有可能不能拦截所有的导弹。
输入导弹依次飞来的高度(雷达给出的高度数据是不大于30000的正整数),计算这套系统最多能拦截多少导弹,如果要拦截所有导弹最少要配备多少套这种导弹拦截系统。
样例输入:389 207 155 300 299 170 158 656{最多能拦截的导弹数}2{要拦截所有导弹最少要配备的系统数}2、某农场有一个由按编号次序排列的n根木桩构成的首尾不相连的围栏。
现要在这个围栏中选取一些木桩,按照原有的编号次序排列之后,这些木桩的高度成为一个升序序列。
所谓的升序序列就是序列中的任何一个数都不小于它之前的任何一个数。
试编写程序从这个围栏中选取合适的木桩使得选出的木桩个数t最大,并求出选出t根木桩的方案总数c。
例如:围栏由高度分别为10,1,9,8,7,6,3,4,6的木桩构成,则选出的高度为1,3,4,6的木桩是满足题意的选取方案。
输入格式:文件中的第1行只有一个数m,表明随后有m个问题的描述信息。
每个问题的描述信息格式为n h1 h2 h3,,,hn输出格式:依次输出每个问题中t和c的解。
每行输出一个问题的解。
例如输入:39 10 1 9 8 7 6 3 4 63 100 70 1026 40 37 23 89 91 12输出:4 12 2333、合唱队形(chorus.pas/dpr/c/cpp)【问题描述】N位同学站成一排,音乐老师要请其中的(N-K)位同学出列,使得剩下的K 位同学排成合唱队形。
合唱队形是指这样的一种队形:设K位同学从左到右依次编号为1,2…,K,他们的身高分别为T1,T2,…,TK,则他们的身高满足T1<...<Ti>Ti+1>…>TK(1<=i<=K)。
你的任务是,已知所有N位同学的身高,计算最少需要几位同学出列,可以使得剩下的同学排成合唱队形。
【输入文件】输入文件chorus.in的第一行是一个整数N(2<=N<=100),表示同学的总数。
第一行有n个整数,用空格分隔,第i个整数Ti(130<=Ti<=230)是第i位同学的身高(厘米)。
【输出文件】输出文件chorus.out包括一行,这一行只包含一个整数,就是最少需要几位同学出列。
【样例输入】8186 186 150 200 160 130 197 220【样例输出】4【数据规模】对于50%的数据,保证有n<=20;对于全部的数据,保证有n<=100。
三、数列的连续最大和1、数列的连续最大和,顾名思义,就是在一个长度为n的数列{An}中,求i,j (1<=i<=j<=n),使得数列{An}中,第i个元素到第j个元素之间,所有元素的和最大。
分析:以第i个数结尾的最大连续和序列,可能存在两种选择:情形一:只包含Ai情形二:包含Ai和以Ai-1结尾的最大连续和序列设F(i)表示以第i个数结尾的最大连续和转移方程:F(i)=max{Ai , F(i-1)+Ai}边界:F(1)=A1要求的结果为max{F(i)|1<=i<=n}仔细思考题目后,符合动态规划条件。
用ans[i]表示包含数列第i项的前i个元素的最大和,数组no存放数列元素,则状态转移方程为:ans[0]=0;ans[i]=max{ans[i-1]+no[i],no[i]} 时间复杂度为O(n)核心程序代码:best:=-maxlongint;temp:=0;for i:=1 to n dobegininc(temp,no[i]);if temp>best then best:=temp;if temp<0 then temp:=0;end;2、最大子序和问题描述输入一个长度为n的整数序列(A1,A2,……,An),从中找出一段连续的长度不超过M 的子序列,使得这个序列的和最大。
例如:序列1,-3,5,1,-2, 3当M=2或3时S=5+1=6当M=4时S=5+1+(-2)+3=7数据范围:50%的数据N,M<=1000100%的数据N,M<=20000初步分析 枚举设F(i)为以Ai 结尾长度不超过M 的最大子序和对于每个F(i),从1到m 枚举k 的值,完成Aj 的累加和取最大值。
该算法的时间复杂度为O(n2)简化方程3、holiday.pas/c/cppDescription经过几个月辛勤的工作,FJ 决定让奶牛放假。
假期可以在1…N 天内任意选择一段(需要连续),每一天都有一个享受指数W 。
但是奶牛的要求非常苛刻,假期不能短于P 天,否则奶牛不能得到足够的休息;假期也不能超过Q 天,否则奶牛会玩的腻烦。
FJ 想知道奶牛们能获得的最大享受指数。
Input(holiday.in)第一行:N,P,Q.第二行:N 个数字,中间用一个空格隔开。
Output(holiday.out)一个整数,奶牛们能获得的最大享受指数。
Sample Input5 2 4-9 -4 -3 8 -6Sample Output5Limitationtime:1s ∑+-===i k i j jm k A i F 1}..1|max{)(∑==i 1j j A )i (S 令∑+-===i k i j j m k A i F 1}..1|max{)(}..1|)(min{)(}..1|)()(max{m k k i S i S m k k i S i S =--==--=memory:65536kb50% 1≤N≤10000100% 1≤N≤100000Hint选择第3-4天,享受指数为-3+8=5。
守望者的逃离(escape.pas/c/cpp)【问题描述】恶魔猎手尤迪安野心勃勃,他背叛了暗夜精灵,率领深藏在海底的娜迦族企图叛变。
守望者在与尤迪安的交锋中遭遇了围杀,被困在一个荒芜的大岛上。
为了杀死守望者,尤迪安开始对这个荒岛施咒,这座岛很快就会沉下去。
到那时,岛上的所有人都会遇难。
守望者的跑步速度为17m/s,以这样的速度是无法逃离荒岛的。
庆幸的是守望者拥有闪烁法术,可在1s 内移动60m,不过每次使用闪烁法术都会消耗魔法值10点。