概率1 (1)
概率第一章

随机试验:不能事先准确地预见它的
结果,而且在相同条件下可以重复进行。
1-4
概率论与数理统计
E
随机试验:不能事先准确地预见它的
结果,而且在相同条件下可以重复进行用 符号 E 表示。 随机事件 :在条件下事件可能发生也 可能不发生的事件用大写字母 A , B , C ,表
指出
件,并表示事件 1-9
事件中哪些是基本事 B, C, D
。 概率论与数理统计
E
1.2.2 事件间的关系与运算
1.事件的包含与相等 若事件 A 中的每个基本事件都包含在 B
A
事件 B 之中,即 A 的发生必然导致 B 的发
生,则称事件 A 包含于事件 B ,或事件 B
包含事件 A ,也称是的特款 ,记为 A B 。
1-19
概率论与数理统计
E 与B B)( A与 A与B 如果事件A与事件B A A (1) (B 的和 A B) ;
(2) AB AB BC;
(3) ( A B)( A B)(B C ).
例1.2.4 化简下列各事件:
(1) ( A B)( A B) ; (2) AB AB BC; (3) ( A B)( A B)(B C ).
(2) AB AB BC;
(3) ( A B)( A B)(B C ).
例1.3.1 设事件A, B 的概率分别为 和
,试求下列三种情况下的值: (1) B 互不相容; A, (2) A B ; (3) ( AB ) 1 . P
8
1 3
1 2
1-27
概率论与数理统计
E 与B B)( A与 A与B 如果事件A与事件B A A (1) (B 的和 A B) ;
概率论第1章(第一节)

本学期的研究内容
教材中的第一章---第四章 教材中的第一章---第四章 ---
第一章 随机事件与概率
随机事件及其运算 事件的概率 条件概率 事件的独立性
1.1 随机事件及其运算
一、基本概念:随机试验、样本空间、随机事件 基本概念:随机试验、样本空间、 概念 1、随机试验(简称“试验”) 、随机试验(简称“试验” 如果试验(或观察)具有下面三个特点: 如果试验(或观察)具有下面三个特点: (1)重复性:试验可以在相同条件下重复进行; 重复性:试验可以在相同条件下重复进行; 预知性:试验的全部可能结果不止一个, (2)预知性:试验的全部可能结果不止一个,但都是 可以预知的; 可以预知的; 随机性:每次试验前, (3)随机性 : 每次试验前 ,不能确定会出现哪一种结 果。 这样的试验(或观察)称为随机试验,一般记为 。 这样的试验(或观察)称为随机试验,一般记为E。
二、事件的关系 事件的包含与相等 事件的和(并) 事件的积(交) 事件的差 互斥事件(互件的包含与相等 事件的包含与相等
若事件A发生必导致事件B发生 称事件A包 若事件 发生必导致事件 发生,称事件 包 发生必导致事件 发生, 含于事件B, 包含A,记为A⊂ ,也称A是 的 含于事件 ,或B包含 ,记为 ⊂B,也称 是B的 包含 子事件。 子事件。
记作B = A ,称为A的对立事件 易见A − B = AB ;
A与B对立: 对立:
事件A 与B 既不能同 时发生, 时发生,又不能同时 不发生。 不发生。即在每次试 验中, 验中,A 与B 有且仅 有一个发生。 有一个发生。
注:对立事件必为互斥事件,但互斥事件 对立事件必为互斥事件, 未必是对立事件。 未必是对立事件。
概率论的发展
1657年,荷兰的数学家惠根斯 年 荷兰的数学家惠根斯(1629-1695)亦用自己的方法 惠根斯 亦用自己的方法 解决了上述问题,更写成了《论赌博中的计算》一书, 解决了上述问题,更写成了《论赌博中的计算》一书,这 就是概率论最早的论著。并由此奠定了古典概率论的基础。 就是概率论最早的论著。并由此奠定了古典概率论的基础。 世纪到19 世纪,贝努利、隶莫弗、拉普拉斯、高斯、 从 17 世纪到 世纪,贝努利、隶莫弗、拉普拉斯、高斯、 泊松、马尔可夫等著名数学家都对概率论的发展做出了杰 泊松、马尔可夫等著名数学家都对概率论的发展做出了杰 出的贡献。 出的贡献。 1933 年,苏联数学家柯尔莫哥洛夫发表了著名的《概率论 苏联数学家柯尔莫哥洛夫发表了著名的《 柯尔莫哥洛夫发表了著名的 的基本概念》,用公理化结构, 》,用公理化结构 的基本概念》,用公理化结构,为概率论确定严密的理论 是概率论发展史上的一个里程碑, 基础 ,是概率论发展史上的一个里程碑,为以后的概率论 的迅速发展奠定了基础。 到了近代,出现了理论概率及应用概率的分支, 到了近代,出现了理论概率及应用概率的分支,将概率论 应用到不同范畴,开展了不同学科。因此, 应用到不同范畴,开展了不同学科。因此,现代概率论已 经成为一个非常庞大的数学分支。 经成为一个非常庞大的数学分支。
1概率基础知识1

全概率公式
若 事 件 A1 A 2 , ..., A n 满 足 : (1) A1 ∪ A 2 ∪ ... ∪ A n = Ω ( 2 ) Ai ∪ A j = ∅ ( i ≠ j , i , j = 1, 2, ..., n ) 则 称 A1 A 2 , ..., A n 为 完 备 事 件 组 。
A、B是随机试验 的两个随机事件, 是随机试验E的两个随机事件 定义 设A、 是随机试验 的两个随机事件, 且P(A)>0,则称 则称
P( AB) P( B | A) = P( A)
为已知事件A发生条件下,事件B发生的条件 为已知事件 发生条件下,事件 发生的条件 发生条件下 概率。 概率。
B ABA
概率的公理化定义
设随机试验E的样本空间为 设随机试验 的样本空间为 ,所有事件构 成事件集合L,对于L上的任一事件 上的任一事件A赋予一 成事件集合 ,对于 上的任一事件 赋予一 个实数P(A),满足: 满足: 个实数 满足 1. 0≤P(A)≤1 2.P( )=1 3.对于 的两两不相 P ( 对于E的两两不相 对于 容的事件A 容的事件 1,A2,…,有 有
C C
k D
n−k N −D
种,
k D n−k N −D
于是所求的概率为
p =C C
/C
n N
几何概率
向该正方形随机投针, 向该正方形随机投针,求针落在 红色区域A的概率 红色区域 的概率 A
Ω
几何概型实验
1.样本空间是直线、 1.样本空间是直线、平面或空间上的某个 样本空间是直线 区域,含有无限多个样本点; 区域,含有无限多个样本点;
∑
∞
i =1
Ai ) =
∑
∞
人教a版必修3数学教学课件第3章概率第1节随机事件的概率

反思判断随机事件、必然事件、不可能事件时要注意看清条件,
在给定的条件下判断是一定发生(必然事件),还是不一定发生(随机
事件),还是一定不发生(不可能事件).
目标导航
题型一
题型二
Z 知识梳理 Z重难聚焦
HISHISHULI
HONGNANJUJIAO
D典例透析
IANLITOUXI
题型难聚焦
HISHISHULI
HONGNANJUJIAO
D典例透析
IANLITOUXI
题型三
反思利用频率估计概率的步骤:
(1)依次计算各个频率值;(2)观察各个频率值的稳定值即为概率
的估计值,有时也可用各个频率的中位数来作为概率的估计值.
目标导航
题型一
题型二
Z 知识梳理 Z重难聚焦
目标导航
Z 知识梳理 Z重难聚焦
HISHISHULI
HONGNANJUJIAO
D典例透析
IANLITOUXI
【做一做1】 下列事件中,是随机事件的有(
)
①在一条公路上,交警记录某一小时通过的汽车超过300辆;
②若a为整数,则a+1为整数;
③买一张彩票中奖;
④检查流水线上一件产品是合格品还是次品.
A.1个 B.2个 C.3个 D.4个
题型三
反思1.把握住随机试验的实质,要明确一次试验就是将试验的条
件实现一次.
2.准确理解随机试验的条件、结果等有关定义,并能使用它们判
断一些事件,指出试验结果,这是求概率的基础.在写试验结果时,一
般采用列举法.根据日常生活经验,按一定次序列举,才能保证所列
结果没有重复,也没有遗漏.
目标导航
概率论第1章

且 P(5 i 0 A i ) 1
根据概率的有限可加性,所求概率为
5 0 4 1 C C C 113 5 5 5 C5 P(5 A ) 1 P ( A ) P ( A ) 1 i 2 i 0 1 5 C10 C150 126
(2) 令Ai=“第i次取到的是安慰剂”
利用条件概率的乘法定理可得
3 4 5 1 P( A1 A2 A3 ) P( A3 | A1 A2 ) P( A2 | A1 ) P ( A1 ) 8 9 10 12 3 A5 5 4 3 1 或 P 3 A10 10 9 8 12
4
第1章 概率论的基本概念
习题3(3)
P( AB )
3.(3) 已知P(A)=1/2, (a)若A,B互不相容,求 (b)若P(AB)=1/8, 求 P( AB ) 解:利用差事件概率可得
P( AB) P[ A(S B)] P( A AB) P( A) P( AB)
,
若A,B互不相容,则P(AB)=0, 故
第1章 概率论的基本概念
习题5
5. 10片药片中有5片是安慰剂. (1)从中任意抽取5片,求其中至少有2片是安慰剂 的概率. (2)从中每次取一片,作不放回抽样,求前三次都取到安慰剂的概率.
解(1):这属于经典概型的组合问题
令Ai=“取到的5片中有i片是安慰剂”,i=0,1,2,3,4,5,它们是互不相容的。
P(A∪B∪C)=P(A)+P(B)+P(C)
- P(AB)- P(AC)-P(BC)
+P(ABC)
其中 P(ABC)=P(C|AB)P(AB)=0
§6-1-1频率与概率(1)频率和概率的关系(liushuling )

(1,5) (1,6) (2,5) (2,6) (3,5) (3,6) (4,5) (4,6) (5,3) (5,4) (5,5) (5,6) (6,3) (6,4) (6,5) (6,6)
概率的综合应用:
3.有长度分别为2cm,2cm,4cm,5cm的小棒 各一根,放在不透明的纸盒中,每次从中任 意取一根小棒(不放回),取了三次,取得 的三根小棒恰好能构成一个三角形的概率是 多少?
(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
3
4 5 6
(6,1) (6,2) (6,3) (6,4)(6,5) (6,6)
(2) 取3枚硬币:在第一枚的正面贴上 红色标签,反面贴上蓝色;在第二枚的正 面贴上蓝色标签,反面贴上黄色;在第三 枚的正面贴上黄色标签,反面贴上红色, 同时抛三枚硬币,落地后颜色各不相同的 机会有多大?
概率是 2/3 ; (2)随机从中摸出一球,记录下颜色后 放回袋中,充分混合后再随机摸出一球, 两次都摸到红球的概率为 ; (3)随机从中一次摸出两个球,两球 均为红球的概率是 。
(2)随机从中摸出一球,记录下颜色后 放回袋中,充分混合后再随机摸出一球, 两次都摸到红球的概率为 4/9 ;
红球 红球 红球 红球 兰球 兰球 1 2 3 4 5 6
2一般地,不确定事件发生的可能性 是有大小的。 表示方式一:
1(或100%) 必然事件发生的可能性:_______________ 不可能事件发生的可能性:____________ 用0来表示 不确定事件发生的可能性是 大于0小于1的 。
表示方式二:
用线段图可表示为:
0
不可能 发生
½(50%)
明白了
懂得了
合作交流的重要性
新教材高中数学第七章概率1随机现象与随机事件 随机事件的运算课件北师大版必修第一册

两次”的对立事件是
( D)
A.恰有一次击中
B.三次都没击中
C.三次都击中
D.至多击中一次
[解析] (1)事件“至多有一次中靶”包含“只有一次中靶”和“两
次都不中靶”,因此不会与其同时发生的事件是“两次都中靶”.
(2)根据题意,一个人连续射击三次,事件“至少击中两次”包括“击
中两次”和“击中三次”两个事件,其对立事件为“一次都没有击中和击
事件 称事件 A 与事件 B 互为对立,事
件 A 的对立事件记为-A
与 B 对立
图示
[知识解读] 1.互斥事件与对立事件的区别与联系 (1)区别:两个事件A与B是互斥事件,包括如下三种情况:①若事件 A发生,则事件B就不发生;②若事件B发生,则事件A就不发生;③事件 A,B都不发生. 而两个事件A,B是对立事件,仅有前两种情况,因此事件A与B是对立事 件,则A∪B是必然事件,但若A与B是互斥事件,则不一定是必然事件,即事件 A的对立事件只有一个,而事件A的互斥事件可以有多个.
基础自测
1.(2022·安徽省蚌埠二中开学考试)从装有2个白球和3个黑球的口
袋内任取两个球,那么互斥而不对立的事件是
( A)
A.“恰有两个白球”与“恰有一个黑球”
B.“至少有一个白球”与“至少有一个黑球”
C.“都是白球”与“至少有一个黑球”
D.“至少有一个黑球”与“都是黑球”
[解析] 对于A,事件“恰有两个白球”与事件“恰有一个黑球”不 能同时发生,但从口袋中任取两个球时还有可能两个都是黑球,∴两个事 件是互斥事件但不是对立事件,∴A正确;对于B,事件“至少有一个黑 球”与事件“至少有一个白球”可以同时发生,∴这两个事件不是互斥事 件,∴B不正确;对于C,事件“都是白球”与事件“至少有一个黑球”不 能同时发生,但它们是对立事件,∴C不正确;对于D,事件“至少有一个黑 球”与事件“都是黑球”可以同时发生,故不互斥,∴D不正
1概率论的基本概念

[注样本空间是相对于某个随机试验而言,而其元 ]
素取决于试验的内容和目的.
二、随机事件
1.随机事件: 试验E的样本空间S的子集. 简称事件. 通常用字母A,B,C表示.
A的对立事件记作 A .
ASA
B A
A
[注]
(1) 事件之间的关系可用文氏图表示; (2) 对于任意事件A,显然
AA , A
A S,
A S A, A A
(3) 基本事件都是互不相容的; A与B-A也是互不相容的. (4) B A B A B AB
B
A
A U B A U ( B A )
S1={H, T}(H表示出现正面, T表示出现反面)
试验E2:将一枚硬币抛掷三次,观察正面H、反面T出现的情况.
S2= {HHH,HHT,HTH,THH, HTT,THT,TTH,TTT}
试验E3:将一枚硬币抛掷三次,观察反面出现的次数. S3={0,1,2,3} 试验E4:抛掷一枚骰子, 观察出现的点数. S4={1,2,3,4,5,6}
第一章 概率论的基本概念
§1.1 §1.2 §1.3 §1.4 §1.5 §1.6 随机试验 样本空间、随机事件 频率与概率 等可能概型(古典概型) 条件概率 独立性
第一章 概率论的基本概念
引言:概率论是研究什么的?
研究和揭示随机现象的统计 在一定条件下必然发生的现象 确定现象 规律性的数学学科 例:向空中抛一物体必然落向地面; 水加热到100℃必然沸腾; 异性电荷相吸引; 放射性元素发生蜕变; … … 例:抛一枚硬币,结果可能正(反)面朝上; 向同一目标射击,各次弹着点都不相同; 某地区的日平均气温; 掷一颗骰子,可能出现的点数;… …
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
编号:1016007 年级、学科:九年级数学(上)执笔:蒋万清审核:温暄
《用列举法求概率》导学反馈案(一)
一、示标
1、学习用列表法、画树形图法计算概率,并通过比较概率大小作出合理的决策。
2、能根据不同情况选择恰当的方法进行列举,解决较复杂事件概率的计算问题。
二、导学
(一)复习引人:
1、概率的定义:
2、P(A)的取值范围是什么?
(二)探究新知:
自主学习一:直接分类列举求概率
问题一:如图:计算机扫雷游戏,在9×9个小方格中,随机埋藏着10个地雷,每个小方格只有1个地雷,小王开始随机踩一个小方格,标号为3,在
3的周围的正方形中有3个地雷,我们把标号为3的方格相邻的方格记
为A区,A区外记为B区,下一步小王应该踩在A区还是B区?
问题二:掷两枚硬币,求下列事件的概率:
(1)两枚硬币全部正面朝上。
(2)两枚硬币全部反面朝上。
(3)一枚硬币正面朝上,一枚反面朝下。
归纳:
列举法求概率:
利用列举法求概率的关键在于正确列举出试验结果的各种可能性,而列举的方法通常有直接分类列举、列表、画树形图等.
自主学习二:利用画树形图、列表法求概率
问题三:同时掷两个质地均匀的骰子,计算下列事件的概率:
(1) 两个骰子的点数相同;
(2) 两个骰子的点数的和是9;
(3) 至少有一个骰子的点数为2。
思考:将题中的”同时掷两个骰子”改为”把一个骰子掷两次”,所得的结果
有变化吗?
归纳小结:
当一个事件要涉及两个因素或实验需要二步时,通常采用列表法或画树形图求概率。
求概率的步骤如下:
①列表(画树性形图) ; ②通过表格或树形图计数,确定公式P(A)=n
m 中m 和n 的值;③利用公式P(A)=n
m 计算事件的概率。
三、 反馈
1、布袋中装有1个红球、2个白球、3个黑球,它们除颜色外完全相同,从袋中任意摸出一个球,摸出的球是白球的概率是 。
2、有大小、形状、颜色完全相同的5个乒乓球,每个球上分别标有数字1、2、
3、4、5中的一个,将这5个球放入不透明的袋中搅匀,如果不放回的从中随机连续抽取两个,则这两个球上的数字之和为偶数的概率
3、在6张卡片上分别写有1~6的整数,随机的抽取一张后放回,再随机的抽取一张,那么,第一次取出的数字能够整除第2次取出的数字的概率是多少?
四、巩固
1、一只口袋中放着若干个红球和白球,这两个球除了颜色以外没有任何其他区
别,袋中的球已经搅匀,蒙上眼睛从口袋中取出一只球,取出红球的概率是1
4。
(1)取出白球的概率是多少?
(2)如果袋中的白球有18个,那么袋中的红球有多少个?
2、已知一纸箱中装有5个只有颜色不同的球,其中2个白球,3个红球
(1)球从箱中随机取出一个白球的概率是多少?
(2)若往装有5个球的原纸箱中,再放入X个白球和Y个红球,从箱中随机
取出一个白球的概率是1
3
,求Y与X的函数解析式。
3、一个袋中有2个黄球和2个红球(除颜色外其余都相同)
(1)任意摸出一个球后放回,再任意摸出一个球,求两次都摸到红球的概率。
(2)任意摸出一个球后不放回,再任意摸出一个球,求两次都摸到红球的概率。
(3)若同时摸出两个球,求摸出的两个球都是红球的概率。
4、为活跃联欢晚会的气氛,组织者设计了以下转盘游戏:A、B两个带指针的转
盘分别被分成三个面积相等的扇形,转盘A上的数字分别是1,6,8,转盘B 上的数字分别是4,5,7(两个转盘除表面数字不同外,其他完全相同)。
每次选择2名同学分别拨动A、B两个转盘上的指针,使之产生旋转,指针停止后所指数字较大的一方为获胜者,负者则表演一个节目(若箭头恰好停留在分界线上,则重转一次)。
作为游戏者,你会选择哪个装置呢?并请说明理由。
A B
图2 联欢晚会游戏转盘
5、某市今年中考理、化实验操作考试,采用学生抽签方式决定自已的考试内容,规定:每位考生必须在三个物理实验(用纸签A、B、C表示)和三个化学实验(用纸签D、E、F表示)中各抽取一个进行考试,小刚在看不到纸签的情况下,分别从中各随机抽取一个。
(1)用“列表法”或“树形图法”表示所有可能出现的结果。
(2)小刚抽到物理实验B和化学实验F(记作事件M)的概率是多少?
6、某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场
的主持人,求选出的主持人恰好为一男一女的概率。
7、汶川大地震时,航空兵空投救灾物资到指定的区域(圆A)如图所示,若要
使空投物资落在中心区域(圆B)的概率为1
2
,则⊙B与⊙A的半径之比是多少?
五、反思。