最短路径问题与平面直角坐标系

合集下载

最短路径问题与平面直角坐标系

最短路径问题与平面直角坐标系

最短路径问题与平面直角坐标系教学目标:(一)知识与技能1、能利用轴对称变换将线段和最小问题转化为“两点之间,线段最短”(或“三角形两边之和大于第三边”)的问题。

2、能在平面直角坐标系中作出图形,并通过逻辑推理证明所求平面直角坐标系中点的坐标。

(二)过程与方法通过平面直角坐标系与最短路径问题结合,培养归纳能力、表达能力、逻辑推理能力,并通过对知识、方法的总结,培养反思习惯。

(三)情感与态度通过交流与探究,解决问题,获得成功的体验,培养协作精神,进一步激发探究的积极性和学习数学的兴趣及应用数学解决实际问题的能力。

教学重点 :最短路径问题与平面直角坐标系综合教学难点 : 正确作出图形,并会根据图形特点求出点的坐标教学方法 : 以最短路径和平面直角坐标系为基础,引导学生合作、交流、自主探究。

教学准备 :几何画板教 学 过 程:一、 复习1、点A(m,n)关于x 轴对称点B 为( , ),点A 关于y 轴对称点C 为( , )2、点A (2,5)与B 点关于直线x =3成轴对称,则点B 的坐标为( , )3、已知:如图,点A ,B 在直线的同侧,在直线上求一点C ,使CA+CB 的和最小。

二、 习题讲练例1:已知,在平面直角坐标系中,点A (1,3),点B (5,1),在x 轴上找一点C ,使AC + BC 最小,求C 点的坐标。

分析:此题先要求学生在平面直角坐标系中作出两点A ,B ,然后作出A 点关于x轴对称点D ,连接DB 与x 轴交点即为所求点C 。

接下来思考怎么求点C 的坐标,用面积法去求。

教师示范过程。

变式训练一:若改为在y 轴上求点C ,使AC + BC 最小,求C 点的坐标。

说明:这样可以巩固刚才所讲的知识,一是考察学生对最短路径,二是考察学生运算能力。

变式训练二:若改为在直线y = - 2上求一点C ,使AC + BC 最小,求C 点的坐标。

B A例2:如图,在平面直角坐标系中,∠AOB = 300 ,P (5,0),在OB 找一点M ,在OA 上找一点N ,使△PMN 周长最小,并求出△PMN 周长的值。

八年级数学最短路径题型归纳

八年级数学最短路径题型归纳

八年级数学中的最短路径问题,通常涉及到几何图形中的点、线、面等元素,需要利用一些基本的几何知识和数学原理来求解。

以下是一些常见的最短路径题型及其解题方法:1.两点之间的最短距离:题型描述:在平面上给定两点A和B,求A到B的最短距离。

解题方法:直接连接A和B,线段AB的长度即为最短距离。

2.点到直线的最短距离:题型描述:在平面上给定一点P和一条直线l,求P到l的最短距离。

解题方法:作点P到直线l的垂线,垂足为Q,则PQ的长度即为最短距离。

3.直线到直线的最短距离:题型描述:在平面上给定两条直线l1和l2,求l1到l2的最短距离。

解题方法:如果l1和l2平行,则它们之间的距离即为最短距离;如果l1和l2不平行,则作l1到l2的垂线,垂足所在的线段即为最短4.点到圆的最短距离:题型描述:在平面上给定一点P和一个圆O,求P到圆O的最短距离。

解题方法:如果点P在圆O内,则最短距离为P到圆心的距离减去圆的半径;如果点P在圆O外,则最短距离为P到圆心的距离;如果点P在圆O上,则最短距离为0。

5.圆到圆的最短距离:题型描述:在平面上给定两个圆O1和O2,求O1到O2的最短距离。

解题方法:如果两圆外离,则它们之间的最短距离为两圆的半径之和;如果两圆外切,则它们之间的最短距离为两圆的半径之差;如果两圆相交或内切,则它们之间的最短距离为0;如果两圆内含,则它们之间的最短距离为两圆的半径之差减去两圆半径之和的绝对值。

6.多边形内的最短路径:题型描述:在一个多边形内给定两个点A和B,求A到B的最短解题方法:通常需要将多边形划分为多个三角形,然后利用三角形内的最短路径(即连接两点的线段)来求解。

7.立体几何中的最短路径:题型描述:在立体图形中给定两点A和B,求A到B的最短路径。

解题方法:通常需要将立体图形展开为平面图形,然后利用平面几何中的最短路径原理来求解。

在解决最短路径问题时,需要注意以下几点:准确理解题目要求,确定需要求的是哪两点之间的最短距离。

13.4轴对称之最短路径问题人教版2024—2025学年八年级上册

13.4轴对称之最短路径问题人教版2024—2025学年八年级上册

13.4轴对称之最短路径问题人教版2024—2025学年八年级上册二、例题讲解例1.如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC,已知线段AB=4,DE=2,BD=8,设CD=x.(1)用含x的代数式表示AC+CE的长;(2)请问点C满足什么条件时,AC+CE最小?最小为多少?(3)根据(2)中的规律和结论,请构图求代数式的最小值.变式1.如图,C为线段BD上一动点,分别过点B,D作AB⊥BD,ED⊥BD,连结AC,EC,已知AB=5,DE=1,BD=8.(1)请问点C什么位置时AC+CE的值最小?最小值为多少?(2)设BC=x,则AC+CE可表示为,请直接写出的最小值为.例2.如图,直线l是一条河,P,Q是两个村庄,欲在l上的某处修建一个水泵站,向P,Q两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是()A.B.C.D.变式1.如图,在⊥ABC中,BA=BC,BD平分⊥ABC,交AC于点D,点M、N 分别为BD、BC上的动点,若BC=10,⊥ABC的面积为40,则CM+MN的最小值为.变式2.如图,等腰三角形ABC的底边BC长为8,面积是24,腰AC的垂直平分线EF分别交AC,AB于E,F点,若点D为BC边的中点,点M为线段EF 上一动点,则⊥CDM的周长的最小值为()A.7B.8C.9D.10变式3.如图,在平面直角坐标系中,矩形OACB的顶点O在坐标原点,顶点A、B分别在x轴、y轴的正半轴上,OA=3,OB=4,D为边OB的中点.(1)点D的坐标为;(2)若E为边OA上的一个动点,当⊥CDE的周长最小时,求点E的坐标.例3.如图,⊥AOB内一点P,P1,P2分别是P关于OA、OB的对称点,P1P2交OA于点M,交OB于点N.若⊥PMN的周长是6cm,则P1P2的长为()A.6cm B.5cm C.4cm D.3cm变式1.已知点P在⊥MON内.如图1,点P关于射线OM的对称点是G,点P 关于射线ON的对称点是H,连接OG、OH、OP.(1)若⊥MON=50°,求⊥GOH的度数;(2)如图2,若OP=6,当⊥P AB的周长最小值为6时,求⊥MON的度数.变式2.如图,⊥MON=45°,P为⊥MON内一点,A为OM上一点,B为ON上一点,当⊥P AB的周长取最小值时,⊥APB的度数为()A.45°B.90°C.100°D.135°变式3.如图,⊥AOB=30°,P是⊥AOB内的一个定点,OP=12cm,C,D分别是OA,OB上的动点,连接CP,DP,CD,则⊥CPD周长的最小值为.变式4.如图,在五边形中,⊥BAE=140°,⊥B=⊥E=90°,在边BC,DE上分别找一点M,N,连接AM,AN,MN,则当⊥AMN的周长最小时,求⊥AMN+⊥ANM 的值是()A.100°B.140°C.120°D.80°例4.如图,在⊥ABC中,AB=AC,⊥A=90°,点D,E是边AB上的两个定点,点M,N分别是边AC,BC上的两个动点.当四边形DEMN的周长最小时,⊥DNM+⊥EMN的大小是()A.45°B.90°C.75°D.135°变式1.如图,在平面直角坐标系中,已知点A(0,1),B(4,0),C(m+2,2),D(m,2),当四边形ABCD的周长最小时,m的值是()A.B.C.1D.变式2.如图,在四边形ABCD中,⊥B=90°,AB⊥CD,BC=3,DC=4,点E 在BC上,且BE=1,F,G为边AB上的两个动点,且FG=1,则四边形DGFE 的周长的最小值为.例5.如图,⊥AOB=20°,点M、N分别是边OA、OB上的定点,点P、Q分别是边OB、OA上的动点,记⊥MPQ=α,⊥PQN=β,当MP+PQ+QN最小时,则β﹣α的值为()A.10°B.20°C.40°D.60°变式1.如图,∠AOB=20°,M,N分别为OA,OB上的点,OM=ON=3,P,Q分别为OA,OB上的动点,求MQ+PQ+PN的最小值。

曼哈顿距离在高考中的应用

曼哈顿距离在高考中的应用

曼哈顿距离在高考中的应用
曼哈顿距离是指在平面直角坐标系中,两个点之间在水平和垂直方向上的距离之和。

在高考数学中,曼哈顿距离通常用于计算方格图中两点之间的最短路径,或是计算平面上的距离。

以下是曼哈顿距离在高考中的应用:
1. 最短路径问题:在方格图中,如果两个点的行坐标和列坐标分别相差x和y,那么它们之间的曼哈顿距离就是x+y。

因此,我们可以通过计算曼哈顿距离来确定两个点之间的最短路径,这在高考中是一个常见的问题。

2. 密码锁问题:某些密码锁在输入密码时,要求按照规定的方向进行移动,而移动的距离则是按照曼哈顿距离计算的。

这种问题也常常出现在高考中,需要用到曼哈顿距离的概念。

3. 平面距离计算:在平面直角坐标系中,两个点的欧几里得距离是它们之间直线距离的长度。

而曼哈顿距离则是它们之间路径长度的总和。

在高考中,有时需要计算平面上的距离,此时曼哈顿距离就能派上用场。

综上所述,曼哈顿距离在高考数学中具有重要的应用,学生需要掌握曼哈顿距离的计算方法和应用技巧。

- 1 -。

八年级最短路径问题归纳

八年级最短路径问题归纳

八年级最短路径问题归纳最短路径问题是图论中的一个经典问题,也是计算机科学中的重要研究领域之一。

在八年级的学习中,我们也会接触到最短路径问题,并且通过一些简单的算法来解决这个问题。

本文将对八年级最短路径问题进行归纳总结,希望能够帮助大家更好地理解和应用这个问题。

一、最短路径问题的定义最短路径问题是指在一个给定的图中,找出两个顶点之间的最短路径,即路径上的边权之和最小。

其中,图由顶点和边组成,顶点表示路径中的点,边表示路径中的通路或连接。

二、最短路径问题的应用最短路径问题在生活中有着广泛的应用,比如导航系统中的最短路径规划、货物运输中的最短路径选择等等。

通过寻找最短路径,可以帮助我们节省时间和资源,提高效率。

三、最短路径问题的解决方法1. 迪杰斯特拉算法迪杰斯特拉算法是解决最短路径问题的一种常用算法。

该算法通过不断更新起点到各个顶点的最短路径,直到找到终点的最短路径为止。

迪杰斯特拉算法的具体步骤如下:- 初始化起点到各个顶点的距离为无穷大,起点到自身的距离为0;- 选择一个未访问的顶点,更新起点到其他顶点的距离;- 重复上述步骤,直到找到终点的最短路径或所有顶点都被访问过。

2. 弗洛伊德算法弗洛伊德算法是解决最短路径问题的另一种常用算法。

该算法通过不断更新任意两个顶点之间的最短路径,直到更新完所有顶点对之间的最短路径为止。

弗洛伊德算法的具体步骤如下:- 初始化任意两个顶点之间的距离,如果两个顶点之间有直接的边,则距离为边的权值,否则距离为无穷大;- 选择一个顶点作为中转点,更新任意两个顶点之间的距离;- 重复上述步骤,直到更新完所有顶点对之间的最短路径。

四、最短路径问题的注意事项在解决最短路径问题时,需要注意以下几点:1. 图的表示方式:可以使用邻接矩阵或邻接表来表示图,根据具体的问题选择合适的表示方式。

2. 边的权值:边的权值可以表示两个顶点之间的距离、时间、花费等等,根据具体的问题选择合适的权值。

八上数学最短路径问题知识点

八上数学最短路径问题知识点

八上数学最短路径问题知识点八上数学中的最短路径问题是一个经典的问题,它涉及到多种方法和知识点。

以下是该问题的总结:知识点1:线段和角的表示方法解决最短路径问题需要先掌握线段和角的表示方法。

线段用两个端点表示,如线段AB,而角则用顶点表示,如∠AOB。

知识点2:线段和角的基本性质线段的基本性质包括两点之间线段最短和三角形两边之和大于第三边。

角的基本性质包括角平分线上的点到角两边的距离相等和三角形内角和为180度。

这些性质在解决最短路径问题时非常重要。

知识点3:轴对称和镜像对称轴对称和镜像对称是解决最短路径问题的两个重要概念。

通过轴对称或镜像对称,可以将图形转化为更简单的形状,从而更容易找到最短路径。

知识点4:勾股定理勾股定理是一个经典的几何定理,它可以用来解决与直角三角形有关的几何问题。

在最短路径问题中,勾股定理可以用来计算两点之间直线的距离,从而得到最短路径的长度。

知识点5:三角形的稳定性三角形的稳定性是指三角形具有稳定的结构,它可以用来解决一些与固定长度线段有关的最短路径问题。

通过将问题转化为三角形问题,可以更容易地找到最短路径。

知识点6:将军饮马问题将军饮马问题是一个经典的数学问题,它涉及到最短路径和对称性。

在最短路径问题中,将军饮马问题可以用来解决一类特殊的几何最短路径问题。

通过找到两个对称点,可以很容易地找到最短路径。

知识点7:平移、旋转和反射平移、旋转和反射是解决最短路径问题的三种重要变换。

通过这些变换,可以将图形转化为更简单的形状,从而更容易找到最短路径。

知识点8:代数方法求解最短路径除了几何方法外,代数方法也可以用来求解最短路径问题。

例如,通过建立方程来求解两点之间的最短距离。

这种方法通常适用于更复杂的场景,如非线性优化问题。

总之,八上数学中的最短路径问题涉及到多个知识点和方法,需要学生灵活运用各种工具来解决。

通过掌握这些知识点和方法,可以更好地理解和解决最短路径问题。

最短路径专题 含答案

最短路径专题 含答案

最短路径专题含答案1. 某同学的茶杯是圆柱体,如图是茶杯的立体图,左边下方有一只蚂蚁,从A处爬行到对面的中点B处,如果蚂蚁爬行路线最短,请画出这条最短路线图.解:如图1,将圆柱的侧面展开成一个长方形,如图示,则A,B分别位于如图所示的位置,连接AB,即是这条最短路线图.问题:某正方形盒子,如图左边下方A处有一只蚂蚁,从A处爬行到侧棱GF上的中点M点处,如果蚂蚁爬行路线最短,请画出这条最短路线图.2. 如图,一圆柱体的底面周长为24cm,高AB为16cm,BC是上底面的直径.一只昆虫从点A出发,沿着圆柱的侧面爬行到点C,求昆虫爬行的最短路程.3. 如图一只蚂蚁要从正方体的一个顶点A爬一个顶点B,如果正方体棱是2,求最短的路线长.4. 如图,长方体的底面边长分别为2cm和4cm,高为5cm,若一只蚂蚁从P点开始经过4个侧面爬行一圈到达Q点,求蚂蚁爬行的最短路径长.5. 如图,有一半径为2cm,高为10cm的圆柱体,在棱AA1的P点上有一只蜘蛛,PA=3cm,在棱BB1的Q点上有一只苍蝇,QB2=2cm.蜘蛛沿圆柱爬到Q点吃苍蝇,请你算出蜘蛛爬行的最短路线长.(π取3.14;结果精确到0.01cm)6. 一只蜘蛛在一个正方体的顶点A处,一只蚊子在正方体的顶点B处,如图所示,假设蚊子不动,现在蜘蛛想尽快地捉到这只蚊子,那么它所走的最短路线是怎样的,在图上画出来,这样的最短路线有几条?7. 如图,圆柱的高为8cm,底面直径4cm,在圆柱下底面的A点有一只蚂蚁,它想吃到上底面上与A点相对的B点处的食物,它需要爬行的最短路程是多少厘米?(π≈3)8. 如图1,是一个长方体盒子,长AB=4,宽BC=2,高CG=1.(1)一只蚂蚁从盒子下底面的点A沿盒子表面爬到点G,求它所行走的最短路线的长.(2)这个长方体盒子内能容下的最长木棒的长度为多少?9. 如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45∘,AD与BE交于点F,连接CF.(1)求证:BF=2AE;(2)若CD=√2,求AD的长.10. 如图,平行四边形ABCD中,AB=2,AD=1,∠ADC=60∘,将平行四边形ABCD沿过点A的直线l折叠,使点D落到AB边上的点Dʹ处,折痕交CD边于点E.(1)求证:四边形BCEDʹ是菱形;(2)若点P时直线l上的一个动点,请计算PDʹ+PB的最小值.11. 已知,⊙O为△ABC的外接圆,BC为直径,点E在AB上,过点E作EF⊥BC,点G在FE的延长线上,且GA=GE.(1)求证:AG与⊙O相切;(2)若AC=6,AB=8,BE=3,求线段OE的长.12. 已知抛物线C1的函数解析式为y=ax2−2x−3a,若抛物线C1经过点(0,−3).(参考公式:在平面直角坐标系中,若P(x1,y1),Q(x2,y2),则P,Q两点间的距离为√(x2−x1)2+(y2−y1)2)(1)求抛物线C1的顶点坐标.(2)已知实数x>0,请证明x+1x ≥2,并说明x为何值时才会有x+1x=2.(3)若将抛物线先向上平移4个单位,再向左平移1个单位后得到抛物线C2,设A(m,y1),B(n,y2)是C2上的两个不同点,且满足:∠AOB=90∘,m>0,n<0.请你用含m的表达式表示出△AOB的面积S,并求出S的最小值及S取最小值时一次函数OA的函数解析式.13. 如图,已知:四边形ABCD中,E为AB的中点,连接CE,DE,CD=CE=BE,DE∥BC.(1)求证:四边形ADCE是菱形;(2)若BC=6,CE=5,求四边形ADCE的面积.14. 如图,一个正方体木柜放在墙角处(与墙面和地面均没有缝隙),有一只蚂蚁从柜角A处沿着木柜表面爬到柜角C1处.(1)请你在正方体木柜的表面展开图中画出蚂蚁能够最快达到目的地的可能路径;(2)当正方体木柜的棱长为4时,求蚂蚁爬过的最短路径的长.15. 如图,四边形ABCD为矩形,E为BC边中点,连接AE,以AD为直径的⊙O交AE于点F,连接CF.(1)求证:CF与⊙O相切;(2)若AD=2,F为AE的中点,求AB的长.16. 已知圆锥的底面半径为r=20cm,高ℎ=20√15cm,现在有一只蚂蚁从底边上一点A出发.在侧面上爬行一周又回到A点,求蚂蚁爬行的最短距离.17. 已知,点P是Rt△ABC斜边AB上一动点(不与A,B重合),分别过A,B向直线CP作垂线,垂足分别为E,F,Q为斜边AB的中点.(1)如图1,当点P与点Q重合时,AE与BF的位置关系是,QE与QF的数量关系是;(2)如图2,当点P在线段AB上不与点Q重合时,试判断QE与QF的数量关系,并给予证明;(3)如图3,当点P在线段BA(或AB)的延长线上时,此时(2)中的结论是否成立?请画出图形并给予证明.18. 已知四边形ABCD是平行四边形,以AB为直径的⊙O经过点D,∠DAB=45∘.(1)如图①,判断CD与⊙O的位置关系,并说明理由;(2)如图②,E是⊙O上一点,且点E在AB的下方,若⊙O的半径为3cm,AE=5cm,求点E到AB的距离.19. 图①,图②为同一长方体房间的示意图,图③为该长方体的表面展开图.(1)已知蜘蛛在顶点Aʹ处;①苍蝇在顶点B处时,试在图①中画出蜘蛛为捉住苍蝇,沿墙面爬行的最近路线;②苍蝇在顶点C处时,图②中画出了蜘蛛捉住苍蝇的两条路线,往天花板ABCD爬行的最近路线AʹGC和往墙面BBʹCʹC爬行的最近路线AʹHC,试通过计算判断哪条路线更近;(2)在图③中,半径为10dm的⊙M与DʹCʹ相切,圆心M到边CCʹ的距离为15dm,蜘蛛P 在线段AB上,苍蝇Q在⊙M的圆周上,线段PQ为蜘蛛爬行路线.若PQ与⊙M相切,试求PQ的长度的范围.20. 如图所示,长方体的长为15cm,宽为10cm,高为20cm,点B与点C之间相距5cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是多少?21. 如图,平行四边形ABCD中,AB=3,BC=5,∠B=60∘,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F.(1)求证:四边形CEDF是平行四边形;(2)①当AE=时,四边形CEDF是矩形;②当AE=时,四边形CEDF是菱形.22. 葛藤是一种植物,它自己腰杆不硬,为了争夺雨露阳光,常常绕着树干盘旋而上,它还有一个绝招,就是它绕树盘升的路线,总是沿最短路线螺旋前进的.(1)如果树的周长为3m,绕一圈升高4m,则它爬行路程是多少?(2)如果树的周长为8m,绕一圈爬行10m,则爬行一圈升高多少m?如果爬行10圈到达树顶,则树干多高?23. 实践操作在矩形ABCD中,AB=8,AD=6,现将纸片折叠,点D的对应点记为点P,折痕为EF(点E,F是折痕与矩形的边的交点),再将纸片还原.(1)初步思考若点P落在矩形ABCD的边AB上(如图①).①当点P与点A重合时,∠DEF=∘,当点E与点A重合时,∠DEF=∘;②当点E在AB上,点F在DC上时(如图②),求证:四边形DEPF为菱形,并直接写出当AP=7时菱形EPFD的边长.(2)深入探究若点P落在矩形ABCD的内部(如图③),且点E,F分别在AD,DC边上,请直接写出AP的最小值.(3)拓展延伸若点F与点C重合,点E在AD上,射线BA与射线FP交于点M(如图④).在各种不同的折叠位置中,是否存在某一种情况,使得线段AM与线段DE的长度相等?若存在,请直接写出线段AE的长度;若不存在,请说明理由.24. 如图,已知抛物线y=−x2+bx+3与x轴相交于点A和点B(点A在点B的左侧),与y轴交于点C,且OB=OC,点D是抛物线的顶点,直线AC和BD交于点E.(1)求点D的坐标;(2)连接CD,BC,求∠DBC的余切值;(3)设点M在线段CA的延长线上,如果△EBM和△ABC相似,求点M的坐标.25. 如图,已知抛物线经过原点O,顶点为A(1,1),且与直线y=x−2交于B,C两点.(1)求抛物线的解析式及点C的坐标;(2)求证:△ABC是直角三角形;(3)若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与△ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由.26. 阅读下面材料:小明遇到这样一个问题:如图1,点E,F分别在正方形ABCD的边BC,CD上,∠EAF=45∘,连接EF,则EF=BE+DF,试说明理由.小明是这样思考的:要想解决这个问题,首先应想办法将这些分散的线段相对集中.他先后尝试了翻折、旋转、平移的方法,最后发现线段AB,AD是共点并且相等的,于是找到解决问题的方法.他的方法是将△ABE绕着点A逆时针旋转90∘得到△ADG,再利用全等的知识解决了这个问题(如图2).参考小明同学思考问题的方法,解决下列问题:(1)如图3,四边形ABCD中,AB=AD,∠BAD=90∘,点E,F分别在边BC,CD上,∠EAF=45∘.若∠B,∠D都不是直角,则当∠B与∠D满足关系时,仍有EF= BE+DF;(2)如图4,在△ABC中,∠BAC=90∘,AB=AC,点D,E均在边BC上,且∠DAE=45∘,若BD=1,EC=2,求DE的长.27. 如图,在△MNQ中,MN=11,NQ=3√5,cosN=√5.在矩形ABCD中,BC=4,CD=3,5点A与点M重合,AD与MN重合,矩形ABCD沿着MQ方向平移,且平移速度为每秒5个单位,当点A与点Q重合时停止运动.(1)MQ的长度是;(2)运动秒,BC与MN重合;(3)设矩形ABCD与△MNQ重叠部分的面积为S,运动时间为t,求出S与t之间的函数关系式,并直接写出t的取值范围.的抛物线经过B(2,0)、C(0,4)两点,抛物线与x轴的另一交点为28. 如图1,对称轴为直线x=12A .(1)求抛物线的解析式;(2)若点P为第一象限内抛物线上的一点,设四边形COBP的面积为S,求S的最大值;(3)如图2,若M是线段BC上一动点,在x轴是否存在这样的点Q,使△MQC为等腰三角形且△MQB为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.29. 如图,矩形ABCD中,AB=2,BC=2√3,将矩形沿对角线AC剪开,请解决以下问题:(1)将△ACD绕点C顺时针旋转90∘得到△AʹCDʹ,请在备用图中画出旋转后的△AʹCDʹ,连接AAʹ,并求线段AAʹ的长度;(2)在(1)的情况下,将△AʹCDʹ沿CB向左平移的长度为t(0<t<2√3),设平移后的图形与△ABC重叠部分的面积为S,求S与t的函数关系式,并直接写出t的取值范围.30. 如图甲,在△ABC中,∠ACB=90∘,AC=4cm,BC=3cm.如果点P由点B出发沿BA方向向点A匀速运动,同时点Q由点A出发沿AC方向向点C匀速运动,它们的速度均为1cm/ s.连接PQ,设运动时间为t(s)(0<t<4),解答下列问题:(1)设△APQ的面积为S,当t为何值时,S取得最大值?S的最大值是多少?(2)如图乙,连接PC,将△PQC沿QC翻折,得到四边形PQPʹC,当四边形PQPʹC为菱形时,求t的值;(3)当t为何值时,△APQ是等腰三角形?31. 如图,抛物线与x轴交于A(x1,0),B(x2,0)两点,且x1>x2,与y轴交于点C(0,4),其中x1,x2是方程x2−2x−8=0的两个根.(1)求这条抛物线的解析式;(2)点P是线段AB上的动点,过点P作PE∥AC,交BC于点E,连接CP,当△CPE的面积最大时,求点P的坐标;(3)探究:若点Q是抛物线对称轴上的点,是否存在这样的点Q,使△QBC成为等腰三角形?若存在,请直接写出所有符合条件的点Q的坐标;若不存在,请说明理由.32. 如图,在平面直角坐标系xOy中,抛物线y=x2+1与y轴相交于点A,点B与点O关于点A4对称.(1)填空:点B的坐标是;(2)过点B的直线y=kx+b(其中k<0与x轴相交于点C,过点C作直线l平行于y轴,P是直线l上一点,且PB=PC,求线段PB的长(用含k的式子表示),并判断点P是否在抛物线上,说明理由;(3)在(2)的条件下,若点C关于直线BP的对称点Cʹ恰好落在该抛物线的对称轴上,求此时点P的坐标.33. 已知:如图①,在Rt△ACB中,∠C=90∘,AC=4cm,BC=3cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为t(s)(0<t<2),解答下列问题:(1)当t为何值时,PQ∥BC ?(2)设△AQP的面积为y(cm2),求y与t之间的函数关系式;(3)是否存在某一时刻,使线段PQ恰好把Rt△ACB的周长和面积同时平分?若存在,求出此时的值;若不存在,说明理由;(4)如图②,连接PC,并把△PQC沿QC翻折,得到四边形PQPʹC,那么是否存在某一时刻,使四边形PQPʹC为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.34. 如图,四边形ABCD,BEFG均为正方形,(1)如图1,连接AG,CE,试判断AG和CE的数量关系和位置关系并证明;(2)将正方形BEFG绕点B顺时针旋转β角(0∘<β<180∘),如图2,连接AG,CE相交于点M,连接MB,当角β发生变化时,∠EMB的度数是否发生变化?若不变化,求出∠EMB 的度数;若发生变化,请说明理由.(3)在(2)的条件下,过点A作AN⊥MB交MB的延长线于点N,请直接写出线段CM与BN的数量关系:.35. 如图,在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴和y轴的正半轴上,顶点B的坐标为(2m,m),翻折矩形OABC,使点A与点C重合,得到折痕DE.设点B的对应点为F,折痕DE所在直线与y轴相交于点G,经过点C,F,D的抛物线为y=ax2+bx+c.(1)求点D的坐标(用含m的式子表示);(2)若点G的坐标为(0,−3),求该抛物线的解析式.(3)在(2)的条件下,设线段CD的中点为M,在线段CD上方的抛物线上是否存在点P,使EA ?若存在,直接写出P的坐标,若不存在,说明理由.PM=1236. 如图,在△ABC中,点D,E,F分别在AB,BC,AC上,且∠ADF+∠DEC=180∘,∠AFE=∠BDE.(1)如图1,当DE=DF时,图1 中是否存在与AB相等的线段?若存在,请找出并加以证明.若不存在说明理由.(2)如图2,当DE=kDF(其中0<k<1)时,若∠A=90∘,AF=m,求BD的长(用含k,m的式子表示).37. 如图,顶点为C(−1,1)的抛物线经过点D(−5,−3),且与x轴交于A,B两点(点B在点A的右侧).(1)求抛物线的解析式;,求出点Q的坐标;(2)若抛物线上存在点Q,使得S△OAQ=32(3)点M在抛物线上,点N在x轴上,且∠MNA=∠OCD,是否存在点M,使得△AMN与△OCD相似?若存在,直接写出点M的坐标;若不存在,说明理由.38. 阅读下面材料:小明遇到这样一个问题:如图1,△ABC中,AB=AC,点D在BC边上,∠DAB=∠ABD,BE⊥AD,垂足为E,求证:BC=2AE.小明经探究发现,过点 A 作 AF ⊥BC ,垂足为 F ,得到 ∠AFB =∠BEA ,从而可证 △ABF ≌△BAE (如图 2),使问题得到解决.(1)根据阅读材料回答:△ABF 与 △BAE 全等的条件是 (填" SSS "、 " SAS " 、" ASA" 、 " AAS “或”HL "中的一个)参考小明思考问题的方法,解答下列问题:(2)如图3,△ABC 中,AB =AC ,∠BAC =90∘,D 为 BC 的中点,E 为 DC 的中点,点 F 在AC 的延长线上,且 ∠CDF =∠EAC ,若 CF =2,求 AB 的长;(3)如图 4,△ABC 中,AB =AC ,∠BAC =120∘,点 D ,E 分别在 AB ,AC 边上,且 AD =kDB (其中 0<k <√33),∠AED =∠BCD ,求 AE EC 的值(用含 k 的式子表示).39. 如图,已知二次函数 y =−x 2+bx +c (b ,c 为常数)的图象经过点 A (3,1),点 C (0,4),顶点为点 M ,过点 A 作 AB ∥x 轴,交 y 轴于点 D ,交该二次函数图象于点 B ,连接 BC .(1)求该二次函数的解析式及点 M 的坐标;(2)若将该二次函数图象向下平移 m (m >0) 个单位,使平移后得到的二次函数图象的顶点落在 △ABC 的内部(不包括 △ABC 的边界),求 m 的取值范围;(3)点 P 是直线 AC 上的动点,若点 P ,点 C ,点 M 所构成的三角形与 △BCD 相似,请直接写出所有点 P 的坐标(直接写出结果,不必写解答过程).40. 在平面直角坐标系中,O为原点,四边形OABC是矩形,点A,C的坐标分别为(3,0),(0,1).点D是边BC上的动点(与端点B,C不重合),过点D作直线y=−1x+b交边OA2于点E.(1)如图(1),求点D和点E的坐标(用含b的式子表示);(2)如图(2),若矩形OABC关于直线DE的对称图形为矩形O1A1B1C1,试探究矩形O1A1B1C1与矩形OABC的重叠部分的面积是否发生变化?若不变,求出重叠部分的面积;若改变,请说明理由;(3)矩形OABC绕着它的对称中心旋转,如果重叠部分的形状是菱形,请直接写出这个菱形的面积的最小值和最大值.41. 如图1,在菱形ABCD中,对角线AC与BD相交于点O,AB=13,BD=24,在菱形ABCD的外部以AB为边作等边三角形ABE.点F是对角线BD上一动点(点F不与点B重合),将线段AF绕点A顺时针方向旋转60∘得到线段AM,连接FM.(1)求AO的长;(2)如图2,当点F在线段BO上,且点M,F,C三点在同一条直线上时,求证:AC=√3AM;(3)连接EM,若△AEM的面积为40,请直接写出△AFM的周长.(温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.)42. 如图,矩形纸片ABCD中,AB=6,BC=8.折叠纸片使点B落在AD上,落点为Bʹ.点Bʹ从点A开始沿AD移动,折痕所在直线l的位置也随之改变,当直线l经过点A时,点Bʹ停止移动,连接BBʹ.设直线l与AB相交于点E,与CD所在直线相交于点F,点Bʹ的移动距离为x,点F与点C的距离为y.(1)求证:∠BEF=∠ABʹB;(2)求y与x的函数关系式,并直接写出x的取值范围.43. 如图1,△ABC中,∠C=90∘,线段DE在射线BC上,且DE=AC,线段DE沿射线BC运动,开始时,点D与点B重合,点D到达点C时运动停止,过点D作DF=DB,与射线BA相交于点F,过点E作BC的垂线,与射线BA相交于点G.设BD=x,四边形DEGF与△ABC重叠部分的面积为S,S关于x的函数图象如图 2 所示(其中0<x≤m,1<x≤m,m<x≤3时,函数的解析式不同)(1)填空:BC的长是;(2)求S关于x的函数关系式,并写出x的取值范围.x2+bx−2与x轴交于A,B两点,与y轴交于C点,且A(−1,0).44. 如图,抛物线y=12(1)求抛物线的解析式及顶点D的坐标;(2)判断△ABC的形状,证明你的结论;(3)点M(m,0)是x轴上的一个动点,当MC+MD的值最小时,求m的值.45. 定义:我们把三角形被一边中线分成的两个三角形叫做"友好三角形".性质:如果两个三角形是"友好三角形",那么这两个三角形的面积相等.理解:如图1,在△ABC中,CD是AB边上的中线,那么△ACD和△BCD是“友好三角形”,并且S△ACD=S△BCD.(1)应用:如图2,在矩形ABCD中,AB=4,BC=6,点E在AD上,点F在BC上,AE=BF,AF与BE交于点O.(i)求证:△AOB和△AOE是“友好三角形”;(ii)连接OD,若△AOE和△DOE是“友好三角形”,求四边形CDOF的面积.(2)探究:在△ABC中,∠A=30∘,AB=4,点D在线段AB上,连接CD,△ACD和△BCD是“友好三角形”,将△ACD沿CD所在直线翻折,得到△AʹCD,若△AʹCD与△ABC 重合部分的面积等于△ABC面积的1,请直接写出△ABC的面积.446. 如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A在第一象限,点C在第四象限,点B的坐标为(60,0),OA=AB,∠OAB=90∘,OC=50.点P是线段OB上的一个动点(点P不与点O、B重合),过点P与y轴平行的直线l交边OA或边AB于点Q,交边OC或边BC于点R,设点P横坐标为t,线段QR的长度为m.已知t=40时,直线l恰好经过点C.(1)求点A和点C的坐标;(2)当0<t<30时,求m关于t的函数关系式;(3)当m=35时,请直接写出t的值;(4)直线l上有一点M,当∠PMB+∠POC=90∘,且△PMB的周长为60时,请直接写出满足条件的点M的坐标.47. 如图,已知抛物线y=ax2+bx+c与x轴的一个交点为A(3,0),与y轴的交点为B(0,3),其顶点为C,对称轴为x=1.(1)求抛物线的解析式;(2)已知点M为y轴上的一个动点,当△ABM为等腰三角形时,求点M的坐标;(3)将△AOB沿x轴向右平移m个单位长度(0<m<3)得到另一个三角形,将所得的三角形与△ABC重叠部分的面积记为S,用m的代数式表示S.48. 在四边形ABCD中,对角线AC,BD相交于点O,将△COD绕点O按逆时针方向旋转得到△C1OD1,旋转角为θ(0∘<θ<90∘),连接AC1,BD1,AC1与BD1交于点P.(1)如图1,若四边形ABCD是正方形.①求证:△AOC1≌△BOD1.②请直接写出AC1与BD1的位置关系.(2)如图2,若四边形ABCD是菱形,AC=5,BD=7,设AC1=kBD1.判断AC1与BD1的位置关系,说明理由,并求出k的值.(3)如图3,若四边形ABCD是平行四边形,AC=5,BD=10,连接DD1,设AC1= kBD1.请直接写出k的值和AC12+(kDD1)2的值.49. 如图,四边形ABCD为一个矩形纸片.AB=3,BC=2,动点P自D点出发沿DC方向运动至C点后停止.△ADP以直线AP为轴翻折,点D落到点D1的位置.设DP=x,△AD1P与原纸片重叠部分的面积为y.(1)当x为何值时,直线AD1过点C?(2)当x为何值时,直线AD1过BC的中点E?(3)求出y与x的函数表达式.50. 如图,以点P(−1,0)为圆心的圆,交x轴于B,C两点(B在C的左侧),交y轴于A,D两点(A在D的下方),AD=2√3,将△ABC绕点P旋转180∘,得到△MCB.(1)求B,C两点的坐标;(2)请在图中画出线段MB,MC,并判断四边形ACMB的形状(不必证明),求出点M的坐标;(3)动直线l从与BM重合的位置开始绕点B顺时针旋转,到与BC重合时停止,设直线l与CM交点为E,点Q为BE的中点,过点E作EG⊥BC于G,连接MQ,QG.请问在旋转过程中∠MQG的大小是否变化?若不变,求出∠MQG的度数;若变化,请说明理由.51. 定义:当点P在射线OA上时,把OPOA的值叫做点P在射线OA上的射影值;当点P不在射线OA上时,把射线OA上与点P最近点的射影值,叫做点P在射线OA上的射影值.例如:如图1,△OAB三个顶点均在格点上,BP是OA边上的高,则点P和点B在射线OA上的射影值均为OPOA =13.(1)在△OAB中,①点B在射线OA上的射影值小于1时,则△OAB是锐角三角形;②点B在射线OA上的射影值等于1时,则△OAB是直角三角形;③点B在射线OA上的射影值大于1时,则△OAB是钝角三角形;其中真命题有.A.①②B.②③C.①③D.①②③(2)已知:点C是射线OA上一点,CA=OA=1,以O为圆心,OA长为半径画圆,点B是⊙O上任意一点.①如图2,若点B在射线OA上的射影值为12,求证:直线BC是⊙O的切线.②如图3,已知D为线段BC的中点,设点D在射线OA上的射影值为x,点D在射线OB上的射影值为y,直接写出y与x之间的函数关系式.x2交于A,B两点,其中点A的横坐标是−2.52. 如图,已知一条直线过点(0,4),且与抛物线y=14(1)求这条直线的函数关系式及点B的坐标;(2)在x轴上是否存在点C,使得△ABC是直角三角形?若存在,求出点C的坐标;若不存在,请说明理由;(3)过线段AB上一点P,作PM∥x轴,交抛物线于点M,点M在第一象限,点N(0,1),当点M的横坐标为何值时,MN+3MP的长度最大?最大值是多少?53. 已知:如图,AB是半圆O的直径,弦CD∥AB,动点P,Q分别在线段OC,CD上,且DQ=OP,AP的延长线与射线OQ相交于点E、与弦CD相交于点F(点F与点C,D不重合),AB=20,cos∠AOC=4.设OP=x,△CPF的面积为y.5(1)求证:AP=OQ;(2)求y关于x的函数关系式,并写出它的自变量x的取值范围;(3)当△OPE是直角三角形时,求线段OP的长.x2+bx+c与x轴分别相交于点A(−2,0),B(4,0),与y轴交于点C,顶54. 如图,抛物线y=−12点为点P.(1)求抛物线的解析式;(2)动点M,N从点O同时出发,都以每秒1个单位长度的速度分别在线段OB,OC上向点B,C方向运动,过点M作x轴的垂线交BC于点F,交抛物线于点H.(i)当四边形OMHN为矩形时,求点H的坐标;(ii)是否存在这样的点F,使△PFB为直角三角形?若存在,求出点F的坐标;若不存在,请说明理由.55. 如图,在Rt△ABC中,∠ACB=90∘,AC=5cm,∠BAC=60∘,动点M从点B出发,在BA边上以每秒2cm的速度向点A匀速运动,同时动点N从点C出发,在CB边上以每秒√3cm 的速度向点B匀速运动,设运动时间为t秒(0≤t≤5),连接MN.(1)若BM=BN,求t的值;(2)若△MBN与△ABC相似,求t的值;(3)当t为何值时,四边形ACNM的面积最小?并求出最小值.56. 爱好思考的小茜在探究两条直线的位置关系查阅资料时,发现了“中垂三角形”,即两条中线互相垂直的三角形称为“中垂三角形”.如图1,图2,图3中,AM,BN是△ABC的中线,AN⊥BN于点P,像△ABC这样的三角形均为“中垂三角形”.设BC=a,AC=b,AB=c.(1)【特例探究】如图1,当tan∠PAB=1,c=4√2时,a=,b=;如图2,当∠PAB=30∘,c=2时,a=,b=;(2)【归纳证明】请你观察(1)中的计算结果,猜想a2、b2、c2三者之间的关系,用等式表示出来,并利用图3证明你的结论.(3)【拓展证明】如图4,平行四边形ABCD中,E、F分别是AD、BC的三等分点,且AD=3AE,BC= 3BF,连接AF、BE、CE,且BE⊥CE于E,AF与BE相交点G,AD=3√5,AB=3,求AF的长.57. 在某次海上军事学习期间,我军为确保△OBC海域内的安全,特派遣三艘军舰分别在O,B,C处监控△OBC海域,在雷达显示图上,军舰B在军舰O的正东方向80海里处,军舰C在军舰B的正北方向60海里处,三艘军舰上装载有相同的探测雷达,雷达的有效探测范围是半径为r 的圆形区域.(只考虑在海平面上的探测)(1)若三艘军舰要对△OBC海域进行无盲点监控,则雷达的有效探测半径r至少为多少海里?(2)现有一艘敌舰A从东部接近△OBC海域,在某一时刻军舰B测得A位于北偏东60∘方向上,同时军舰C测得A位于南偏东30∘方向上,求此时敌舰A离△OBC海域的最短距离为多少海里?(3)若敌舰A沿最短距离的路线以20√2海里/小时的速度靠近△OBC海域,我军军舰B沿北偏东15∘的方向行进拦截,问B军舰速度至少为多少才能在此方向上拦截到敌舰A?58. 如图,在坐标系xOy中,已知D(−5,4),B(−3,0),过D点分别作DA,DC垂直于x轴、y轴,垂足分别为A,C两点.动点P从O点出发,沿x轴以每秒1个单位长度的速度向右运动,运动时间为t秒.(1)当t为何值时,PC∥DB;(2)当t为何值时,PC⊥BC;(3)以点P为圆心,PO的长为半径的⊙P随点P的运动而变化,当⊙P与△BCD的边(或边所在的直线)相切时,求t的值.x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴59. 如图,抛物线y=−12交x轴于点D,已知A(−1,0),C(0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.60. 如图1,在Rt△ABC中,∠ACB=90∘,AB=10,BC=6,扇形纸片DOE的顶点O与边AB的中点重合,OD交BC于点F,OE经过点C,且∠DOE=∠B.(1)证明△COF是等腰三角形,并求出CF的长;(2)将扇形纸片DOE绕点O逆时针旋转,OD,OE与边AC分别交于点M,N(如图2),当CM的长是多少时,△OMN与△BCO相似?61. 如图,在每个小正方形的边长为1的网格中,A,B为小正方形边的中点,C,D为格点,E为BA,CD的延长线的交点.(1)CD的长等于;(2)若点N在线段BE上,点M在线段CE上,且满足AN=NM=MC,请在如图所示的网格中,用无刻度的直尺,画出线段MN,并简要说明点M,N的位置是如何找到的(不要求证明).62. 如图,二次函数y=ax2+bx+2的图象与x轴相交于点A(−1,0),B(4,0),与y轴相交于点C.(1)求该函数的表达式;(2)点P为该函数在第一象限内的图象上一点,过点P作PQ⊥BC,垂足为点Q,连接PC.①求线段PQ的最大值;②若以点P,C,Q为顶点的三角形与△ABC相似,求点P的坐标.63. 如图,在平面直角坐标系中,直线y=−2x+10与x轴,y轴相交于A,B两点.点C的坐标是(8,4),连接AC,BC.(1)求过O,A,C三点的抛物线的解析式,并判断△ABC的形状;(2)动点P从点O出发,沿OB以每秒2个单位长度的速度向点B运动;同时,动点Q从点B出发,沿BC以每秒1个单位长度的速度向点C运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.设运动时间为t秒,当t为何值时,PA=QA?(3)在抛物线的对称轴上,是否存在点M,使以A,B,M为顶点的三角形是等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.64. 将矩形纸片OABC放在平面直角坐标系中,O为坐标原点,点A在y轴上,点C在x轴上,点B的坐标是(8,6),点P是边AB上的一个动点,将△OAP沿OP折叠,使点A落在点Q处.(1)如图①,当点Q恰好落在OB上时,求点P的坐标.。

平面直角坐标系中距离的计算

平面直角坐标系中距离的计算

平面直角坐标系中距离的计算距离是平面直角坐标系中一个重要的概念,用于描述两点之间的空间间隔。

在平面直角坐标系中,我们可以通过两点的坐标来计算它们之间的距离。

本文将介绍两点间距离的计算方法,并提供一些实际问题的例子来帮助读者更好地理解和应用这些概念。

我们来看一下平面直角坐标系。

平面直角坐标系由两条垂直的坐标轴组成,通常用x轴和y轴表示。

任何一个点都可以用它在x轴和y轴上的坐标来表示。

假设有两个点A和B,它们的坐标分别为(Ax, Ay)和(Bx, By)。

要计算点A和点B之间的距离,我们可以利用勾股定理。

根据勾股定理,直角三角形的斜边的平方等于两条直角边的平方和。

将这个定理应用到坐标系中,我们可以得到以下公式:距离AB = √((Bx - Ax)² + (By - Ay)²)其中,√表示求平方根的运算符。

现在,让我们通过一些实际问题的例子来应用这个公式。

例子1:计算两点之间的距离假设有两个点A(2, 3)和B(5, 7),我们要计算它们之间的距离。

根据公式,我们可以得到:距离AB = √((5 - 2)² + (7 - 3)²)= √(3² + 4²)= √(9 + 16)= √25= 5所以,点A和点B之间的距离是5个单位。

例子2:计算物体的移动距离假设有一只小猫从点A(1, 1)开始,沿着直线路径走到了点B(4, 5),我们要计算小猫的移动距离。

根据公式,我们可以得到:距离AB = √((4 - 1)² + (5 - 1)²)= √(3² + 4²)= √(9 + 16)= √25= 5所以,小猫的移动距离是5个单位。

例子3:计算两点之间的最短路径假设有一块正方形的草地,其中心点为原点O(0, 0),边长为10个单位。

现在有一只小鸟从点A(3, 4)飞到点B(8, 9),我们要计算小鸟从A到B的最短路径。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最短路径问题与平面直角坐标系
教学目标:
(一)知识与技能
1、能利用轴对称变换将线段和最小问题转化为“两点之间,线段最短”(或“三角形两边之和大于第三边”)的问题。

2、能在平面直角坐标系中作出图形,并通过逻辑推理证明所求平面直角坐标系中点的坐标。

(二)过程与方法
通过平面直角坐标系与最短路径问题结合,培养归纳能力、表达能力、逻辑推理能力,并通过对知识、方法的总结,培养反思习惯。

(三)情感与态度
通过交流与探究,解决问题,获得成功的体验,培养协作精神,进一步激发探究的积极性和学习数学的兴趣及应用数学解决实际问题的能力。

教学重点 :最短路径问题与平面直角坐标系综合
教学难点 : 正确作出图形,并会根据图形特点求出点的坐标
教学方法 : 以最短路径和平面直角坐标系为基础,引导学生合作、交流、自主探究。

教学准备 :几何画板
教 学 过 程:
一、 复习
1、点A(m,n)关于x 轴对称点B 为( , ),点A 关于y 轴对称点C 为( , )
2、点A (2,5)与B 点关于直线x =3成轴对称,则点B 的坐标为( , )
3、已知:如图,点A ,B 在直线l 的同侧,在直线l 上求一点C ,使CA+CB 的和最小。

二、 习题讲练
例1:已知,在平面直角坐标系中,点A (1,3),点B (5,1),在x 轴上找一点
C ,使AC + BC 最小,求C 点的坐标。

分析:此题先要求学生在平面直角坐标系中作出两点A ,B ,然后作出A 点关于x 轴对称点D ,连接DB 与x 轴交点即为所求点C 。

接下来思考怎么求点C 的坐标,用面积法去求。

教师示范过程。

变式训练一:若改为在y 轴上求点C ,使AC + BC 最小,求C 点的坐标。

说明:这样可以巩固刚才所讲的知识,一是考察学生对最短路径,二是考察学生运算能力。

变式训练二:若改为在直线y = - 2上求一点C ,使AC + BC 最小,求C 点的坐标。

B A
例2:如图,在平面直角坐标系中,∠AOB = 300 ,P (5,0),
在OB 找一点M ,在OA 上找一点N ,使△PMN 周长最小,并
求出△PMN 周长的值。

分析:分别作出P 点关于OB 与OA 的对称点,连接对称点
相交OB 与OA 分别于M 、N ,再想办法证明周长等于OP 的长。

例3: 在平面直角坐标系中,点A (2,3),点B (4,6),在x 轴上找一点P ,使| AP – BP|最大?并求出P 点?
拓展:1、若x 轴改为y 轴呢?
2、在平面直角坐标系中,点A (4,2),点B (10,4),在x 轴上找一点P ,
使| AP – BP|最小?并求出P 点?
例4:在平面直角坐标系,点A (1,5),点B (6,-1),点M(a ,3),点N (a ,1)当a 为多少时,AM + MN +NB 最小?
分析:此题是课本中在河上修桥的问题经过和平面直角坐标系综合题,其中点M 和N 实际上相当于河流上的桥,此题的难度较高,可以让学生先作图,再求a 的值
小结:注意最短路径问题与平面直角坐标系结合,先要作出正确的图形,然后运用面积或者全等的方法求出点的坐标,
作业
1、已知,在平面直角坐标系中,A (-4,3)、B(3,1),在直线y = 4 上找一点P ,使AP +
BP 最小,求出此时P 点的坐标。

2、在平面直角坐标系中,点A (1,1),点B (7,3),x 轴上两点P(a ,0),
Q (a + 2,0),若四边形APQB 的周长最短,求a 的值。

x y O B A
P。

相关文档
最新文档