训练(2)圆与空间坐标系.

合集下载

圆的方程及空间直角坐标系(讲义及答案)

圆的方程及空间直角坐标系(讲义及答案)

X的方程及空间直角坐标系(讲义) >知识点睛一、圆的方程1. 圆的标准方程: ______________________ ,圆心: ________, 半径:________.2. 圆的一般方程:圆心: 二、位置关系的判断(1) 点与圆由两点间的距离公式计算点到圆心的距离",比较",r 大小. ① 已知点Vo)与圆的标准方程(x-a}\(y'-b)-=r,则计算矿二 _________________ ,比较沪,尸大小. ② 已知点P(xo, yo)与圆的一般方程X- + y- +Dx + Ey + F = 0 ,则计算 _____________________ ,与0比较大小.(2) 直线与圆① 利用点到直线的距离公式求圆心到直线的距离",比较 ",r 大小.② 联立直线与圆方程,得到一元二次方程,根△判断: 'A <O ,直线与圆相离.A = 0,直线与圆相切.△ >0,直线与圆相交(3)圆与圆利用两点间的距离公式求圆心距d,结合两圆半径和〃的关系 判断.三、常见思考角度1. 直线与圆位置关系常见考査角度(1)过定点求圆的切线方程① 判断该点与圆的位置关系(若点在圆内,则无切线). ② 根据切线的性质求切线方程.若点在圆上,则利用切线垂直于过切点的半径求切线方程: 若点在圆外,则分别讨论 ___________________ ,设点斜式 利用〃二r 建方程求解.[gl(2)直线与圆相交求弦长结合垂径定理和勾股定理,半径长厂圆心到直线的距离丛 弦长/满足关系式:厂2=〃2+(_厂22. 圆与圆位置关系常见考査角度(1) 两圆相交求公共弦所在直线方程设圆G :x2+y2 + DrV + Ej + F| = 0,C2:x2+b+0x + E* + F2 = O,则公共弦所在直线的方程为 (0 — D? )x + (E] — £*2) y + F[—尸2 = 0 -(2) 两圆相交求公共弦长求出公共弦所在直线方程及其中一圆圆心到公共弦的距离, 垂径定理、勾股定理结合求弦长.四、轨迹方程在平面直角坐标系中,点M 的轨迹方程是指点M 的坐标 (X, y )满足的关系式.五、空间直角坐标系Ovvz (右手直角坐标系)如图1, 0点叫做坐标原点,牙轴、y 轴、2轴叫做坐标 轴.通过每两个坐标轴的平面叫做坐标平面,分别称为xOy 平面、yOz 平面、zOx 平面.zn六、空间直角坐标系中点的坐标如图2,过点M 分别作垂直于X 轴,y 轴和Z 轴的平面,依 次交X 轴,y 轴和Z 轴于点P, e 和设点P, Q 和R 在牙 轴,y 轴和Z 轴上的坐标分别是X, y 和Z,那么点M 对应唯 —确定的有序实数组U ,y,刀.有序实数组馆)* 201做点M 在此空间直角坐标系中的坐标, 记作MS ,y, z ).其中X 叫做点M 的 __________ , y 叫做点 M 的 __________ , Z 叫做点M 的 __________ .-1 -- B»1 "Z C'A' BC>1 \ >1 0 X七、空间两点间的距离公式如图3,设空间直角坐标系中点P 的坐标是(兀,y, Z ),则 IOPI = ____________________ .如图4,设点£(易,y,, Z,), RC E ,>'2»空)是空间中任意两点, 则 IA A1= ___________________ .A/ P 、 Pl精讲精练写出下列圆的标准方程:(I)圆心在C(-3,4” 半径长为^/J•(2)圆心在C(8,-3),且经过点M(5J)・2 . 下列方程:①W+y2-6x=0 ;②-2%+4 V-6=0 ;③W+y,二。

遥感原理与应用(专升本)阶段性作业2

遥感原理与应用(专升本)阶段性作业2

[2021年秋季]遥感原理与应用(专升本)阶段性作业2一、单选题1. 遥感图像统计分析通常包括计算图像的直方图、均值、方差、中值、陡度、峰态、相关系数矩阵和协方差矩阵等,其中_______用来描述整幅图像的灰度值分布的离散程度。

(5分)(A) 均值(B) 方差(C) 中值(D) 峰值参考答案:B您的回答:B正确2. 按像元顺序记录图像数据,即在每一行中,每个像元按光谱波段次序进行排序,然后对该行的全部像元进行这种波段次序排列,最后对各行进行重复。

其蕴涵模式可以表示为:((波段次序,像元号顺序),行号顺序)。

这种数据存储格式为_______。

(5分)(A) BSQ格式(B) BIL格式(C) BIP格式(D) TIFF格式参考答案:C您的回答:C正确3. 是利用星载或机载的传感器收集、记录地物的热红外信息,并利用这种信息来识别地物和反演地表参数的技术系统,在红外遥感中居于主导地位。

(5分)(A) 微波遥感(B) 可见光遥感(C) 近红外遥感(D) 热红外遥感参考答案:D您的回答:D正确4. _______是对图像进行非线性拉伸,重新分配像元值,使一定灰度范围内像元的数量大致相等,原图像上频率小的灰度级被合并,频率高的被拉伸,因此可以使亮度集中的图像得到改善,增强图像上大面积地物与周围地物的反差。

(5分)(A) 直方图均衡化(B) 直方图规定化(C) 线性拉伸(D) 分段线性拉伸参考答案:A您的回答:A正确5. 航片上的特征点、线有像主点(o)、像底点(n)、等角点(c)、主纵线与主横线等。

_______是主光轴SO与像平面P的交点。

(5分)(A) 像主点(o)(B) 像底点(n)(C) 等角点(c)(D) 主纵线参考答案:A您的回答:A正确二、多选题1. 下列属于内方位元素的有:_____(5分)(A) 像主点横坐标(B) 像主点纵坐标(C) 焦距f(D) 镜头中心S的坐标XS、YS、ZS(E) 角方位元素、、参考答案:A,B,C您的回答:A,B,C正确2. 用于描述轨道特征的参数包括:_______(5分)(A) 轨道倾角(B) 升交点赤径(C) 轨道高度(D) 轨道长轴(E) 轨道偏心率参考答案:A,B,C,D,E您的回答:A,B,C,D,E正确三、判断题1. 将原来不清晰的图像变清晰或将原来不够突出的特定图像信息和特征显现出来的图像处理方法称为图像几何校正。

空间坐标系与空间坐标系在立体几何中的应用有答案

空间坐标系与空间坐标系在立体几何中的应用有答案

一.空间直角坐标系如图1,为了确定空间点的位置,我们建立空间直角坐标系:以正方体为载体,以O为原点,分别以射线OA,OC,OD′的方向为正方向,以线段OA,OC,OD′的长为单位长,建立三条数轴:x轴、y轴、z轴,这时我们说建立了一个空间直角坐标系,其中点O叫做坐标原点,x轴、y轴、z轴叫做坐标轴,通过每两个坐标轴的平面叫做坐标平面,分别称为xOy平面、zOx平面、yOz平面,通常建立的坐标系为右手直角坐标系,即右手拇指指向x轴的正方向,食指指向y轴的正方向,中指指向z轴的正方向.二.空间直角坐标系中的坐标空间一点M的坐标可用有序实数组(x,y,z)来表示,有序实数组(x,y,z)叫做点M在此空间直角坐标系中的坐标,记作M(x,y,z),其中x叫做点M的横坐标,y叫做点M的纵坐标,z叫做点M的竖坐标[例1]在空间直角坐标系中,作出点M(6,-2,4).[例2]长方体ABCD-A1B1C1D1中,|AB|=a,|BC|=b,|CC1|=c,将此长方体放到空间直角坐标系中的不同位置(如图3),分别写出长方体各顶点的坐标.变式1:棱长为2的正方体,将此正方体放到空间直角坐标系中的不同位置,分别写出几何体各顶点的坐标。

2.底面为边长为4的菱形,高为5的棱柱,将此几何体放到空间直角坐标系中的不同位置分别写出几何体各顶点的坐标。

3.在棱长均为2a的正四棱锥P-ABCD中,建立恰当的空间直角坐标系,(1)写出正四棱锥P-ABCD各顶点坐标;(2)写出棱PB的中点M的坐标.解:连接AC,BD交于点O,连接PO,∵P-ABCD为正四棱锥,且棱长均为2a.∴四边形ABCD为正方形,且PO⊥平面ABCD.∴OA=2a.PO=P A2-OA2=?2a?2-?2a?2=2a.以O点为坐标原点,OA,OB,OP所在的直线分别为x轴、y轴、z轴,建立空间直角坐标系.(1)正四棱锥P-ABCD中各顶点坐标分别为A(2a,0,0),B(0,2a,0),C(-2 a,0,0),D(0,-2a,0),P(0,0,2a).(2)∵M为棱PB的中点,∴由中点坐标公式,得M(0+02,2a+02,0+2a2),即M(0,22a,22a).[例3]在空间直角坐标系中,点P(-2,1,4).(1)求点P关于x轴的对称点的坐标;(2)求点P关于xOy平面的对称点的坐标;(3)求点P关于点M(2,-1,-4)的对称点的坐标.[解](1)由于点P关于x轴对称后,它在x轴的分量不变,在y轴、z轴的分量变为原来的相反数,所以对称点为P1(-2,-1,-4).(2)由于点P关于xOy平面对称后,它在x轴、y轴的分量不变,在z轴的分量变为原来的相反数,所以对称点为P2(-2,1,-4).(3)设对称点为P3(x,y,z),则点M为线段PP3的中点,由中点坐标公式,可得x=2×2-(-2)=6,y=2×(-1)-1=-3,z=2×(-4)-4=-12,所以P3(6,-3,-12).变式:1.写出点P(6,-2,-7)在xOy面,yOz面,xOz面上的投影的坐标以及点P关于各坐标平面对称的点的坐标.解:设点P在xOy平面、yOz平面、xOz平面上的投影分别为点A,B,C,点P关于xOy平面、yOz平面、xOz平面的对称点分别为点A′,B′,C′,由P A⊥平面xOy,PB⊥平面yOz,PC⊥平面xOz及坐标平面的特征知,点A(6,-2,0),点B(0,-2,-7),点C(6,0,-7);根据点P关于各坐标平面对称点的特征知,点A ′(6,-2,7),B ′(-6,-2,-7),C ′(6,2,-7).2.在棱长都为2的正三棱柱ABC -A 1B 1C 1中,建立恰当的直角坐标系,并写出正三棱柱ABC -A 1B 1C 1各顶点的坐标.[正解] 取BC ,B 1C 1的中点分别为O ,O 1,连线OA ,OO 1, 根据正三棱柱的几何性质,OA ,OB ,OO 1两两互相垂直,且 |OA |=32×2=3, 以OA ,OB ,OO 1所在的直线分别为x 轴、y 轴、z 轴建立直角坐标系,如图5所示,则正三棱柱ABC —A 1B 1C 1各顶点的坐标分别为A (3,0,0),B (0,1,0),C (0,-1,0),A 1(3,0,2),B 1(0,1,2),C 1(0,-1,2).三.空间向量在立体几何中的应用1. 直线的方向向量与平面的法向量(1) 直线l 上的向量e 以及与e 共线的向量叫做直线l 的方向向量. (2) 如果表示非零向量n 的有向线段所在直线垂直于平面α,那么称向量n 垂直于平面α,记作n ⊥α.此时把向量n 叫做平面α的法向量.2. 线面关系的判定直线l 1的方向向量为e 1=(a 1,b 1,c 1),直线l 2的方向向量为e 2=(a 2,b 2,c 2),平面α的法向量为n 1=(x 1,y 1,z 1),平面β的法向量为n 2=(x 2,y 2,z 2).(1) 如果l 1∥l 2,那么e 1∥e 2⇔e 2=λe 1⇔a 2=λa 1,b 2=λb 1,c 2=λc 1. (2) 如果l 1⊥l 2,那么e 1⊥e 2⇔e 1·e 2=0⇔a 1a 2+b 1b 2+c 1c 2=0. (3) 若l 1∥α,则e 1⊥n 1⇔e 1·n 1=0⇔a 1x 1+b 1y 1+c 1z 1=0. (4) 若l 1⊥α,则e 1∥n 1⇔e 1=k n 1a 1=kx 1,b 1=ky 1,c 1=kz 1. (5) 若α∥β,则n 1∥n 2⇔n 1=k n 2⇔x 1=kx 2,y 1=ky 2,z 1=kz 2. (6) 若α⊥β,则n 1⊥n 2⇔n 1·n 2=0⇔x 1x 2+y 1y 2+z 1z 2=0. 3. 利用空间向量求空间角 (1) 两条异面直线所成的角①范围:两条异面直线所成的角θ的取值范围是⎝⎛⎦⎥⎤0,π2.②向量求法:设直线a 、b 的方向向量为a 、b ,其夹角为φ,则有cos θ=|cos φ|. (2) 直线与平面所成的角①范围:直线和平面所成的角θ的取值范围是⎣⎢⎡⎦⎥⎤0,π2.②向量求法:设直线l 的方向向量为a ,平面的法向量为u ,直线与平面所成的角为θ,a 与u 的夹角为φ,则有sin θ=|cos φ|(3) 二面角①二面角的取值范围是[0,π].②二面角的向量求法:(ⅰ) 若AB 、CD 分别是二面角α-l-β的两个面内与棱l 垂直的异面直线,则二面角的大小就是向量AB 与CD 的夹角(如图①).(ⅱ) 设n 1、n 2分别是二面角α-l-β的两个面α、β的法向量,则向量n 1与n 2的夹角(或其补角)的大小就是二面角的平面角的大小(如图②③).题型1 空间向量的基本运算[例1]已知空间三点A(-2,0,2),B(-1,1,2),C(-3,0,4).设a =AB →,b =AC→. (1) 求a 和b 的夹角θ;(2)若向量k a +b 与k a -2b 互相垂直,求k 的值.解:∵A(-2,0,2),B(-1,1,2),C(-3,0,4),a =AB→,b =AC →, ∴a =(1,1,0),b =(-1,0,2).(1)∵cosθ=a·b |a ||b |=-1+0+02×5=-1010,∴a 和b 的夹角为arccos ⎝ ⎛⎭⎪⎫-1010. (2)∵k a +b =k(1,1,0)+(-1,0,2)=(k -1,k ,2),k a -2b =(k +2,k ,-4),且(k a +b )⊥(k a -2b ),∴(k -1,k ,2)·(k +2,k ,-4)=(k -1)(k +2)+k 2-8=2k 2+k -10=0,解得k =-52或2.题型2 空间中的平行与垂直例2 如图所示,已知正方形ABCD 和矩形ACEF 所在的平面互相垂直, AB =2,AF =1,M 是线段EF 的中点.求证:(1) AM ∥平面BDE ;(2) AM ⊥平面BDF.证明:(1) 建立如图所示的空间直角坐标系,设AC ∩BD =N ,连结NE.则N ⎝ ⎛⎭⎪⎫22,22,0,E(0,0,1),A(2,2,0),M ⎝ ⎛⎭⎪⎫22,22,1.∴ NE →=⎝ ⎛⎭⎪⎫-22,-22,1,AM→=⎝ ⎛⎭⎪⎫-22,-22,1.∴ NE →=AM →且NE 与AM 不共线.∴ NE ∥AM.∵ NE Ì平面BDE ,AM Ë平面BDE ,∴ AM ∥平面BDE.(2) 由(1)知AM →=⎝ ⎛⎭⎪⎫-22,-22,1,∵ D(2,0,0),F(2,2,1),∴ DF→=(0,2,1),∴ AM →·DF →=0,∴ AM ⊥DF.同理AM ⊥BF. 又DF ∩BF =F ,∴ AM ⊥平面BDF.题型3 空间的角的计算 例3 (2013·苏锡常镇二模)如图,圆锥的高PO =4,底面半径OB =2,D 为PO 的中点,E 为母线PB 的中点,F 为底面圆周上一点,满足EF ⊥DE.(1) 求异面直线EF 与BD 所成角的余弦值; (2) 求二面角F-OD-E 的正弦值.解:(1) 以O 为原点,底面上过O 点且垂直于OB 的直线为x 轴,OB 所在的线为y 轴,OP 所在的线为z 轴,建立空间直角坐标系,则B(0,2,0),P(0,0,4),D(0,0,2),E(0,1,2).设F(x 0,y 0,0)(x 0>0,y 0>0),且x 20+y 20=4,则EF→=(x 0,y 0-1,-2),DE →=(0,1,0),∵ EF ⊥DE ,即EF →⊥DE →,则EF →·DE →=y 0-1=0,故y 0=1.∴ F(3,1,0),EF →=(3,0,-2),BD→=(0,-2,2). 设异面直线EF 与BD 所成角为α,则cos α=⎪⎪⎪⎪⎪⎪⎪⎪EF →·BD →|EF →||BD →|=47×22=147. (2) 设平面ODF 的法向量为n 1=(x 1,y 1,z 1),则⎩⎪⎨⎪⎧n 1⊥OD →,n 1⊥OF →,即⎩⎪⎨⎪⎧z 1=0,3x 1+y 1=0.令x 1=1,得y 1=-3,平面ODF 的一个法向量为n 1=(1,-3,0).设平面DEF 的法向量为n 2=(x 2,y 2,z 2),同理可得平面DEF 的一个法向量为n 2=⎝⎛⎭⎪⎫1,0,32.设二面角F-OD-E 的平面角为β,则|cos β|=⎪⎪⎪⎪⎪⎪n 1·n 2|n 1||n 2|=17=77.∴ sin β=427. (翻折问题)例4. (2013广东韶关第二次调研)如图甲,在平面四边形ABCD 中,已知∠A =45°,∠C =90°,∠ADC =105°,AB =BD ,现将四边形ABCD 沿BD 折起,使平面ABD ⊥平面BDC(如图乙),设点E 、F 分别为棱AC 、AD 的中点.(1) 求证: DC ⊥平面ABC ; (2) 求BF 与平面ABC 所成角的正弦值; (3) 求二面角B -EF -A 的余弦值.解:(1) ∵ 平面ABD ⊥平面BDC ,又∵ AB ⊥BD ,∴ AB ⊥平面BDC ,故AB ⊥DC ,又∵ ∠C =90°,∴ DC ⊥BC ,BC ÍABC 平面ABC ,DC Ë平面ABC ,故DC ⊥平面ABC.(2) 如图,以B 为坐标原点,BD 所在的直线为x 轴建立空间直角坐标系如下图示,设CD =a ,则BD =AB =2a ,BC =3a ,AD =22a ,可得B(0,0,0),D(2a ,0,0),A(0,0,2a),C ⎝ ⎛⎭⎪⎫32a ,32a ,0,F(a ,0,a),∴ CD→=⎝ ⎛⎭⎪⎫12a ,-32a ,0,BF →=(a ,0,a).设BF 与平面ABC 所成的角为θ,由(1)知DC ⊥平面ABC ,∴ cos ⎝ ⎛⎭⎪⎫π2-θ=CD →·BF →|CD →|·|BF →|=12a 2a ·2a =24,∴ sin θ=24.(3) 由(2)知 FE ⊥平面ABC, 又∵ BE Ì平面ABC ,AE Ì平面ABC ,∴ FE ⊥BE ,FE ⊥AE ,∴ ∠AEB 为二面角B -EF -A 的平面角 .在△AEB 中,AE =BE =12AC =12AB 2+BC 2=72a ,∴ cos ∠AEB =AE 2+BE 2-AB 22AE ·BE=-17,即所求二面角B -EF -A 的余弦为-17. 课后巩固练习:1.(2013·江苏卷)如图所示,在直三棱柱A 1B 1C 1-ABC 中,AB ⊥AC ,AB =AC =2,A 1A =4,点D 是BC 的中点.(1) 求异面直线A 1B 与C 1D 所成角的余弦值;(2) 求平面ADC 1与平面ABA 1所成二面角的正弦值.解:(1) 以A 为坐标原点,建立如图所示的空间直角坐标系A -xyz ,则A(0,0,0),B(2,0,0),C(0,2,0),D(1,1,0),A 1(0,0,4),C 1(0,2,4),所以A 1B→=(2,0,-4),C 1D →=(1,-1,-4).因为cos 〈A 1B →,C 1D →〉=A 1B →·C 1D →|A 1B →||C 1D →|=1820×18=31010,所以异面直线A 1B 与C 1D 所成角的余弦值为31010.(2) 设平面ADC 1的法向量为n 1=(x ,y ,z), 因为AD→=(1,1,0),AC 1→=(0,2,4),所以n 1·AD →=0,n 1·AC 1→=0,即x +y =0且y +2z =0,取z =1,得x =2,y =-2,所以,n 1=(2,-2,1)是平面ADC 1的一个法向量.取平面AA 1B 的一个法向量为n 2=(0,1,0), 设平面ADC 1与平面ABA 1所成二面角的大小为θ.由|cos θ|=n 1·n 2|n 1||n 2|=29×1=23,得sin θ=53.因此,平面ADC 1与平面ABA 1所成二面角的正弦值为53.2. (2013·新课标全国卷Ⅱ)如图所示,直三棱柱ABCA 1B1C 1中,D 、E 分别是AB 、BB 1的中点,AA 1=AC =CB =22AB. (1) 证明:BC 1∥平面A 1CD ;(2) 求二面角DA 1CE 的正弦值.(1) 证明:连结AC 1交A 1C 于点F ,则F 为AC 1中点. 又D 是AB 中点,连结DF ,则BC 1∥DF. 因为DF Ì平面A 1CD ,BC 1Ë平面A 1CD , 所以BC 1∥平面A 1CD.(2) 由AC =CB =22AB 得AC ⊥BC. 以C 为坐标原点,CA →的方向为x 轴正方向,建立如图所示的空间直角坐标系Cxyz.设CA =2,则D(1,1,0),E(0,2,1),A 1(2,0,2),CD→=(1,1,0),CE →=(0,2,1),CA 1→=(2,0,2). 设n =(x 1,y 1,z 1)是平面A 1CD 的法向量,则⎩⎪⎨⎪⎧n ·CD →=0,n ·CA 1→=0,即⎩⎨⎧x 1+y 1=0,2x 1+2z 1=0.可取n =(1,-1,-1).同理,设m 为平面A 1CE 的法向量,则⎩⎪⎨⎪⎧m ·CE →=0,m ·CA 1→=0.可取m =(2,1,-2).从而cos 〈n ,m 〉=n·m|n||m|=33,故sin 〈n ,m 〉=63.即二面角D-A 1C-E 的正弦值为63.3. (2013·重庆)如图所示,四棱锥PABCD 中,PA ⊥底面ABCD ,BC =CD =2,AC =4,∠ACB =∠ACD =π3,F 为PC 的中点,AF ⊥PB.(1) 求PA 的长;(2) 求二面角B-AF-D 的正弦值. 解:(1) 如图,连结BD 交AC 于O ,因为BC =CD ,即△BCD 为等腰三角形,又AC 平分∠BCD ,故AC ⊥BD.以O 为坐标原点,OB →、OC →、AP →的方向分别为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系Oxyz ,则OC =CDcos π3=1,而AC =4,得AO =AC -OC =3.又OD =CDsin π3=3,故A(0,-3,0),B(3,0,0),C(0,1,0),D(-3,0,0).因为PA ⊥底面ABCD ,可设P(0,-3,z),由F 为PC 边中点,得F ⎝ ⎛⎭⎪⎫0,-1,z 2,又AF →=⎝ ⎛⎭⎪⎫0,2,z 2,PB →=(3,3,-z),因AF ⊥PB ,故AF →·PB →=0,即6-z 22=0,z =23(舍去-23),所以|PA→|=2 3.(2) 由(1)知AD→=(-3,3,0),AB →=(3,3,0),AF →=(0,2,3).设平面FAD 的法向量为n 1=(x 1,y 1,z 1),平面FAB 的法向量为n 2=(x 2,y 2,z 2).由n 1·AD→=0,n 1·AF →=0, 得⎩⎪⎨⎪⎧-3x 1+3y 1=0,2y 1+3z 1=0,因此可取n 1=(3,3,-2).由n 2·AB →=0,n 2·AF →=0,得⎩⎪⎨⎪⎧3x 2+3y 2=0,2y 2+3z 2=0,故可取n 2=(3,-3,2).从而向量n 1,n 2的夹角的余弦值为cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=18.故二面角B-AF-D 的正弦值为378. 4. (2013·连云港调研)在三棱锥SABC 中,底面是边长为23的正三角形,点S 在底面ABC 上的射影O 恰是AC 的中点,侧棱SB 和底面成45°角.(1) 若D 为侧棱SB 上一点,当SDDB为何值时,CD ⊥AB ;(2) 求二面角S-BC-A 的余弦值大小.解:以O 点为原点,OB 为x 轴,OC 为y 轴,OS 为z 轴建立空间直角坐标系O-xyz.由题意知∠SBO =45°,SO =3.O(0,0,0),C(0,3,0),A(0,-3,0),S(0,0,3),B(3,0,0).(1) 设BD→=λBS →(0≤λ≤1),则OD →=(1+λ)OB →+λOS →=(3(1+λ),0,3λ),所以CD→=(3(1-λ),-3,3λ). 因为AB →=(3,3,0),CD ⊥AB ,所以CD →·AB →=9(1-λ)-3=0,解得λ=23. 故SD DB =12时, CD ⊥AB. (2) 平面ACB 的法向量为n 1=(0,0,1),设平面SBC 的法向量n 2=(x ,y ,z),则n 2·SB →=0,n 2·SC →=0,则⎩⎪⎨⎪⎧3x -3z =0,3y -3z =0,解得⎩⎪⎨⎪⎧x =z ,y =3z ,取n 2=(1,3,1),所以cos 〈n 1,n 2〉=3×0+1×0+1×112+12+(3)2·1=55. 又显然所求二面角的平面角为锐角,故所求二面角的余弦值的大小为55.5. 在直四棱柱ABCD-A 1B 1C 1D 1中,AA 1=2,底面是边长为1的正方形,E 、F 分别是棱B 1B 、DA 的中点.(1) 求二面角D 1-AE-C 的大小;(2) 求证:直线BF ∥平面AD 1E.(1) 解:以D 为坐标原点,DA 、DC 、DD 1分别为x 、y 、z 轴建立空间直角坐标系如图.则相应点的坐标分别为D 1(0,0,2),A(1,0,0),C(0,1,0),E(1,1,1),∴ED1→=(0,0,2)-(1,1,1)=(-1,-1,1), AE→=(1,1,1)-(1,0,0)=(0,1,1), AC→=(0,1,0)-(1,0,0)=(-1,1,0). 设平面AED 1、平面AEC 的法向量分别为m =(a ,b ,1),n =(c ,d ,1).由⎩⎪⎨⎪⎧ED 1→·m =0,AE →·m =0Þ⎩⎨⎧-a -b +1=0,b +1=0Þ⎩⎨⎧a =2,b =-1,由⎩⎪⎨⎪⎧AC →·n =0,AE →·n =0Þ⎩⎨⎧-c +d =0,d +1=0Þ⎩⎨⎧c =-1,d =-1,∴m =(2,-1,1),n =(-1,-1,1),∴cos m ,n =m·n|m |·|n |=-2+1+16×3=0,∴二面角D 1AEC 的大小为90°.(2) 证明:取DD 1的中点G ,连结GB 、GF.∵E 、F 分别是棱BB1、AD 的中点,∴GF ∥AD 1,BE ∥D 1G 且BE =D 1G ,∴四边形BED 1G 为平行四边形,∴D 1E ∥BG .又D 1E 、D 1A Ì平面AD 1E ,BG 、GF 平面AD 1E , ∴BG ∥平面AD 1E ,GF ∥平面AD 1E.∵GF 、GB Ì平面BGF ,∴平面BGF ∥平面AD 1E. ∵BF 平面AD 1E ,∴直线BF ∥平面AD 1E.(或者:建立空间直角坐标系,用空间向量来证明直线BF ∥平面AD 1E ,亦可) 6. (2013·苏州调研)三棱柱ABC -A 1B 1C 1在如图所示的空间直角坐标系中,已知AB =2,AC =4,A 1A =3.D 是BC 的中点.(1) 求直线DB 1与平面A 1C 1D 所成角的正弦值; (2) 求二面角B 1-A 1D-C 1的正弦值.解:(1) 由题意,A(0,0,0),B(2,0,0),C(0,4,0),D(1,2,0),A 1(0,0,3),B 1(2,0,3),C 1(0,4,3).A 1D →=(1,2,-3),A 1C 1→=(0,4,0).设平面A 1C 1D 的一个法向量为n =(x ,y ,z).∵ n ·A 1D →=x +2y -3z =0,n ·A 1C 1→=4y =0.∴ x =3z ,y =0.令z =1,得x =3.n =(3,0,1).设直线DB 1与平面A 1C 1D 所成角为θ,∵ DB 1→=(1,-2,3),∴ sin θ=|cos 〈DB 1→·n 〉|=3×1+0×(-2)+1×310×14=33535.(2) 设平面A 1B 1D 的一个法向量为m =(a ,b ,c). A 1B 1→=(2,0,0),∵ m ·A 1D →=a +2b -3c =0,m ·A 1B 1→=2a =0,∴ a =0,2b =3c.令c =2,得b =3.m =(0,3,2). 设二面角B 1A 1DC 1的大小为α,∴ |cos α|=cos|〈m ,n 〉|=|m·n||m|·|m|=|0×3+3×0+2×1|13×10=265,则sin α=3765=345565. ∴ 二面角B 1A 1DC 1的正弦值为345565.7. (2013·南通二模)如图,在三棱柱ABCA 1B 1C 1中,A 1B ⊥平面ABC ,AB ⊥AC ,且AB =AC =A 1B =2.(1) 求棱AA 1与BC 所成的角的大小; (2) 在棱B 1C 1上确定一点P ,使二面角P -AB -A 1的平面角的余弦值为255. 解:(1) 如图,以A 为原点建立空间直角坐标系,则C(2,0,0),B(0,2,0),A 1(0,2,2),B 1(0,4,2),AA 1→=(0,2,2),BC →=B 1C 1→=(2,-2,0).cos〈AA 1→,BC →〉=AA 1→·BC →|AA 1→|·|BC →|=-48·8=-12,故AA 1与棱BC 所成的角是π3.(2) P 为棱B 1C 1中点,设B 1P →=λB 1C 1→=(2λ,-2λ,0),则P(2λ,4-2λ,2).设平面PAB 的法向量为n 1=(x ,y ,z),AP→=(2λ,4-2λ,2), 则⎩⎪⎨⎪⎧n 1·AP→=0,n 1·AB →=0.⎩⎨⎧λx +2y -λy +z =0,2y =0.⎩⎨⎧z =-λx ,y =0.故n 1=(1,0,-λ),而平面ABA 1的法向量是n 2=(1,0,0),则cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=11+λ2=255,解得λ=12,即P 为棱B 1C 1中点,其坐标为P(1,3,2).近六年高考题1. 【2010高考北京理第16题】(14分)如图,正方形ABCD 和四边形ACEF 所在的平面互相垂直,CE ⊥AC ,EF ∥AC ,AB=CE =EF =1.(1)求证:AF ∥平面BDE ;(2)求证:CF ⊥平面BDE ;(3)求二面角A-BE-D 的大小.【答案】设AC 与BD 交与点G 。

高中数学 第四章 圆与方程 4.34.3.2 空间两点间的距离

高中数学 第四章 圆与方程 4.34.3.2 空间两点间的距离

4.3.2 空间两点间的距离公式A级基础巩固一、选择题1.在空间直角坐标系中,点P(3,1,5)关于平面yOz对称的点的坐标为( )A.(-3,1,5) B.(-3,-1,5)C.(3,-1,-5) D.(-3,1,-5)解析:由于点关于平面yOz对称,故其纵坐标、竖坐标不变,横坐标变为相反数,即对称点坐标是(-3,1,5).答案:A2.点P(2,3,4)到y轴的距离是( )A.13 B.2 5C.5 D.29解析:点P在y轴的射影P′为(0,3,0),所以|PP′|=22+42=20=2 5.答案:B3.若点P(-4,-2,3)关于坐标平面xOy及y轴的对称点的坐标分别是(a,b,c),(e,f,d),则c与e的和为( )A.7 B.-7C.-1 D.1解析:点P关于坐标平面xOy的对称点坐标是(-4,-2,-3),关于y轴的对称点坐标是(4,-2,-3),从而知c+e=1.答案:D4.在空间直角坐标系中,已知点P(1,2,3),过P点作平面xOy的垂线PQ,Q为垂足,则Q的坐标为( )A.(0,2,0) B.(02,3)C.(1,0,3) D.(1,2,0)解析:点P(1,2,3)关于平面xOy的对称点是P1(1,2,-3),则垂足Q是PP1的中点,所以点Q的坐标为(1,2,0).答案:D5.点A(1,2,-1),点C与点A关于面xOy对称,点B与点A关于x轴对称,则|BC|的值为( )A.2 5 B.4C .2 2D .27解析:点A 关于面xOy 对称的点C 的坐标是(1,2,1),点A 关于x 轴对称的点B 的坐标是(1,-2,1),故|BC |=(1-1)2+(2+2)2+(1-1)2=4.答案:B二、填空题6.如图所示的坐标系中,单位正方体顶点A 的坐标是_________.解析:点A 在x 轴、y 轴、z 轴上的投影分别是B 1、D 1、C ,故A 点坐标为(1,-1,-1).答案:(1,-1,-1)7.在空间直角坐标系中,正方体ABCDA 1B 1C 1D 1的顶点A 的坐标为(3,-1,2),其中心M 的坐标为(0,1,2),则该正方体的棱长为________.解析:由A (3,-1,2),中心M (0,1,2)所以C 1(-3,3,2).正方体体对角线长为|AC 1|=[3-(-3)]2+(-1-3)2+(2-2)2=213, 所以正方体的棱长为2133=2393. 答案:23938.给定空间直角坐标系,在x 轴上找一点P ,使它与点P 0(4,1,2)的距离为30,则P 点坐标为______________________________.解析:设点P 的坐标为(x ,0,0),由题意,得|P 0P |=30,即(x -4)2+12+22=30. 所以x =9或x =-1.所以P 点坐标为(9,0,0)或(-1,0,0).答案:(9,0,0)或(-1,0,0)三、解答题9.已知A (3,2,1),B (1,0,4),求:(1)线段AB 中点的坐标和A 与B 的距离;(2)到A ,B 两点距离相等的点P (x ,y ,z )的坐标x ,y ,z 满足的条件,并指出方程表示什么图形.解:(1)M (x ,y ,z )是AB 的中点,则x =3+12=2, y =2+02=1,z =1+42=52, 所以M 点的坐标为⎝⎛⎭⎪⎫2,1,52. 两点间的距离|AB |=(1-3)2+(0-2)2+(4-1)2=17.(2)由P (x ,y ,z )到A 、B 两点的距离相等. 则(x -3)2+(y -2)2+(z -1)2=(x -1)2+(y -0)2+(z -4)2,化简得4x +4y -6z +3=0.即到A 、B 的距离相等的点的坐标(x ,y ,z )满足的条件是4x +4y -6z +3=0.方程表示的图形是线段AB 的垂直平分面.10.如图所示,直三棱柱ABC ­A 1B 1C 1中,|C 1C |=|CB |=|CA |=2,AC ⊥CB ,D ,E 分别是棱AB ,B 1C 1的中点,F 是AC 的中点,求DE ,EF 的长度.解:以点C 为坐标原点,CA 、CB 、CC 1所在直线为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系.因为|C 1C |=|CB |=|CA |=2,所以C (0,0,0),A (2,0,0),B (0,2,0),C 1(0,0,2),B 1(0,2,2), 由中点坐标公式可得,D (1,1,0),E (0,1,2),F (1,0,0),所以|DE |=(1-0)2+(1-1)2+(0-2)2=5,|EF |=(0-1)2+(1-0)2+(2-0)2= 6.B 级 能力提升1.在空间直角坐标系中的点P (a ,b ,c ),有下列叙述:①点P (a ,b ,c )关于横轴(x 轴)的对称点是P 1(a ,-b ,c );②点P (a ,b ,c )关于yOz 坐标平面的对称点为P 2(a ,-b ,-c );③点P (a ,b ,c )关于纵轴(y 轴)的对称点是P 3(a ,-b ,c );④点P (a ,b ,c )关于坐标原点的对称点为P 4(-a ,-b ,-c ).其中正确叙述的个数为( )A .3B .2C .1D .0解析:对于①,点P (a ,b ,c )关于横轴的对称点为P 1(a ,-b ,-c ),故①错;对于②,点P (a ,b ,c )关于yOz 坐标平面的对称点为P 2(-a ,b ,c ),故②错;对于③,点P (a ,b ,c )关于纵轴的对称点是P 3(-a ,b ,-c ),故③错;④正确.答案:C2.在棱长为1的正方体ABCD ­A 1B 1C 1D 1中,F 是BD 的中点,G 在棱CD 上,且|CG |=14|CD |,E 为C 1G 的中点,则EF 的长为________.解析:建立如图所示的空间直角坐标系,D 为坐标原点,由题意,得F ⎝ ⎛⎭⎪⎫12,12,0,C 1(0,1,1),C (0,1,0),G ⎝ ⎛⎭⎪⎫0,34,0, 则E ⎝ ⎛⎭⎪⎫0,78,12.所以 |EF |=⎝ ⎛⎭⎪⎫0-122+⎝ ⎛⎭⎪⎫78-122+⎝ ⎛⎭⎪⎫12-02=418. 答案:418 3.在直三棱柱ABC ­A 1B 1C 1中,AC =2,CB =CC 1=4,E 、F 、M 、N 分别是A 1B 1、AB 、C 1B 1、CB 的中点,建立如图所示的空间直角坐标系.(1)在四边形ABB 1A 1内找一点P ,使△ABP 为正三角形.(2)能否在MN 上求得一点Q ,使△AQB 为以AB 为斜边的直角三角形?若能,请求出点Q 的坐标;若不能,请说明理由.解:(1)因为EF 是AB 的中垂线,在平面ABB 1A 1内只有EF 上的点与A ,B 两点的距离相等,A (2,0,0),B (0,4,0),设点P 坐标为(1,2,z ),由|PA |=|AB |,得 (1-2)2+(2-0)2+(z -0)2=20, 所以z 2=15.因为z ∈[0,4],所以z =15,故平面ABB 1A 1内的点P (1,2,15)使得△ABP 为正三角形.(2)设MN 上的点Q 坐标为(0,2,z ).因为△AQB 为直角三角形,所以|QF |=12|AB |. 即(0-1)2+(2-2)2+(z -0)2=1220,整理,得z 2+1=5,所以z 2=4.因为z ∈[0,4],所以z =2.故MN 上的点Q (0,2,2)使得△AQB 为直角三角形.。

人教版高中数学必修二第四章圆与方程_空间直角坐标系

人教版高中数学必修二第四章圆与方程_空间直角坐标系

z
z

1
P3
• P
1
x
x

1
• o
y •P 2
y
P1
方法二:过P点作xOy面的垂线,垂足为P0
点。 点 P0在坐标系xOy中的坐标x、y依次是P点的横 坐标、纵坐标。再过P点作z轴的垂线,垂足P1在 z轴上的坐标z就是P点的竖坐标。 z
z P1 P
1

y
1
x
x M
1
• o
•P
N
y
0
P点坐标为(x,y,z)
(-1,-3,0) C1 • (2,-2,0) B1
1
O

• B•
x
1
1
• A(1,4,1) y •
A1(1,4,0)
(2,-2,-1)
练习:
点M(x,y,z)是空间直角坐标系Oxyz中的一点,写出 满足下列条件的点的坐标.
(1)与点M关于x轴对称的点 (2)与点M关于y轴对称的点 (x,-y,-z) (-x,y,-z)

z
yz 面

zx 面

xy 面
Ⅶ Ⅷ

O
y


x

空间直角坐标系共有八个卦限
设B`为空间的一个定点,过B`分别作垂直于x 轴、y轴、z轴的平面,依次交x轴、y轴、z轴于 点A,C,D`.
z
设点A,C,D`在x轴、 y轴、z轴上的坐标 分别为x、y、z, 那么点B`就对应惟 一确定的有序实数 组(x,y,z).
在空间,我们是否可以建立一个坐标系, 使空间中的任意一点都可用对应的有序实数 组表示出来呢?
1.建立了一个空间直角坐标系O-xyz.其中 (1)点O叫做坐标原点; (2)x轴、y轴、z轴叫做坐标轴; (3)以线段OA的长为单位长度. 2.通过每两个坐标轴的平面 叫做坐标平面,分别称为: xOy平面、yOz平面、zOx平面. 称这个坐标系为右手直角坐标 系.如无特别说明,本书建立 的坐标系都是右手直角坐标系.

基础训练:空间直角坐标系

基础训练:空间直角坐标系

4.3 空间直角坐标系1.点(2,1,0)A -在空间直角坐标系的位置是【 】A. z 轴上B. xOy 平面上C. xO z 平面上D. yOz 平面上2.点B 是点)3,2,1(A 在坐标平面yoz 内的射影,则||OB 等于【 】 A.14 B. 13 C. 32 D.113.已知线段AB 的两个端点的坐标分别为)4,3,9(-A 和)1,2,9(B ,则线段AB 【 】A.与平面xoy 平行B. 与平面xoz 平行C. 与平面zoy 平行D. 与平面xoy 获zoy 平行4.已知三角形ABC 的顶点A (2,2,0),B (0,2,0),C (0,1,4),则三角形ABC 是【 】A .直角三角形B .锐角三角形C .钝角三角形D .等腰三角形5.点(1,3,5)P 关于原点对称的点的坐标是 .6.连接平面上两点111(,)P x y ,222(,)P x y 的线段12P P 的中点M 的坐标为1212(,)22x x y y ++,那么,已知空间中两点1111(,,)P x y z ,2222(,,)P x y z ,线段12P P 的中点M 的坐标为 .7.已知A (2,5,-6),在y 轴上求一点B ,使得|AB |=7;8.在空间直角坐标系中,给定点(1,2,3)M -,求它关于坐标平面、坐标轴和原点的对称点的坐标.参考答案1. B2. B3. C4. A5.(1,3,5)--- 6. 122212(,,)222x x y y z z +++ 7. B (0,2,0)或B (0,8,0).8. 点(1,2,3)M -关于平面xO y 、平面yO z 、平面xOz 的对称点的坐标分别是(1,2,3)--、(1,2,3)--、(1,2,3).点(1,2,3)M -关于x 轴、y 轴、z 轴、原点的对称点的坐标分别是(1,2,3)-、(1,2,3)---、(1,2,3)-,(1,2,3)--.。

2.3 空间直角坐标系典型习题

2.3 空间直角坐标系典型习题

§2.3 空间直角坐标系典型习题 一、选择题 1.以棱长为1的正方体ABCD-A 1B 1C 1D 1的棱AB 、AD 、AA 1所在的直线为坐标轴,建立空间直角坐标系,则平面AA 1B 1B 对角线交点的坐标为( )A .(0,0.5,0.5)B .(0.5,0,0.5)C .(0.5,0.5,0)D .(0.5,0.5,0.5)2.设点B 是点A (2,-3,5)关于xOy 面的对称点,则A 、B 两点距离为( )A .10B .10C .38D .383.如图所示,在空间直角坐标系中,有一棱长为a 的正方体ABCO-A′B′C′D′,A′C 的中点E 与AB 的中点F 的距离为( )A .a 2B .a 22C .aD .a214.一束光线自点P (1,1,1)发出,遇到平面xoy 被反射,到达点Q (3,3,6)被吸收,那么光所走的路程是( )A .37B .47C .33D .575.点P (x ,y ,z )满足222)1()1()1(++-+-z y x =2,则点P 在( )A .以点(1,1,-1)为圆心,以2为半径的圆上B .以点(1,1,-1)为中心,以2为棱长的正方体上C .以点(1,1,-1)为球心,以2为半径的球面上D .无法确定6.若A 、B 两点的坐标是A (3cosα,3sinα),B (2cosθ,2sinθ),则|AB|的取值范围是( )A .[0,5]B .[1,5] C.(1,5) D .[1,25]7.在空间直角坐标系中,已知点P (x ,y ,z ),下列叙述中正确的个数是( ) ①点P 关于x 轴对称点的坐标是P 1(x ,﹣y ,z );②点P 关于yOz 平面对称点的坐标是P 2(x ,﹣y ,﹣z );③点P关于y轴对称点的坐标是P3(x,﹣y,z);④点P关于原点对称的点的坐标是P4(﹣x,﹣y,﹣z).A.3B.2C.1D.08.设A(3,3,1)、B(1,0,5)、C(0,1,0),则AB中点M到C点的距离为()A.B.C.D.9.点B是点A(1,2,3)在坐标平面yOz内的正投影,则|OB|等于()B A.B.C.D.10.已知ABCD为平行四边形,且A(4,1,3),B(2,﹣5,1),C(3,7,﹣5),则点D 的坐标为()A.(3.5,4,﹣1)B.(2,3,1)C.(﹣3,1,5)D.(5,13,﹣3)11.已知点A(1,﹣2,11),B(4,2,3),C(x,y,15)三点共线,那么x,y的值分别是()A.0.5,4 B.1,8 C.-0.5,﹣4 D.﹣1,﹣812.在空间直角坐标系中,一定点到三个坐标轴的距离都是1,则该点到原点的距离是()A.B.C.D.二、填空题(每小题5分,共20分)13.点P(1,2,3)关于y轴的对称点为P1,P关于坐标平面xOz的对称点为P2,则|P1P2|= ____14.已知三角形的三个顶点为A(2,-1,4),B(3,2,-6),C(5,0,2),则BC边上的中线长为_____________15.已知x,y,z满足(x-3)2+(y-4)2+z2=2,那么x2+y2+z2的最小值是____________ 16. 已知点A(﹣3,1,4),则点A关于原点的对称点B的坐标为;AB的长为.三、解答题(共70分)17.如图所示,过正方形ABCD的中心O作OP⊥平面ABCD,已知正方形的边长为2,OP=2,连接AP、BP、CP、DP,M、N分别是AB、BC的中点,以O为原点,射线OM、ON、OP分别为Ox轴、Oy轴、Oz轴的正方向建立空间直角坐标系.若E、F分别为PA、PB的中点,求A、B、C、D、E、F的坐标.21.在空间直角坐标系中,已知A(3,0,1)和B(1,0,﹣3),试问(1)在y轴上是否存在点M,满足|MA|=|MB|?(2)在y轴上是否存在点M,使△MAB为等边三角形?若存在,试求出点M坐标.参考答案:一、选择题1.以棱长为1的正方体ABCD-A1B1C1D1的棱AB、AD、AA1所在的直线为坐标轴,建立空间直角坐标系,则平面AA1B1B对角线交点的坐标为()A.(0,0.5,0.5)B.(0.5,0,0.5)C.(0.5,0.5,0)D.(0.5,0.5,0.5)【解答】解:由题意如图,平面AA 1B 1B 对角线交点是横坐标为AB 的中点值,竖坐标为AA 1的中点值,纵坐标为0,所以平面AA 1B 1B 对角线交点的坐标为(0.5,0,0.5).故选B .2.设点B 是点A (2,-3,5)关于xOy 面的对称点,则A 、B 两点距离为( )A .10B .10C .38D .38【解答】解:点B 是A (2,-3,5)关于xoy 平面对称的点,∴B 点的横标和纵标与A 点相同,竖标相反,∴B (2,-3,-5)∴AB 的长度是5-(-5)=10,故选A .3.如图所示,在空间直角坐标系中,有一棱长为a 的正方体ABCO-A′B′C′D′,A′C 的中点E 与AB 的中点F 的距离为( )A .a 2B .a 22C .aD .a21【解答】解:如图所示,在空间直角坐标系中,有一棱长为a 的正方体ABCO-A′B′C′D′, ∵A (a ,0,0),B (a ,a ,0),C (0,a ,0),A′(a ,0,a ),A′C 的中点E 与AB 的中点F ,∴F (a ,2a ,0),E (2a ,2a ,2a ), |EF|=222)0()2()(aa a a a a a -+-+-=22a . 4.一束光线自点P (1,1,1)发出,遇到平面xoy 被反射,到达点Q (3,3,6)被吸收,那么光所走的路程是( )A .37B .47C .33D .57【解答】解:点P (1,1,1)平面xoy 的对称点的M 坐标(1,1,-1),一束光线自点P (1,1,1)发出,遇到平面xoy 被反射,到达点Q (3,3,6)被吸收,那么光所走的路程是:222)16()13()13(++-+-=57.故选D .5.点P (x ,y ,z )满足222)1()1()1(++-+-z y x =2,则点P 在( ) A .以点(1,1,-1)为圆心,以2为半径的圆上B .以点(1,1,-1)为中心,以2为棱长的正方体上C .以点(1,1,-1)为球心,以2为半径的球面上D .无法确定【解答】解:式子222)1()1()1(++-+-z y x =2的几何意义是动点P (x ,y ,z )到定点(1,1,-1)的距离为2的点的集合.故选C .6.若A 、B 两点的坐标是A (3cosα,3sinα),B (2cosθ,2sinθ),则|AB|的取值范围是( )A .[0,5]B .[1,5] C.(1,5) D .[1,25]【解答】解:由题意可得|AB|=22)sin 2sin 3()cos 2cos 3(βαβα-+- =βαβαsin sin cos cos 1249+-+ =)cos(1213βα--.∵-1≤cos (α-β)≤1,∴1≤13-12cos (α-β)≤25,∴1≤)cos(1213βα--≤5,故选B . 7.在空间直角坐标系中,已知点P (x ,y ,z ),下列叙述中正确的个数是( )C ①点P 关于x 轴对称点的坐标是P 1(x ,﹣y ,z );②点P 关于yOz 平面对称点的坐标是P 2(x ,﹣y ,﹣z );③点P 关于y 轴对称点的坐标是P 3(x ,﹣y ,z );④点P 关于原点对称的点的坐标是P 4(﹣x ,﹣y ,﹣z ).A . 3B . 2C . 1D . 08.设A (3,3,1)、B (1,0,5)、C (0,1,0),则AB 中点M 到C 点的距离为( )CA .B .C .D .9.点B 是点A (1,2,3)在坐标平面yOz 内的正投影,则|OB|等于( )BA .B .C .D .10.已知ABCD 为平行四边形,且A (4,1,3),B (2,﹣5,1),C (3,7,﹣5),则点D 的坐标为( )DA . (3.5,4,﹣1)B . (2,3,1)C . (﹣3,1,5)D . (5,13,﹣3)11.已知点A (1,﹣2,11),B (4,2,3),C (x ,y ,15)三点共线,那么x ,y 的值分别是( )CA . 0.5,4B . 1,8C . -0.5,﹣4D . ﹣1,﹣812.在空间直角坐标系中,一定点到三个坐标轴的距离都是1,则该点到原点的距离是( A )A .B .C .D .二、填空题(每小题5分,共20分)13.点P (1,2,3)关于y 轴的对称点为P 1,P 关于坐标平面xOz 的对称点为P 2,则|P 1P 2|= ____214【解答】解:∵点P (1,2,3)关于y 轴的对称点为P 1,所以P 1(-1,2,-3),P 关于坐标平面xOz 的对称点为P 2,所以P 2(1,-2,3),∴|P 1P 2|=222)33()22()11(--+++--=214.故答案为:21414.已知三角形的三个顶点为A (2,-1,4),B (3,2,-6),C (5,0,2),则BC 边上的中线长为 _____________211【解答】解:∵B (3,2,-6),C (5,0,2),∴BC 边上的中点坐标是D (4,1,-2) ∴BC 边上的中线长为222)42()11()24(--+++-=22,故答案为:21115.已知x ,y ,z 满足(x-3)2+(y-4)2+z 2=2,那么x 2+y 2+z 2的最小值是 ____________27-102.【解答】解:由题意可得P (x ,y ,z ),在以M (3,4,0)为球心,2为半径的球面上, x 2+y 2+z 2表示原点与点P 的距离的平方,显然当O ,P ,M 共线且P 在O ,M 之间时,|OP|最小,此时|OP|=|OM|-2=432+-2=52,所以|OP|2=27-102.故答案为:27-102.16. 已知点A (﹣3,1,4),则点A 关于原点的对称点B 的坐标为 ;AB 的长为 .(3,-1,-4)2三、解答题(共70分)17.如图所示,过正方形ABCD 的中心O 作OP ⊥平面ABCD ,已知正方形的边长为2,OP=2,连接AP 、BP 、CP 、DP ,M 、N 分别是AB 、BC 的中点,以O 为原点,射线OM 、ON 、OP 分别为Ox 轴、Oy 轴、Oz 轴的正方向建立空间直角坐标系.若E 、F 分别为PA 、PB 的中点,求A 、B 、C 、D 、E 、F 的坐标.解:【解答】解:如图所示,B 点的坐标为(1,1,0),因为A 点关于x 轴对称,得A (1,-1,0),C 点与B 点关于y 轴对称,得C (-1,1,0), D 与C 关于x 轴对称,的D (-1,-1,0),又P (0,0,2),E 为AP 的中点,F 为PB 的中点,由中点坐标公式可得E (0.5,-0.5,1),F (0.5,0.5,1).18.在空间直角坐标系中,解答下列各题:(1)在x 轴上求一点P ,使它与点P 0(4,1,2)的距离为30;(2)在xOy 平面内的直线x+y=1上确定一点M ,使它到点N (6,5,1)的距离最小.解:【解答】解:(1)设点P 的坐标是(x ,0,0),由题意|P0P|=30,即22221)4(++-x =30,∴(x-4)2=25.解得x=9或x=-1.∴点P 坐标为(9,0,0)或(-1,0,0).先设点M (x ,1-x ,0),然后利用空间两点的距离公式表示出距离,最后根据二次函数研究最值即可.(2)设点M (x ,1-x ,0)则|MN|=51)1(22+-x ∴当x=1时,|MN|min=51.∴点M 的坐标为(1,0,0)时到点N (6,5,1)的距离最小.19.已知空间直角坐标系O-xyz 中点A (1,1,1),平面α过点A 且与直线OA 垂直,动点P (x ,y ,z )是平面α内的任一点.(1)求点P 的坐标满足的条件;(2)求平面α与坐标平面围成的几何体的体积.解:【解答】解:(1)因为OA ⊥α,所以OA ⊥AP ,由勾股定理可得:|OA|2+|AP|2=|OP|2,即3+(x-1)2+(y-1)2+(z-1)2=x 2+y 2+z 2,化简得:x+y+z=3.(2)设平面α与x 轴、y 轴、z 轴的点分别为M 、N 、H ,则M (3,0,0)、N (0,3,0)、H (0,0,3).所以|MN|=|NH|=|MH|=32, 所以等边三角形MNH 的面积为:3/4×(32)2=93/2.又|OA|=3,故三棱锥0-MNH 的体积为:31×93/2×3=4.5.20.如图,已知正方体ABCD ﹣A′B′C′D′的棱长为a ,M 为BD′的中点,点N 在A′C′上,且 |A′N|=3|NC′|,试求MN 的长.【解答】解:以D 为原点,建立如图空间直角坐标系.因为正方体棱长为a ,所以B (a ,a ,0),A'(a ,0,a ),C'(0,a ,a ),D'(0,0,a ).由于M 为BD'的中点,取A'C'中点O',所以M (2a ,2a ,2a ),O'(2a ,2a ,a ).因为|A'N|=3|NC'|,所以N 为A'C'的四等分,从而N 为O'C'的中点,故N (4a ,43a ,a ).根据空间两点距离公式,可得|MN |=222)2()432()42(a a a a a a -+-+-=46a21.在空间直角坐标系中,已知A (3,0,1)和B (1,0,﹣3),试问(1)在y 轴上是否存在点M ,满足|MA|=|MB|?(2)在y 轴上是否存在点M ,使△MAB 为等边三角形?若存在,试求出点M 坐标.【解答】解:(1)假设在y 轴上存在点M ,满足|MA|=|MB|.因M 在y 轴上,可设M (0,y ,0),由|MA|=|MB|,可得2222223113++=++y y 显然,此式对任意y ∈R 恒成立.这就是说y 轴上所有点都满足关系|MA|=|MB|.(2)假设在y 轴上存在点M ,使△MAB 为等边三角形.由(1)可知,y 轴上任一点都有|MA|=|MB|,所以只|MA|=|AB|就可以使得△MAB 是等边三角形.因为|MA|=222)01()0()03(-+-+-y =210y +|AB |=222)13()00()31(-+-+-=20于是210y +=20,解得y =±10 故y 轴上存在点M 使△MAB 等边,M 坐标为(0,10,0),或(0,−10,0).空间直角坐标系 优化训练1.已知点A (-1,2,7),则点A 关于x 轴对称点的坐标为( )A .(-1,-2,-7)B .(-1,-2,7)C .(1,-2,-7)D .(1,2,-7)2.点P (-2,0,3)位于( )A .y 轴上B .z 轴上C .xOz 平面内D .yOz 平面内3.如图所示空间直角坐标系的直观图中,正确的个数为( )A .1B .2C .3D .44.点P (-3,2,1)关于Q (1,2,-3)的对称点M 的坐标是________.5.在空间直角坐标系Oxyz 中,点P (2,3,4)在x 轴上的射影的坐标为______,在平面xOy 上的射影的坐标为______,在yOz 平面上的射影的坐标为______.1.如图,在正方体ABCD -A ′B ′C ′D ′中,棱长为1,|BP |=13|BD ′|,则P 点的坐标为( )A .(13,13,13)B .(23,23,23) C .(13,23,13) D .(23,23,13) 2.在空间直角坐标系中,P (2,3,4),Q (-2,3,-4)两点的位置关系是( )A .关于x 轴对称B .关于yOz 平面对称C .关于坐标原点对称D .关于y 轴对称3.已知空间直角坐标系中有一点M (x ,y ,z )满足x >y >z ,且x +y +z =0,则M 点的位置是( )A .一定在第Ⅴ或第Ⅷ卦限B .一定在第Ⅷ卦限C .可能在第Ⅰ卦限D .可能在xOz 平面上 4. 在空间直角坐标系中,点P (1,2,3),过点P 作平面xOy 的垂线PQ ,垂足为Q ,则Q 的坐标为( )A .(0,2,0)B .(0,2,3)C .(1,0,3)D .(1,2,0)5.已知△ABC 的三个顶点坐标分别为A (2,3,1)、B (4,1,-2)、C (6,3,7),则△ABC 的重心坐标为( )A.⎝ ⎛⎭⎪⎫6,72,3B.⎝ ⎛⎭⎪⎫4,73,2 C.⎝ ⎛⎭⎪⎫8,143,4 D.⎝ ⎛⎭⎪⎫2,76,1 6.设z 是任意实数,相应的点P (2,2,z )运动的轨迹是( )A .一个平面B .一条直线C .一个圆D .一个球7.在xOy 平面内有两点A (-2,4,0),B (3,2,0),则AB 的中点坐标是________.8.已知▱ABCD 的两个顶点A (2,-3,-5),B (-1,3,2)以及它的对角线交点E (4,-1,7),则顶点C 的坐标为________,D 的坐标为________.9.点P (a ,b ,c )关于原点的对称点P ′在x 轴上的投影A 的坐标为________.10.在三棱锥S -ABC 中,SA ⊥AB ,SA ⊥AC ,AB ⊥AC ,且SA =AB =AC =a ,D 为BC 的中点,E 为SD 的中点,建立适当的坐标系,求点S 、A 、B 、C 、D 、E 的坐标.11. 如图,在长方体OABC -D ′A ′B ′C ′中,|OA |=1,|OC |=3,|OD ′|=2,点E 在线段AO 的延长线上,且|OE |=12,写出B ′,C ,E 的坐标.12. 如图,有一个棱长为1的正方体ABCD —A 1B 1C 1D 1,以点D 为坐标原点,分别以射线DA ,DC ,DD 1的方向为正方向,以线段DA ,DC ,DD 1的长度为单位长,建立三条数轴:x 轴,y 轴,z 轴,从而建立起一个空间直角坐标系Oxyz .一只小蚂蚁从点A 出发,不返回地沿着棱爬行了2个单位长.请用坐标表示小蚂蚁现在爬到了什么位置.空间直角坐标系 优化训练1.已知点A (-1,2,7),则点A 关于x 轴对称点的坐标为( )A .(-1,-2,-7)B .(-1,-2,7)C .(1,-2,-7)D .(1,2,-7)答案:A2.点P (-2,0,3)位于( )A .y 轴上B .z 轴上C .xOz 平面内D .yOz 平面内解析:选C.由点P 纵坐标为零知P (-2,0,3),在xOz 平面内.3.如图所示空间直角坐标系的直观图中,正确的个数为( )A .1B .2C .3D .4答案:C4.点P (-3,2,1)关于Q (1,2,-3)的对称点M 的坐标是________.解析:设M 坐标为(x ,y ,z ),则有1=x -32,2=2+y 2,-3=1+z 2,解得x =5,y =2,z =-7∴M (5,2,-7).答案:(5,2,-7)5.在空间直角坐标系Oxyz 中,点P (2,3,4)在x 轴上的射影的坐标为______,在平面xOy 上的射影的坐标为______,在yOz 平面上的射影的坐标为______.答案:(2,0,0) (2,3,0) (0,3,4)1.如图,在正方体ABCD -A ′B ′C ′D ′中,棱长为1,|BP |=13|BD ′|,则P 点的坐标为( )A .(13,13,13)B .(23,23,23) C .(13,23,13) D .(23,23,13) 解析:选D.连接BD ,点P 在xDy 平面的射影落在BD 上,∵|BP |=13|BD ′|,∴Px =Py =23,Pz =13,故P (23,23,13). 2.在空间直角坐标系中,P (2,3,4),Q (-2,3,-4)两点的位置关系是( )A .关于x 轴对称B .关于yOz 平面对称C .关于坐标原点对称D .关于y 轴对称 解析:选D.由P 、Q 两点的纵坐标相同,横坐标、竖坐标分别互为相反数知P 、Q 关于y 轴对称.3.已知空间直角坐标系中有一点M (x ,y ,z )满足x >y >z ,且x +y +z =0,则M 点的位置是( )A .一定在第Ⅴ或第Ⅷ卦限B .一定在第Ⅷ卦限C .可能在第Ⅰ卦限D .可能在xOz 平面上解析:选D.由x >y >z 且x +y +z =0知,x >0,z <0,y ∈R ,故点M 可能在第Ⅴ、第Ⅷ卦限或在xOz 平面上.故选D.4. 在空间直角坐标系中,点P (1,2,3),过点P 作平面xOy 的垂线PQ ,垂足为Q ,则Q 的坐标为( )A .(0,2,0)B .(0,2,3)C .(1,0,3)D .(1,2,0)解析:选D.由P 、Q 两点的横坐标、纵坐标相等知.5.已知△ABC 的三个顶点坐标分别为A (2,3,1)、B (4,1,-2)、C (6,3,7),则△ABC 的重心坐标为( )A.⎝ ⎛⎭⎪⎫6,72,3B.⎝ ⎛⎭⎪⎫4,73,2 C.⎝ ⎛⎭⎪⎫8,143,4 D.⎝ ⎛⎭⎪⎫2,76,1 答案:B6.设z 是任意实数,相应的点P (2,2,z )运动的轨迹是( )A .一个平面B .一条直线C .一个圆D .一个球解析:选B.由P 的x 、y 坐标是定值,则过(2,2,0)作与xOy 平面垂直的直线,直线上任意一点都满足x =2,y =2,故P 的轨迹是一条直线.7.在xOy 平面内有两点A (-2,4,0),B (3,2,0),则AB 的中点坐标是________. 解析:设AB 中点坐标为(x ,y ,z ),则x =3-22=12, y =4+22=3,z =0 ∴中点坐标为(12,3,0). 答案:(12,3,0) 8.已知▱ABCD 的两个顶点A (2,-3,-5),B (-1,3,2)以及它的对角线交点E (4,-1,7),则顶点C 的坐标为________,D 的坐标为________.解析:E 为AC 、BD 的中点.答案:(6,1,19) (9,-5,12)9.点P (a ,b ,c )关于原点的对称点P ′在x 轴上的投影A 的坐标为________. 解析:由题意得P ′(-a ,-b ,-c ),∴P ′(-a ,-b ,-c )在x 轴上的投影A 坐标为(-a,0,0).答案:(-a,0,0)10.在三棱锥S -ABC 中,SA ⊥AB ,SA ⊥AC ,AB ⊥AC ,且SA =AB =AC =a ,D 为BC 的中点,E 为SD 的中点,建立适当的坐标系,求点S 、A 、B 、C 、D 、E 的坐标.解:∵在三棱锥S -ABC 中,SA ⊥AB ,SA ⊥AC ,AB ⊥AC ,∴以点A 为坐标原点,AB 、AC 、AS 所在直线分别为x 轴,y 轴和z 轴建立如图所示空间直角坐标系,∵SA =AB =AC =a ,D 为BC 的中点,∴A (0,0,0),B (a,0,0),C (0,a,0),S (0,0,a ),D (a 2,a 2,0),连接AD , ∵SA ⊥AB ,SA ⊥AC ,AB ∩AC =A ,∴SA ⊥平面ABC ,过点E 作EF ⊥AD ,垂足为F ,则EF ⊥平面ABC .∵E 为SD 的中点,∴F 为AD 的中点,∴|EF |=12|AS |,∴E (a 4,a 4,a 2), 即点S (0,0,a ),A (0,0,0),B (a,0,0),C (0,a,0),D (a 2,a 2,0),E (a 4,a 4,a2). 11. 如图,在长方体OABC -D ′A ′B ′C ′中,|OA |=1,|OC |=3,|OD ′|=2,点E 在线段AO 的延长线上,且|OE |=12,写出B ′,C ,E 的坐标.解:点C 在y 轴上,x 坐标,z 坐标均为0,且|OC |=3,故点C 的坐标为(0,3,0). 因为B ′B 垂直于xOy 平面,垂足为B ,所以点B ′与B 的x 坐标和y 坐标都相同,又|BB ′|=|OD ′|=2,且点B ′在xOy 平面的上方,所以点B ′的坐标为(1,3,2).点E 在x 轴负半轴上,且|OE |=12, 所以点E 的坐标为(-12,0,0). 12. 如图,有一个棱长为1的正方体ABCD —A 1B 1C 1D 1,以点D 为坐标原点,分别以射线DA ,DC ,DD 1的方向为正方向,以线段DA ,DC ,DD 1的长度为单位长,建立三条数轴:x 轴,y 轴,z 轴,从而建立起一个空间直角坐标系Oxyz .一只小蚂蚁从点A 出发,不返回地沿着棱爬行了2个单位长.请用坐标表示小蚂蚁现在爬到了什么位置.解:小蚂蚁沿着A -B -C 或A -B -B 1或A -D -C 或A -D -D 1或A -A 1-B 1或A -A 1-D 1任一条路线爬行,其终点为点C 或B 1或D 1.点C 在y 轴上,且DC =1,则其y 坐标为1,x 坐标与z 坐标均为0,所以点C 的坐标是(0,1,0);同理可知D 1的坐标是(0,0,1);点B 1在xOy 平面上的射影是B ,点B 在xOy 平面上的坐标是(1,1),且|B 1B |=1,则其z 坐标为1,所以点B 1的坐标是(1,1,1).。

高中数学必修二第四章 章末复习题圆的相关试题(含答案)

高中数学必修二第四章 章末复习题圆的相关试题(含答案)

章末复习一、知识导图二、要点归纳1.圆的方程(1)圆的标准方程:(x-a)2+(y-b)2=r2.(2)圆的一般方程:x2+y2+Dx+Ey+F=0(D2+E2-4F>0).2.点和圆的位置关系设点P(x0,y0)及圆的方程(x-a)2+(y-b)2=r2.(1)(x0-a)2+(y0-b)2>r2⇔点P在圆外.(2)(x0-a)2+(y0-b)2<r2⇔点P在圆内.(3)(x0-a)2+(y0-b)2=r2⇔点P在圆上.3.直线与圆的位置关系设直线l与圆C的圆心之间的距离为d,圆的半径为r,则d>r⇒相离;d=r⇒相切;d<r⇒相交.4.圆与圆的位置关系设C1与C2的圆心距为d,半径分别为r1与r2,则位置关系外离外切相交内切内含图示d与r1,r2的d>r1+r2d=r1+r2|r1-r2|<d<r1+r2d=|r1-r2| d<|r1-r2|关系(1)求相交两圆的弦长时,可先求出两圆公共弦所在直线的方程,再利用相交两圆的几何性质和勾股定理来求弦长.(2)过圆C1:x2+y2+D1x+E1y+F1=0与圆C2:x2+y2+D2x+E2y+F2=0的交点的直线方程为(D1-D2)x+(E1-E2)y+F1-F2=0.5.空间直角坐标系(1)建立的空间直角坐标系要遵循右手法则,空间上的任意一点都与有序实数组(x,y,z)一一对应.(2)空间中P1(x1,y1,z1),P2(x2,y2,z2)之间的距离|P1P2|=(x1-x2)2+(y1-y2)2+(z1-z2)2.(3)可利用“关于谁对称,谁保持不变,其余坐标相反”的方法来求空间直角坐标系下的对称点.题型一圆的方程例1一个圆和已知圆x2+y2-2x=0相外切,并与直线l:x+3y=0相切于M(3,-3)点,求该圆的方程.考点题点解∵圆C与圆x2+y2-2x=0相外切,故两个圆心之间的距离等于半径的和,又∵圆C与直线l:x+3y=0相切于M(3,-3)点,可得圆心与点M(3,-3)的连线与直线x+3y=0垂直,其斜率为 3.设圆C的圆心为(a,b),则⎩⎪⎨⎪⎧ b +3a -3=3,(a -1)2+b 2=1+|a +3b |2.解得a =4,b =0,r =2或a =0,b =-43,r =6,∴圆C 的方程为(x -4)2+y 2=4或x 2+(y +43)2=36.反思感悟 求圆的方程主要是根据圆的标准方程和一般方程,利用待定系数法求解,采用待定系数法求圆的方程的一般步骤:第一步:选择圆的方程的某一形式.第二步:由题意得a ,b ,r (或D ,E ,F )的方程(组).第三步:解出a ,b ,r (或D ,E ,F ).第四步:代入圆的方程.注:解题时充分利用圆的几何性质可获得解题途径,减少运算量,例如:圆的切线垂直于经过切点的半径;圆心与弦的中点连线垂直于弦;当两圆相交时,连心线垂直平分两圆的公共弦;当两圆相切时,连心线过切点等.跟踪训练1 (1)如图所示,圆C 与x 轴相切于点T (1,0),与y 轴正半轴交于两点A ,B (B 在A 的上方),且|AB |=2,则圆C 的标准方程为____________________.答案 (x -1)2+(y -2)2=2解析 取AB 的中点D ,连接CD ,AC ,则CD ⊥AB .由题意知,|AD |=|CD |=1,故|AC |=|CD |2+|AD |2=2,即圆C 的半径为 2.又因为圆C 与x 轴相切于点T (1,0),所以圆心C (1,2),故圆的标准方程为(x -1)2+(y -2)2=2.(2)求半径为10,圆心在直线y =2x 上,被直线x -y =0截得的弦长为42的圆的方程. 解 设圆的方程为(x -a )2+(y -b )2=r 2,则圆心坐标为(a ,b ),半径r =10,圆心(a ,b )到直线x -y =0的距离d =|a -b |2, 由半弦长,弦心距,半径组成的直角三角形得,d 2+⎝⎛⎭⎫4222=r 2, 即(a -b )22+8=10, ∴(a -b )2=4,又∵b =2a ,∴a =2,b =4或a =-2,b =-4,故所求圆的方程是(x -2)2+(y -4)2=10或(x +2)2+(y +4)2=10.题型二 直线与圆、圆与圆的位置关系例2 (1)已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( )A.内切B.相交C.外切D.相离考点题点答案 B解析 由垂径定理得⎝⎛⎭⎫a 22+(2)2=a 2,解得a 2=4, ∴圆M :x 2+(y -2)2=4, ∴圆M 与圆N 的圆心距d =(0-1)2+(2-1)2= 2.∵2-1<2<2+1,∴两圆相交.(2)已知直线l :x -3y +6=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别作l 的垂线与x 轴交于C ,D 两点,则|CD |=________.考点题点答案 4解析 联立⎩⎨⎧ x -3y +6=0,x 2+y 2=12,消去x 得y 2-33y +6=0, 解得⎩⎨⎧ x =-3,y =3或⎩⎨⎧x =0,y =2 3. 不妨设A (-3,3),B (0,23),则过点A 且与直线l 垂直的直线方程为3x +y +23=0,令y =0得x C =-2.同理得过点B 且与l 垂直的直线与x 轴交点的横坐标x D =2,∴|CD |=4.反思感悟 直线与圆、圆与圆的主要题型为:①位置关系的判断,②弦长问题,③求圆的方程.解决问题的方法主要有两种,一种代数法,一种几何法.跟踪训练2 (1)圆(x +1)2+y 2=2的圆心到直线y =x +3的距离为( )A.1B.2C. 2D.2 2考点题点答案 C(2)设直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若|AB |=23,则圆C 的面积为________.考点题点答案 4π解析 x 2+y 2-2ay -2=0,即x 2+(y -a )2=a 2+2,则圆心为C (0,a ).又|AB |=23,C 到直线y =x +2a 的距离为|0-a +2a |2, 所以⎝⎛⎭⎫2322+⎝ ⎛⎭⎪⎫|0-a +2a |22=a 2+2, 得a 2=2,所以圆C 的面积为π(a 2+2)=4π.题型三 对称问题例3 从点B (-2,1)发出的光线经x 轴上的点A 反射,反射光线所在的直线与圆x 2+y 2=12相切,求点A 的坐标.考点题点解 点B (-2,1)关于x 轴对称的点为B ′(-2,-1),易知反射光线所在直线的斜率存在,设反射光线所在的直线方程为y +1=k (x +2),即kx -y +2k -1=0.由题意,得|0-0+2k -1|k 2+1=12, 化简得7k 2-8k +1=0,解得k =1或k =17, 故所求切线方程为x -y +1=0或x -7y -5=0.令y =0,则x =-1或x =5.所以A 点的坐标为(-1,0)或(5,0).反思感悟 (1)对称的两种类型即轴对称与中心对称.(2)准确把握对称的几何性质.(3)圆的对称图形关键是圆心的对称,其半径不变.跟踪训练3 若圆C 的半径为1,其圆心与点(1,0)关于直线y =x 对称,则圆C 的标准方程为________________________________________________________________________. 答案 x 2+(y -1)2=1解析 由题意知圆C 的圆心为(0,1),半径为1,所以圆C 的标准方程为x 2+(y -1)2=1.题型四 圆中的最值问题例4 圆x 2+y 2+2ax +2ay +2a 2-1=0与x 2+y 2+2bx +2by +2b 2-2=0的公共弦长的最大值为( )A.2 2B.2C. 2D.1考点 与圆有关的最值问题题点 与圆的几何性质有关的最值答案 B解析 由题意得,两圆的标准方程分别为(x +a )2+(y +a )2=1和(x +b )2+(y +b )2=2,两圆的圆心坐标分别为(-a ,-a ),(-b ,-b ),半径分别为1,2,则当公共弦为圆(x +a )2+(y +a )2=1的直径时,公共弦长最大,最大值为2.反思感悟 与圆有关的最值问题包括(1)求圆O 上一点到圆外一点P 的最大距离、最小距离:d max =|OP |+r ,d min =||OP |-r |.(2)求圆上的点到某条直线的最大、最小距离:设圆心到直线的距离为m ,则d max =m +r ,d min=|m -r |.(3)已知点的运动轨迹是(x -a )2+(y -b )2=r 2,求①y x ;②y -m x -n;③x 2+y 2等式子的最值,一般是运用几何法求解.跟踪训练4 已知P 是直线3x +4y +8=0上的动点,P A ,PB 是圆x 2+y 2-2x -2y +1=0的两条切线,A ,B 是切点,C 是圆心,那么四边形P ACB 的面积的最小值为________. 考点 与圆有关的最值问题题点 与面积有关的最值答案 2 2解析 圆x 2+y 2-2x -2y +1=0的圆心为C (1,1),半径为1,由题意知,当圆心C 到点P 的距离最小时(即为圆心到直线的距离),四边形的面积最小,又圆心到直线的距离d =|3+4+8|32+42=3, ∴|P A |=|PB |=d 2-r 2=22,∴S 四边形P ACB =2×12|P A |r =2 2.1.以点(-3,4)为圆心,且与x 轴相切的圆的方程是( )A.(x -3)2+(y +4)2=16B.(x +3)2+(y -4)2=16C.(x -3)2+(y +4)2=9D.(x +3)2+(y -4)2=9考点 圆的标准方程题点 求与某直线相切的圆的标准方程答案 B2.已知圆C 与直线x -y =0和x -y -4=0都相切,圆心在直线x +y =0上,则圆C 的方程为( )A.(x +1)2+(y -1)2=2B.(x -1)2+(y +1)2=2C.(x -1)2+(y -1)2=2D.(x +1)2+(y +1)2=2题点 求圆的标准方程答案 B3.两圆x 2+y 2-6x +16y -48=0与x 2+y 2+4x -8y -44=0的公切线的条数为( )A.4B.3C.2D.1考点 圆与圆的位置关系题点 两圆的位置关系与其公切线答案 C解析 两圆的标准方程分别为(x -3)2+(y +8)2=121;(x +2)2+(y -4)2=64,则两圆的圆心与半径分别为C 1(3,-8),r 1=11;C 2(-2,4),r 2=8.圆心距为|C 1C 2|=(3+2)2+(-8-4)2=13.∵r 1-r 2<|C 1C 2|<r 1+r 2,∴两圆相交,则公切线共2条.4.经过两个定点A (a,0),A 1(a ,a ),且圆心在直线y =13x 上的圆的方程为________________________.答案 ⎝⎛⎭⎫x -32a 2+⎝⎛⎭⎫y -a 22=a 22 解析 圆过点A (a,0),A 1(a ,a ),则圆心在直线y =a 2上. 又圆心在直线y =13x 上, 所以圆心坐标为⎝⎛⎭⎫32a ,a 2,则半径r =⎝⎛⎭⎫a -32a 2+⎝⎛⎭⎫-a 22=22|a |, 故圆的方程为⎝⎛⎭⎫x -32a 2+⎝⎛⎭⎫y -a 22=a 22. 5.已知直线x -my +3=0和圆x 2+y 2-6x +5=0.(1)当直线与圆相切时,求实数m 的值;(2)当直线与圆相交,且所得弦长为2105时,求实数m 的值. 考点 直线和圆的位置关系解 (1)因为圆x 2+y 2-6x +5=0可化为(x -3)2+y 2=4,所以圆心坐标为(3,0),r =2. 因为直线x -my +3=0与圆相切, 所以|3+3|1+(-m )2=2, 解得m =±2 2.(2)圆心(3,0)到直线x -my +3=0的距离为d =|3+3|1+(-m )2.由24-⎝ ⎛⎭⎪⎫|3+3|1+(-m )22=2105, 得2+2m 2=20m 2-160,即m 2=9.故m =±3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学限时训练(2) 圆与空间直角坐标系
一、选择题:(本大题共10小题,每小题5分,共50分)
1.方程x 2+y 2+2ax -by+c=0表示圆心为C(2,2),半径为2的圆,则a 、b 、c 的值依次为
A. 2、4、4;
B. -2、4、4;
C. 2、-4、4;
D. 2、-4、-4 2.直线3x -4y -4=0被圆(x -3)2+y 2=9截得的弦长为
A.22
B. 4
C.24
D. 2
3. 已知点A(-3,1,4),则点A 关于原点的对称点的坐标为
A.(1,-3,-4) B.(-4,1,-3) C.(3,-1,-4) D.(4,-1,3) 4.自点A(-1,4)作圆(x -2)2+(y -3)2=1的切线,则切线长为 A.5 B.3 C.10 D. 5
5.已知M (-2,0),N (2,0), 则以MN 为斜边的直角三角形直角顶点P 的轨迹方程是
A. x 2+y 2=2
B. x 2+y 2=4
C. x 2+y 2=2(x≠±2)
D. x 2+y 2=4(x≠±2) 6.若直线(1+a)x+y+1=0与圆x 2+y 2-2x=0相切,则a 的值为 A. 1,-1 B. 2,-2 C. 1 D.-1 7. 已知A(1-t ,1-t ,t),B(2,t ,t),则|AB|的最小值为
A.
5
B.
5
C.
5
D.
115
8.过点A(1,-1)、B(-1,1)且圆心在直线x+y -2=0上的圆的方程是 A. (x -3)2+(y+1)2=4 B. (x+3)2+(y -1)2=4 C. (x -1)2+(y -1)2=4 D. (x+1)2+(y+1)2=4
9.+y 0-截圆x 2+y 2=4得的劣弧所对的圆心角是 A.
π6 B.4π C.3π D.2
π 10.M(x 0,y 0)为圆x 2+y 2=a 2(a>0)内异于圆心的一点,则直线x 0x+y 0y=a 与该圆的位置关系是
A.相切
B.相交
C. 相离
D.相切或相交
选择题答题表
二、填空题:(本大题共4小题,每小题5分,共20分)
11.在xOy平面内的直线x+y=1上确定一点M;使M到点N(6,5,1)的距离最小.
12.设A为圆(x-2)2+(y-2)2=1上一动点,则A到直线x-y-5=0的最大距离为____________.
13.过点P(-1,6)且与圆(x+3)2+(y-2)2=4相切的直线方程是___________.
14.过圆x2+y2-x+y-2=0和x2+y2=5的交点,且圆心在直线3x+4y-1=0上的圆的方程为_____________.
三、填空题:
15.过原点O作圆x2+y2-8x=0的弦OA.
(1)求弦OA中点M的轨迹方程;
(2)延长OA到N,使|OA|=|AN|,求N点的轨迹方程.
16.已知圆与y轴相切,圆心在直线x-3y=0,且这个圆经过点A(6,1),求该圆的方程.
17.圆(x+1)2+y2=8内有一点P(-1,2),AB过点P,
(1)若弦长|AB|=AB的倾斜角 ;
(2)若圆上恰有三点到直线AB AB的方程.。

相关文档
最新文档