定量实验和误差分析.ppt
第4章 定量分析概论二、三节

分 准确度高低的尺度。 析 误差的表示方式分为绝对误差和相对误差两种。
概 绝对误差:测量值与真实值之差。 Ea x xT
论 相对误差:绝对误差占真实值的百分比。
1
Er
Ea xT
100 %
郑工学院
例:用分析天平直接称量铁粉,其质量分别为5.0000g和
0.5000g,试问哪一个称量值会较准确?
章
溶液溅失;
定 量 分 析 概 论
加错试剂; 读错刻度; 记录和计算错误等。
注意:过失误差必须给予删除。
1
郑工学院
减小误差的方法
第 四 ☆尽可能地减小系统误差和偶然误差 章
减小和消除系统误差
定 量
①选择合适的分析方法 在相同的条件下,对已知准确含量的标
②对照试验:
准样品进行多次测定,将测定值和准确 值进行比较,求出校正系数,用校正系
分
n
4
析
概
论
dr
d x
100 %
0.14 15.82
100 %
0.89%
1
郑工学院
(三)准确度与精密度的关系
第 四 章
定
量
分
析
概 结 论:
论 1. 准确度高,要求精密度一定高,精密度是保证准确度的
前提,但精密度高,准确度不一定高;
2. 准确度反映了测量结果的正确性,精密度反映了测量结
1
果的重现性。
分 ③空白试验(空白值) 数来校正试样的分析结果。
析 分析结果-空白值=较准确的分析结果
概 指不加待测试样,在相同的条件下,按分析试样所采用的方法进行测 论 定,其测定结果为空白值。
《定量分析中的误》课件

校准仪器设备、改进实验方法、控制环境条件等。
随机误差
随机误差
由于随机波动导致的测量结果 偏离真实值的现象。
特点
具有随机性、无序性和不可测 性。
产生原因
偶然因素、测量过程中的随机 波动等。
减小方法
多次测量求平均值、采用稳健 统计技术等。
粗大误差
粗大误差
明显超出实际变化范围,明显偏离真实值的 异常值。
详细描述
应定期对测量人员进行培训和技能提升,使其掌握正确的测量方法和技能。同时,应加强管理,确保 测量人员遵守操作规程和注意事项,避免因人为因素导致误差的产生。
05
误差的传递和影响
直接误差的传递和影响
直接误差的传递
当一个测量值作为另一个测量的输入时,误差会传递到另一 个测量中。
影响
直接误差的传递会影响最终结果的准确性,可能导致分析结 果偏离真实值。
详细描述
在日常生活中,误差可能来源于计时工具的误差、称重 工具的误差、天气预报的误差等多种因素。为了减小误 差对日常生活的影响,人们需要采取一系列措施,如选 择高精度计时工具和称重工具、关注天气预报的准确性 等。
在日常生活中的应用
总结词
日常生活中误差处理同样重要。
详细描述
日常生活中的许多活动都需要准确的数据作为支撑,如时间管理、健康管理、出行规划等。如果误差处理不当, 会导致生活的不便和混乱。因此,人们需要高度重视误差处理,采取有效措施减小误差对日常生活的影响。
电磁干扰
02
03
振动和噪声
某些测量设备可能受到周围电磁 场的影响,导致测量结果出现误 差。
这些因素可能导致测量设备的不 稳定,从而影响测量结果的准确 性。
测量人员引起的误差
分析化学-第二章--定量分析中的误差及数据处理

2021/3/10
1
一、分析测试的误差与偏差
误差和准确度 偏差和精密度 准确度和精密度的关系
2021/3/10
2
1.误差和准确度
准确度: 测定值与真实值的接近程度。 准确度的高低用误差来衡量。
误差: 测定值与真实值之间的差值。 一般用绝对误差和相对误差来表示。
2021/3/10
3
绝对误差(E):
测定值(X)与真实值(XT)之间的差值。 E = X ̶ XT
注意: 绝对误差不能反映误差在测定结果中所占比例。
2021/3/10
4
相对误差(RE):
绝对误差在真实值中所占的百分率。
(X ̶ XT) RE= XT
×100%
注意: 绝对误差相同时, 若被测定的量较大, 则相对误差较小, 测定的准确度较高。
总体平均值的范围。
2021/3/10
31
表2-1 t 值表
2021/3/10
32
Xt s
n
讨论: 1. 置信度不变时: 2. n 增加, t 变小,置信区间变小。 2. n不变时:
置信度增加,t 变大,置信区间变大。
2021/3/10
33
例:A→D, n减小,置信区间变大(p.13)
表2-2 几种样本的置信区间(95%)
0.22 3.18 0.14 12.71
置信区间
20.7±0.2 20.6±0.3 20.9±0.4 20.7±1.3
34
置信度越高,置信区间越大,估计区间包含 真值的可能性↑ 置信区间——反映估计的精密度 置信度——说明估计的把握程度
2021/3/10
35
(四)离群值的取舍
离群值:在一组平行测定中,常有个别数据与平均值 的差值较大。将这种明显偏离平均值的测定 值称为可疑值或离群值。
第二章 定量分析中的误差及结果处理

增加平行测定次数
三、消除系统误差 (一)对照试验 —— 检验有无方法误差
(二)空白试验 —— 检验有无试剂误差
试样 + 试剂 试剂 则 样品含量
同一条件 同一条件
测定结果 X1
测定结果 X0 ( X0—空白值
二、偏差与精密度
思考题:
甲乙两位同学对同一样品进行了五次重复测定, 测定结果分别如下: 甲: 0.3,0.2,0.3,0.3,0.4, x = 0.3 乙: = 0.3 0.1, 0.6, 0.2, 0.1, 0.5,
x
(1)甲同学测定的几个结果中哪个结果更好?乙同 学的呢? (2)两位同学的测定水平哪个更好?如何评价?
5 前面是偶数 —— 舍
5 后面全为 0 或无数字 尾数= 5时 5 后面有任一不为 0 的数 —— 入 5 前面是奇数 —— 入
例:将下列数字修约为三位有效数字
0. 3216 解: 0.322 21. 2499 21.2 10. 2500 10.2 10. 3500 10.4 3.42 3.415 10. 25001
36.50 37.00
平均值
37.50
38.00
真值
(三)准确度和精密度的关系
1、精密度高,准确度一定高。( ) 2、精密度高,准确度一定低 ( ) 3、精密度的高低不会影响准确度( ) 4、要有高的准确度,必须要有高的精密度( )
精密度是保证准确度的先决条件.精密度差, 所测结果不可靠,就失去了衡量准确度的前提, 高的精密度,不一定能保证高的准确度.
主要来源有
仪器误差:
试剂误差: 操作误差 :
定量分析中的误差及数据处理

多元线性回归
总结词
多元线性回归是定量分析中常用的方法,用于探索多个自变量与一个因变量之 间的线性关系。
详细描述
多元线性回归通过最小二乘法拟合一个平面或一个超平面,使得因变量的观测 值与预测值之间的残差平方和最小。这种方法可以帮助我们了解多个自变量对 因变量的影响程度和方向,并可进行预测和控制。
对各种不确定度进行量化评估,计算其对最终测量结 果的影响。
不确定度报告
将不确定度评估结果整合到测量报告中,为用户提供 完整的数据分析结果。
04
回归分析
一元线性回归
总结词
一元线性回归是定量分析中常用的方法,用于探索一个因变量与一个自变量之间的线性 关系。
详细描述
一元线性回归通过最小二乘法拟合一条直线,使得因变量的观测值与预测值之间的残差 平方和最小。这种方法可以帮助我们了解自变量和因变量之间的关联程度和方向,并可
Box-Cox变换
离散化
是一种通用的数据变换方法,通过选择适当 的λ值,使数据达到最合适的形式。
将连续变量转换为离散变量,便于分类或 决策树算法的使用。
数据插值与外推
线性插值
基于已知的数据点,通过线性函数进行插值, 得到未知点的值。
样条插值
通过样条函数进行插值,可以更好地处理数 据的弯曲程度。
多项式插值
05
数据分析与可视化
描述性统计
总结词
描述性统计是定量分析的基础,用于 概括和描述数据的特征。
详细描述
通过均值、中位数、众数、标准差等 统计量,描述数据的集中趋势和离散 程度。此外,还包括数据的频数分布 、偏度、峰度等描述性统计指标。
推断性统计
总结词
推断性统计基于样本数据推断总体特征 ,通过样本信息对总体进行估计和预测 。
第二章 定量分析中的误差及分析数据的处理(上)

第2章定量分析中的误差及分析数据的处理(上)§2-1定量分析的误差§2-1-1 误差的种类、性质及产生的原因1. 系统误差——由某种固定原因引起的误差(1) 特点a.单向性:对分析结果的影响比较恒定;b.重现性:在同一条件下,重复测定,重复出现;c.可测性:可以测定,可以消除。
产生的原因?(2) 系统误差产生的原因a.方法误差——选择的方法不够完善例:重量分析中沉淀的溶解损失;滴定分析中指示剂选择不当。
b.仪器误差——仪器本身的缺陷例:天平两臂不等,砝码未校正;滴定管,容量瓶未校正。
c.试剂误差——所用试剂有杂质例:去离子水不合格;试剂纯度不够(含待测组份或干扰离子)。
d.主观误差——操作人员主观因素造成例:对指示剂颜色辨别偏深或偏浅;滴定管读数不准,洗涤沉淀不充分等。
2.随机误差(偶然误差——由某些无法控制及避免的偶然因素造成的)(1) 特点a.不恒定b.难以校正c.服从正态分布(统计规律)(2) 产生的原因a.偶然因素(温度、电压等)b.分析仪器读数的不确定性方向不定,大小不定,难以预测3. 过失误差重作实验!误差如何定量表示?一、误差与准确度1. 绝对误差E a ──测定结果与真实值之间的差值测得值-真实值(E a =x-x T )真值——有时用标准值或多次测定的平均值代替准确度──分析结果与真实值的接近程度准确度的高低用误差的大小来衡量误差──测得值与真值(客观存在的真实数值)的差值误差的绝对值越小准确度越高,误差一般用绝对误差和相对误差来表示。
§2-1-2准确度与精密度三、准确度和精密度的关系——分析结果的衡量指标。
准确度──分析结果与真实值的接近程度精密度──分析结果相互的接近程度表示方法来源对结果的影响准确度——绝对误差——系统误差——正确性相对误差偶然误差精密度——平均偏差——偶然误差——重现性标准偏差相对平均偏差极差§2-2、提高分析结果准确度的方法1. 系统误差的减免(1) 方法误差——采用标准方法,对照实验用新方法对标准样品进行测定,将测定结果与标准值相对照(2) 仪器误差——校正仪器(3) 试剂误差——作空白实验:通常用蒸馏水代替试样,而其余条件均与正常测定相同2. 偶然误差的减免——增加平行测定的次数:一般分析实验平行测定3-4次3.控制测量的相对误差任何测量仪器的测量精确度都是有限度的由测量精度的限制而引起的误差又称为测量的不确定性,属于随机误差例如,滴定管读数误差滴定管的最小刻度为0.1 mL,要求测量精确到0.01 mL,最后一位数字只能估计最后一位的读数误差在正负一个单位之内,即±0.01 mL在滴定过程中要获取一个体积值V(mL)需要两次读数按最不利的情况考虑,两次滴定管的读数误差相叠加,则所获取的体积值的读数误差为±0.02 mL这个最大可能绝对误差的大小是固定的,是由滴定管本身的精度决定的——绝对误差可以设法控制体积值本身的大小而使由它引起的相对误差在所要求的±0.1%之内§2-3 有效数字及其运算法则2-3-1 有效数字1.实验过程中常遇到的两类数字(1)测量值或计算值。
第二章 误差分析

d R d = × 100% x
(4) 标准偏差 : 标准偏差(S):
S=
∑d
2 i
n −1
=
∑ (x
i
− x)
2
n −1
自由度 ν= n-1
反映测量值之间的分散程度(较大偏差 反映测量值之间的分散程度 较大偏差) 较大偏差
(5) 相对标准偏差(RSD,变异系数) 相对标准偏差( 变异系数) 变异系数
(1) 方法误差 方法误差—— 采用标准方法,对照实验 采用标准方法, (2) 仪器误差 仪器误差—— 校正仪器 (3) 试剂误差 试剂误差—— 作空白实验 是否存在系统误差,常常通过回收试验加以检查。 是否存在系统误差,常常通过回收试验加以检查。
x3 − x1 回收率= ×100% x2
(二)偶然误差accidental error
常量分析的结果一般要求保留四位 有效数字, 四位有效数字 注 : 常量分析的结果一般要求保留 四位 有效数字 , 以 表明分析结果的准确度为1‰ 表明分析结果的准确度为
习题 1)在记录实验数据时,不能将尾数为“0”的有效数字漏 在记录实验数据时,不能将尾数为 尾数为“ 的有效数字漏 在记录实验数据时 这样会将数据中的不确定程度增大, 记。这样会将数据中的不确定程度增大,以致在计算结 果时造成混乱和错误 0.10ml写成 0.1ml 写成 0.4700g写成 写成0.47g 写成
E1 = 39.15%− 39.19% = −0.04%
s1 =
∑d
(0.03%) + (0.03%) = = 0.03% n −1 3 −1
2 i 2 2
s1 0.03% RSD = ×100% = ×100% = 0.08% 1 39.15% x1
第二章 定量分析的误差和数据处理

σ↑,y↓, 数据分散,曲线平坦 σ↓,y↑, 数据集中,曲线尖锐 测量值都落在-∞~+∞,总概率为1
标准正态分布曲线—— x ~ N(0 ,1 )曲线 为便于计算,正改标正。方法是横坐标改为u
令u x
1
u2 e 2
y f ( x)
2
又dx du f ( x)dx
正态分布曲线—— x ~ N(μ ,σ2 )曲线
1 y f ( x) e 2
( x )2 2 2
x y f ( x)
1
特点
2
以x-μ~y作图
x =μ时,y 最大→大部分测量值集中 在算术平均值附近 曲线以x =μ的直线为对称→正负误差 出现的概率相等 当x →﹣∞或﹢∞时,曲线渐进x 轴, 小误差出现的几率大,大误差出现的 几率小,极大误差出现的几率极小
准确度与精密度的关系:
准确度高必然要求精密度好,
但精密度好不一定准确都高。 消除系统误差后,高精密度才能保证高准确度
准确 度和精 密度都 ▲ 好 ▲ ▲▲
●
★
准确度 不好但精 密度好
▲
▲
1 2 3 4 56 7 8
★ ● ●● ● 9 10 ●
★
★
★
准确度 和精密度 都不好
★
为了说明一组平行测定数据的精密度,要用平均偏 n n 差或标准偏差来表示。 平均偏差:
1 2
u2 e 2
1 2
u2 e 2 du
(u )du
即y (u )
注:u 是以σ为单位来表示随机误差 x -μ
标准正态分布
u 1, x 1
区间概率%
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
偏低
【结论】V碱多高,少偏低
例:Na2CO3标定HCl
C酸=
—2—mN—a2C—O3 106V酸
三、蓝矾晶体结晶水的测定
A%= —mm—蓝H2矾O—×100% = —mm22—––mm—31×100%误分析m蓝矾= m2 –m1
步骤1:称量空坩埚质量m1 步骤2:称量坩埚+蓝矾质量m2
m = H2O m2 –m3
步骤3:加热至晶体变白色, 干燥器中冷却后称量m3
步骤4:重复步骤3称量的m4,使
得|m4-m3|<0.1g
误差分析
—mm22—––mm—13 ×100%
步骤1:空坩埚质量m1
①坩埚中有水
偏高
②坩埚中有一块受热不分 无 解的杂质
步骤2:坩埚+蓝矾质量m2
①晶体中有受热不分解的杂质 偏低
误差分析
—mm22—––mm—13 ×100%
步骤3:加热晶体、冷却后称量m3
①加热时间过长,固体发黑 偏高
②没有在干燥器中冷却
偏低
③加热时有晶体飞溅
偏高
13. 定量实验和误差分析
一、物质的量浓度溶液的配制
C= —n— V
n=
—m— M
固体——天平称量 液体——量筒量取
步骤1:计算、称量/量取
(1) 天平称量
①砝码生锈
偏高
②砝码放在左托盘 偏低
(2) 量筒量取
①量取前冲洗量筒 偏低
②仰视读数
偏高
步骤2:溶解、转移、洗涤、转移
①烧杯没有洗涤 ②溶液没有冷却
偏低 偏高
V-容量瓶 —精确到小数点后两位
刻度 ①容量 ②温度
步骤3:加水、定容、摇匀
注:最后定容用胶头滴管逐滴滴加至刻度线
①俯视定容
偏高
②摇匀后发现液面低于刻度, 偏低 再加水至刻度线
二、酸碱中和滴定
例:已知浓度的NaOH滴定未知浓度的HCl
C酸=
—C—碱·—V碱— V酸
注:代入计算时C碱和V酸为定值
步骤1:洗涤仪器
①润洗滴定管 无 ②润洗锥形瓶 偏高
步骤2:装液、初读数
①滴定前碱管内有气泡,
滴定后消失
偏高
②仰视读数
偏低
步骤3:滴定
①冲洗锥形瓶 无
②活塞漏液
偏高
步骤4:终点判断、末读数
①30s内褪色 偏低
②仰视读数
偏高
步骤5:重复操作取平均值
①第三次滴定时将滴定管中溶液滴 完,继续加入标准溶液进行滴定