七年级数学上册 专题训练(五)图形的规律探索 (新版)新人教版.doc

合集下载

学年七年级数学上册综合训练探索规律图形规律天天练无答案新版新人教版

学年七年级数学上册综合训练探索规律图形规律天天练无答案新版新人教版

图形规律
学生做题前请先答复以下问题
问题1:学习图形规律的思考方向:
①观察图形构成:________________________;
②转化:________________________________.
问题2:观察图1至图4中点的摆放规律,按照这样的规律继续摆放,那么第n个图中点的个数为_______.〔用含n代数式表示〕
图形规律〔人教版〕
一、单项选择题(共10道,每道10分)
1.以下是由火柴棒拼出的一系列图形,依此规律,第100个图形中的火柴棒有( )根.
A.400
B.304
C.301
D.300
2.观察以下图形的构成规律,按此规律,第10个图形中棋子的个数为( )
A.31
B.42
C.45
D.51
3.按如下图规律摆放阴影三角形,那么第13个图形中阴影三角形的个数是( )
A.40
B.41
C.42
D.39
4.按照如下图的方法排列黑色小正方形地砖,那么第9个图形中的黑色小正方形地砖有( )
A.85块
B.113块
C.145块
D.181块
5.一块瓷砖的图案如图1所示,用这种瓷砖铺设地面,如果铺设成如图2的图案,其中完整。

人教版七年级数学上图形的规律和线段及角度的计算专题训练含答案

人教版七年级数学上图形的规律和线段及角度的计算专题训练含答案

专题训练(一) 图形的规律探索——教材P70T10的变式与应用教材母题:(教材P70T10)如图所示,由一些点组成形如三角形的图形,每条“边”(包括两个顶点)有n(n>1)个点,每个图形总的点数S是多少?当n=5,7,11时,S是多少?【思路点拨】观察图形,可得到点的总数S与n之间的关系,用含n的式子表示S,便可分别求出当n=5,7,11时,S的值.【解答】观察图形,当n=2时,有两排点,总的点数为1+2=3(个);当n=3时,有三排点,总的点数为1+2+3=6(个);当n=4时,有四排点,总的点数为1+2+2+4=9(个);当n=5时,有五排点,总的点数为1+2+2+2+5=12(个).根据此规律,可知点的总数S=1+2(n-2)+n=3n-3,当n=7时,S=3×7-3=18;当n=11时,S=3×11-3=30.故当n=5,7,11时,S的值分别是12,18,30.【方法归纳】解决图形规律探索问题,首先从简单的基本图形入手,随着“序号”或“编号”增加时,后一个图形与前一个图形相比,在数量上的变化情况或图形变化情况,找出变化规律,从而推出一般性结论.1.如图是用相同长度的小棒摆成的一组有规律的图案,其中图1需要4根小棒,图2需要10根小棒,…,按此规律摆下去,则第11个图案所需小棒的根数为(C)A.70 B.68 C.64 D.582.(荆州中考)如图,用黑白两种颜色的纸片,按黑色纸片数逐渐增加1的规律拼成下列图案.若第n个图案中有2 017个白色纸片,则n的值为(B)A.671 B.672 C.673 D.6743.(益阳中考)小李用围棋子排成下列一组有规律的图案,其中第1个图案有1枚棋子,第2个图案有3枚棋子,第3个图案有4枚棋子,第4个图案有6枚棋子,…,那么第9个图案的棋子数是13枚.4.如图是用棋子摆成的图案:根据图中棋子的排列规律解决下列问题:(1)第4个图中有22枚棋子,第5个图中有32枚棋子;(2)写出你猜想的第n 个图中棋子的枚数(用含n 的式子表示)是n +2+n 2.5.下面是用棋子摆成的“小房子”.摆第10个这样的“小房子”需要多少枚棋子?摆第n 个这样的“小房子”呢?你是如何得到的?解:第1个“小房子”,下边正方形棋子4×2-4=4(枚),上边1枚,共4+1=5(枚); 第2个“小房子”,下边正方形棋子4×3-4=8(枚),上边3枚,共8+3=11(枚); 第3个“小房子”,下边正方形棋子4×4-4=12(枚),上边5枚,共12+5=17(枚); 第4个“小房子”,下边正方形棋子4×5-4=16(枚),上边7枚,共16+7=23(枚); …第n 个“小房子”,下边正方形棋子4×(n+1)-4=4n(枚),上边(2n -1)枚,共4n +2n -1=(6n -1)(枚).当n =10时,6n -1=6×10-1=59(枚).专题训练(二) 线段的计算——教材P128练习T3的变式与应用教材母题:(教材P 128练习T 3)如图,点D 是线段AB 的中点,C 是线段AD 的中点,若AB =4 cm ,求线段CD 的长度.【解答】 因为点D 是线段AB 的中点,AB =4 cm , 所以AD =12AB =12×4=2(c m ).因为C 是线段AD 的中点, 所以CD =12AD =12×2=1(cm ).【方法归纳】 结合图形,将待求线段长转化为已知线段的和、差形式.若题目中出现线段的中点,常利用线段中点的性质,结合线段的和、差、倍、分关系求解.同时应注意题目中若没有图形,或点的位置关系不确定时,常需要分类讨论,确保答案的完整性.1.如图,线段AB =22 cm ,C 是线段AB 上一点,且AC =14 cm ,O 是AB 的中点,求线段OC 的长度.解:因为点O 是线段AB 的中点,AB =22 cm , 所以AO =12AB =11 cm .所以OC =AC -AO =14-11=3(cm ).2.如图,已知C 是AB 的中点,D 是AC 的中点,E 是BC 的中点.(1)若DE =9 cm ,求AB 的长; (2)若CE =5 cm ,求DB 的长.解:(1)因为D 是AC 的中点,E 是BC 的中点, 所以AC =2CD ,BC =2CE.所以AB =AC +BC =2DE =18 cm . (2)因为E 是BC 的中点, 所以BC =2CE =10 cm .因为C 是AB 的中点,D 是AC 的中点, 所以DC =12AC =12BC =5 cm .所以DB =DC +BC =5+10=15(cm ).3.如图,B ,C 两点把线段AD 分成2∶5∶3三部分,M 为AD 的中点,BM =6 cm ,求CM 和AD 的长.解:设AB =2x cm ,BC =5x cm ,CD =3x cm , 所以AD =AB +BC +CD =10x cm . 因为M 是AD 的中点, 所以AM =MD =12AD =5x cm .所以BM =AM -AB =5x -2x =3x(cm ). 因为BM =6 cm , 所以3x =6,x =2.故CM =MD -CD =5x -3x =2x =2×2=4(cm ), AD =10x =10×2=20(cm ).4.如图,线段AB =1 cm ,延长AB 到C ,使得BC =32AB ,反向延长AB 到D ,使得BD =2BC ,在线段CD 上有一点P ,且AP =2 cm .(1)请按题目要求画出线段CD ,并在图中标出点P 的位置;(2)求出线段CP 的长度.解:(1)线段CD 和点P 的位置如图1、2所示.(2)因为AB =1 cm , 所以BC =32AB =32 cm .所以BD =2BC =3 cm .当点P 在点A 的右边时,CP =AB +BC -AP =12cm ;当点P 在点A 的左边时,点P 与点D 重合,CP =BD +BC =92 cm .专题训练(三) 角的计算类型1 利用角度的和、差关系找出待求的角与已知角的和、差关系,根据角度和、差来计算. 1.如图,已知∠AOC=∠BOD=75°,∠BOC =30°,求∠AOD 的度数.解:因为∠AOC=75°,∠BOC =30°,所以∠AO B =∠AOC-∠BOC=75°-30°=45°. 又因为∠BOD=75°,所以∠AOD=∠AOB+∠BOD=45°+75°=120°. 2.将一副三角板的两个顶点重叠放在一起.(两个三角板中的锐角分别为45°、45°和30°、60°)(1)如图1所示,在此种情形下,当∠DAC=4∠BAD 时,求∠CAE 的度数; (2)如图2所示,在此种情形下,当∠ACE=3∠BCD 时,求∠ACD 的度数.解:(1)因为∠BAD+∠DAC=90°,∠DAC =4∠B AD , 所以5∠BAD=90°,即∠BAD=18°. 所以∠DAC=4×18°=72°. 因为∠DAE =90°,所以∠CAE=∠DAE-∠DAC=18°.(2)因为∠BCE=∠DCE-∠BCD=60°-∠BCD,∠ACE =3∠BCD, 所以∠ACB=∠ACE+∠BCE=3∠BCD+60°-∠BCD=90°. 解得∠BCD=15°.所以∠ACD=∠ACB+∠BCD=90°+15°=105°.类型2 利用角平分线的性质角的平分线将角分成两个相等的角,利用角平分线的这个性质,再结合角的和、差关系进行计算.3.如图,点A ,O ,E 在同一直线上,∠AOB =40°,∠EOD =28°46′,OD 平分∠COE,求∠COB 的度数.解:因为∠EOD=28°46′,OD 平分∠COE, 所以∠COE=2∠EOD=2×28°46′=57°32′. 又因为∠AOB=40°,所以∠COB=180°-∠AOB-∠COE=180°-40°-57°32′=82°28′.4.已知∠AOB=40°,OD 是∠BOC 的平分线.(1)如图1,当∠AOB 与∠BOC 互补时,求∠COD 的度数; (2)如图2,当∠AOB 与∠BOC 互余时,求∠COD 的度数. 解:(1)因为∠AOB 与∠BOC 互补, 所以∠AOB+∠BOC =180°. 又因为∠AOB=40°,所以∠BOC=180°-40°=140°. 因为OD 是∠BOC 的平分线, 所以∠COD=12∠BOC=70°.(2)因为∠AOB 与∠BOC 互余, 所以∠AOB+∠BOC=90°. 又因为∠AOB=40°,所以∠BOC=90°-40°=50°. 因为OD 是∠BOC 的平分线, 所以∠COD=12∠BOC=25°.类型3 利用方程思想求解在解决有关余角、补角,角的比例关系或倍分关系问题时,常利用方程思想来求解,即通过设未知数,建立方程,通过解方程使问题得以解决. 5.一个角的余角比它的补角的23还少40°,求这个角的度数.解:设这个角的度数为x °,根据题意,得 90-x =23(180-x)-40.解得x =30.所以这个角的度数是30°. 6.如图,已知∠AOE 是平角,∠DOE =20°,OB 平分∠AOC,且∠COD∶∠BOC=2∶3,求∠BOC 的度数.解:设∠COD=2x °,则∠BOC=3x °. 因为OB 平分∠AOC, 所以∠AOB=3x °.所以2x +3x +3x +20=180. 解得x =20.所以∠BOC=3×20°=60°.7.如图,已知∠AOB=12∠BOC,∠COD =∠AOD=3∠AOB ,求∠AOB 和∠C OD 的度数.解:设∠AOB=x °,则∠COD=∠AOD=3∠AOB=3x °. 因为∠AOB=12∠BOC,所以∠BOC=2x °.所以3x +3x +2x +x =360. 解得x =40.所以∠AOB=40°,∠COD =120°.类型4 利用分类讨论思想求解在角度计算中,如果题目中无图,或补全图形时,常需分类讨论,确保答案的完整性. 8.已知∠AOB=75°,∠AOC =23∠AOB,OD 平分∠AOC,求∠BOD 的大小.解:因为∠AOB=75°,∠AOC =23∠AOB,所以∠AOC=23×75°=50°.因为O D 平分∠AOC,所以∠AOD=∠COD=25°.如图1,∠BOD =75°+25°=100°; 如图2,∠BOD =75°-25°=50°.9.已知:如图,OC 是∠AOB 的平分线.(1)当∠AOB=60°时,求∠AOC 的度数;(2)在(1)的条件下,∠EOC =90°,请在图中补全图形,并求∠AOE 的度数;(3)当∠AOB=α时,∠EOC =90°,直接写出∠AOE 的度数.(用含α的代数式表示)解:(1)因为OC 是∠AOB 的平分线, 所以∠AOC=12∠AOB.因为∠AOB=60°, 所以∠AOC=30°.(2)如图1,∠AOE =∠EOC+∠AOC=90°+30°=120°;如图2,∠AOE =∠EOC-∠AOC=90°-30°=60°. (3)90°+α2 或90°-α2.。

【精品】七年级数学上册综合训练探索规律随堂测试新版新人教版

【精品】七年级数学上册综合训练探索规律随堂测试新版新人教版

中小学教学设计、习题、试卷
探究规律(随堂测试)
1.以下图案由边长相等的黑白两色小正方形按必定规律拼接
而成,依此规律,则第n 个图案中白色小正方形和黑色小①
正方形共有个.②

n
图 1图 2图 3
2. 如图,将表示一个角形的纸对折,能够获得 1 条折痕(图中

虚线),那么连续对折六次后,能够获得

条折痕.

n
第一次对折第二次对折第三次对折
3.将正方形 ABCD的各边按如下图延伸,从射线 DA开始,按
顺时针方向挨次在各射线上标志点 1 , 2, 3,.
( 1)写出射线AB 上的数字摆列规律;
( 2)点 2 017在射线上.
16
12
8
4D A15 9 13
15 11 7 3C B2
6
10
14
1
中小学教学设计、习题、试卷【参照答案】
1.( n 2
+4n)
2.63
3.( 1) 4n-2 ;( 2)DA.
2。

七年级数学上册综合训练探索规律随堂测试新版新人教版20180828154

七年级数学上册综合训练探索规律随堂测试新版新人教版20180828154

① ② ③ … n① ② ③ …n 探索规律(随堂测试)1.下列图案由边长相等的黑白两色小正方形按一定规律拼接而成,依此规律,则第 n 个图案中白色小正方形和黑色小正方形共有 个.…图1图2图32.如图,将表示一个角形的纸对折,可以得到 1 条折痕(图中虚线),那么连续对折六次后,可以得到 条折痕.…第一次对折第二次对折第三次对折3.将正方形 ABCD 的各边按如图所示延长,从射线 DA 开始, 按顺时针方向依次在各射线上标记点 1,2,3,…. (1)写出射线 AB 上的数字排列规律 ; (2)点 2 017 在射线 上.16 12 84 D A 15 9 1315 11 7 3C B 26 10 14【参考答案】1. (n2+4n)2. 633. (1)4n-2;(2)DA.附:什么样的考试心态最好大部分学生都不敢掉以轻心,因此会出现很多过度焦虑。

想要不出现太强的考试焦虑,那么最好的办法是,形成自己的掌控感。

1、首先,认真研究考试办法。

这一点对知识水平比较高的考生非常重要。

随着重复学习的次数增加,我们对知识的兴奋度会逐渐下降。

最后时刻,再去重复学习,对于很多学生已经意义不大,远不如多花些力气,来思考考试。

很多老师也会讲解考试的办法。

但是,老师给你的办法,不能很好地提高你对考试的掌控感,你要找到自己的一套明确的考试办法,才能最有效地提高你的掌控感。

有了这种掌控感,你不会再觉得,在如此关键性的考试面前,你是一只被检验、被考察甚至被宰割的绵羊。

2、其次,试着从考官的角度思考问题。

考官,是掌控考试的;考生,是被考试考验的。

如果你只把自己当成一个考生,你难免会惶惶不安,因为你觉得自己完全是个被摆布者。

如果从考官的角度去看考试,你就成了一名主动的参与者。

具体的做法就是,面对那些知识点,你想像你是一名考官,并考虑,你该用什么形式来考这个知识点。

高考前两个半月,我用这个办法梳理了一下所有课程,最后起到了匪夷所思的效果,令我在短短两个半月,从全班第19名升到了全班第一名。

部编数学七年级上册专题05整式中的两种规律探索问题(解析版)(人教版)含答案

部编数学七年级上册专题05整式中的两种规律探索问题(解析版)(人教版)含答案

专题05 整式中的两种规律探索问题类型一、数字类规律探索例.观察:(x ﹣1)(x +1)=x 2﹣1,(x ﹣1)(x 2+x +1)=x 3﹣1,(x ﹣1)(x 3+x 2+x +1)=x 4﹣1,据此规律,当(x ﹣1)(x 5+x 4+x 3+x 2+x +1)=0时,代数式x 2019﹣1的值为 _____.【答案】0或﹣2【详解】解:根据题意得∶ (x ﹣1)(x +1)=x 2﹣1,(x ﹣1)(x 2+x +1)=x 3﹣1,(x ﹣1)(x 3+x 2+x +1)=x 4﹣1,……∴(x ﹣1)(x 5+x 4+x 3+x 2+x +1)=x 6﹣1∵(x ﹣1)(x 5+x 4+x 3+x 2+x +1)=0,∴x 6﹣1=0,解得:x =1或x =﹣1,则x 2019﹣1=0或﹣2,故答案为:0或﹣2.【变式训练1】a 是不为1的有理数,我们把11-a 称为a 的差倒数,如2的差倒数为1-11-2=,-1的差倒数为111(1)2=--,已知15a =,2a 是1a 差倒数,3a 是2a 差倒数,4a 是3a 差倒数,以此类推……,2021a 的值是()A .5B .14-C .43D .45【答案】B【解析】∵15a = , 2a 是1a 的差倒数,∴211154a ==--,∵3a 是2a 的差倒数,4a 是3a 的差倒数,∴314151-4a ==æö-ç÷èø,∴415415a ==-,根据规律可得n a 以5,1-4,45为周期进行循环,因为2021=673×3…2,所以202114a =-.故选B .【变式训练2】有2021个数排成一行,对于任意相邻的三个数,都有中间数等于前后两数的和,如果第一个数是0,第二个数是1, 那么前6个数的和是______, 这2021个数的和是______.【答案】0 1【解析】由题意得:第3个数是101-=,第4个数是110-=,第5个数是011-=-,第6个数是101--=-,则前6个数的和是()()0110110++++-+-=,第7个数是1(1)0---=,第8个数是0(1)1--=,归纳类推得:这2021个数是按0,1,1,0,1,1--循环往复的,202163365=´+Q ,且前6个数的和是0,\这2021个数的和与前5个数的和相等,即为()011011++++-=,故答案为:0,1.【变式训练3】有一列数11315,,,,228432---,…,那么第n 个数为______.【答案】()12n nn-【详解】解:()11122-=-´,()221221242==-´,()3333182-=-´,()4414414162==-´,()55551322-=-´,……由此发现:第n 个数为()12n n n -.故答案为:()12n nn-【变式训练4】杨辉三角又称贾宪三角,是二项式系数在三角形中的一种几何排列,如图,观察下面的杨辉三角:按照前面的规律,则()7a b +的展开式中从左起第三项为______.()1a b a b +=+()2222a b a ab b +=++()3322333a b a a b ab b +=+++()4432234464a b a a b a b ab b +=++++LL【答案】5221a b 【详解】解:根据题意,()7a b +=7652433425677213535217a a b a b a b a b a b ab b +++++++,∴()7a b +的展开式中从左起第三项为5221a b ,故答案为:5221a b .类型二、图形类规律探索例.如图,两条直线相交,有1个交点,三条直线相交最多有3个交点,四条直线相交最多有______个交点,n 条直线相交最多有______个交点.【答案】 6 (1)2n n -【详解】解: 如图,两条直线相交最多有1个交点,即()22112´-=;三条直线相交最多有3个交点,即()33132´-=;四条直线相交最多有6个交点,即()44162´-=,五条直线相交最多有10个交点,即()551102´-=,……∴n 条直线两两相交,最多有(1)2n n -个交点(n 为正整数,且n ≥2).故答案为6;(1)2n n -.【变式训练1】如图都是由同样大小的小球按一定规律排列的,依照此规律排列下去,第_____个图形共有45个小球.【答案】9【详解】解:第1个图中有1个小球,第2个图中有3个小球,3=1+2,第3个图中有6个小球,6=1+2+3,第4个图中有10个小球,10=1+2+3+4,……n(1+n)个小球,照此规律,第n个图形有1+2+3+4+…+n=12n(1+n)=45,∴12解得n=9或-10(舍去),故答案为:9.【变式训练2】为庆祝“六·一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示:按照上面的规律,摆第n个“金鱼”和第(n+1)个“金鱼”需用火柴棒的根数为130根,则n的值为______.【答案】10【详解】解:由题可知:第n个图形有(6n+2)根火柴棒,第(n+1)个图形有(6n+8)根火柴棒,∵摆第n个“金鱼”和第(n+1)个“金鱼”需用火柴棒的根数为130根,∴6n+2+6n+8=130,解得n=10.故答案为:10.【变式训练3】如图是某广场用地板铺设的部分图案,中央是一块正六边形的地板砖,周围是正三角形和正方形的地板砖.从里向外的第1层包括6个正方形和6个正三角形,第2层包括6个正方形和18个正三角形,依此递推,第10层中含有正三角形个数为___个,第n层含有正三角形个数为___个.n-【答案】114 126【解析】根据题意分析可得:从里向外的第1层包括6个正三角形,第2层包括18个正三角形,此后,每层都比前一层多12个,依此递推,第10层中含有正三角形个数是6+12×9=114个,则第n层中含有正三角形个数是6+12×(n-1)=126n-个,故答案为:114,126n-.【变式训练4】观察下列图形:它们是按一定规律排列的,依照此规律,用6064个五角星摆出的图案应该是第_______个图形.【答案】2021【解析】观察发现,第1个图形五角星的个数是:1+3=4,第2个图形五角星的个数是:1+3×2=7,第3个图形五角星的个数是:1+3×3=10,第4个图形五角星的个数是:1+3×4=13,⋯第n个图形五角星的个数是:1+3•n=1+3n,∵6064120213-=,∴用6064个五角星摆出的图案应该是第2021个图形,故答案为:2021.课后训练1.下列图形都是由同样大小的黑色正方形纸片组成,其中第1个图有3张黑色正方形纸片,第2个图有5张黑色正方形纸片,第3个图有7张黑色正方形纸片,…,按此规律排列下去,若第n个图中有201张黑色正方形纸片,则n的值为( )A.99B.100C.101D.102【答案】B【详解】解:观察图形知:第一个图中有3=1+2×1个正方形,第二个图中有5=1+2×2个正方形,第三个图中有7=1+2×2个正方形,…故第n 个图中有1+2×n =2n +1=201(个)正方形,解得n =100故选B .2.如图,将若干颗棋子按箭头方向依次摆放,记第一颗棋子摆放的位置为第1列第1排,第二颗棋子摆放的位置为第2列第1排,第三颗棋子摆放的位置为第2列第2排……,按此规律摆放在第16列第8排的是第( )颗棋子.A .85B .86C .87D .88【答案】B 【详解】偶数列数与排数表:偶数列数排数22436485……n 12n +∴当n =16时,排数为:192n +=,∴前16列共有棋子:()9102123+-3=2-3=872´+++´…9(颗),∴第16列第8排的棋子位次是:87-1=86.故选B .3.将一正方形按如图方式分成n 个完全相同的长方形,上、下各横排三个,中间两行各竖排若干个,则n 的值为( )A .12B .16C .18D .20【答案】C 【详解】解:设长方形的长为a ,宽为b ,根据题意得,2a +2b =3a , 整理得,a =2b ,∴竖排的一行的长方形的个数为3a ÷b =(3×2b )÷b =6,∴n =3×2+6×2=6+12=18.故选:C .4.幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫格.将9个数填入幻方的空格中,要求每一横行、每一竖列以及两条对角线上的3个数之和相等,例如图(1)就是一个幻方.图(2)是一个未完成的幻方,则x 与y 的和是( )A .9B .10C .11D .12【详解】解:设如图表所示:根据题意可得:x +6+20=22+z +y ,整理得:x -y =-4+z ,x +22+n =20+z +n ,20+y +m =x +z +m ,整理得:x =-2+z ,y =2z -22,∴x -y =-2+z -(2z -22)=-4+z ,解得:z =12,∴x +y =3z -24=12故选:D .5.如图,按此规律,第6行最后一个数字是_____,第_____行最后一个数是2020.【答案】16 674【详解】Q 每一行的最后一个数字分别是1,4,7,10 ,……,\第n 行的最后一个数字为:1+3(1)32n n -=-,\第6行最后一个数字为:36216´-=;322020n -=,解得:674n =,故答案为:16,674.6.如图,每个图形中的三个数之间均具有相同的规律.根据此规律,若图形中11m =,12n =,则M 的值为________.【详解】解:∵1×(2+1)=3,3×(4+1)=15,5×(6+1)=35,∴右下圆圈内的数=上方圆圈内的数×(左下圆圈内的数+1),∴M =m (n +1),∴M =11×(12+1)=143.故答案为:143.7.为了求220211222+++¼+的值,可令220211222S =+++¼+,则220222222S =++¼+,因此2022221S S -=-,所以220212022122221+++¼+=-.按照以上推理计算出1220211333---+++¼+的值是______.【答案】2021332--【详解】解:令1220211333S ---=+++¼+,则1220212022133333S ----=++¼++,因此20221313S S --=-,则20222313S --=-,得:2021332S --=,所以20211220213313332-----+++¼+=.故答案为:2021332--.8.今年“10.1”黄金周,适逢祖国70大庆,广西柳州赛长桌宴,民族风情浓郁,吸引了大量游客如果长桌宴按下图方式就坐(其中□代表桌子,〇代表座位),则拼接n (n 为正整数)张桌子时,最多可就坐_____人.【答案】(6n +2)【详解】解:根据图示知,拼1张桌子,可以坐(2+6)人.拼2张桌子,可以坐[2+(6×2)]人.拼3张桌子,可以坐[2+(6×3)]人.…拼接n (n 为正整数)张桌子,可以坐(6n +2)人.故答案是:(6n +2).9.在日历上,我们可以发现其中某些数满足一定的规律,如图是2012年8月份的日历.我们任意选择其中所示的方框部分,将每个方框部分中4个位置上的数交又相乘,再相减,例如:7136147´-´=,172316247´-´=,不难发现,结果都是7.2012年8月日一二三四五六12345678910111213141516171819202122232425262728293031(1)请你再选择两个类似的部分试一试,看看是否符合这个规律;(2)换一个月的月历试一下,是否有同样的规律?(3)请你利用整式的运算对以上的规律加以证明.【答案】(1)111710187´-´=,符合;(2)392107´-´=;(3)见解析【详解】解:(1)由题意得:111710187´-´=,符合;(2)392107´-´=;答:换一个月的月历试一下还是同样的规律;(3)设上边第一个数为x ,则其后的数为(x +1),第二行的两个数分别为(x +7),(x +8),根据题意,得22(1)(7)(8)8787x x x x x x x x ++-+=++--=.10.(1)你知道下面每一个图形中各有多少个小圆圈吗?第5个图形中应该有多少个小圆圈?为什么?(2)完成下表:边上的小圆圈数12345每个图中小圆圈的总数(3)如果用n 表示六边形边上的小圆圈数,m 表示这个六边形中小圆圈的总数,那么m 和n 的关系是什么?【答案】(1)第1个图形:1个;第2个图形:7个;第3个图形:19个;第4个图形:37个;第5个图形:61个,理由见解析;(2)1,7,19,37,61;(3)2331m n n =-+【详解】(1)观察每个图形的特点,就可以算出第1个图形的小圆圈有1个,第2个图形的小圆圈有2+3+2=7个,第3个图形的小圆圈有3+4+5+4+3=19个,第4个图形的小圆圈有4+5+6+7+6+5+4=37个,由此可推知第5个图形的小圆圈有5+6+7+8+9+8+7+6+5=61个;(2)将(1)算出的结果填入下列表格,如下表所示,边上的小圆圈数12345每个图中小圆圈的总数17193761(3)结合(1)(2)可知,m 与n 之间的函数关系为:()()()()()1...212...1m n n n n n n n n n n=+++++-++-++-++++首尾相加得()()21...(2)1m n n n n n n =+++++-++-éùëû()()21322213312n n n n n --=+-=-+2331m n n =-+.11.对任意一个四位正整数m ,如果m 的百位数字等于个位数字与十位数字之和,m 的千位数字等于十位数字的2倍与个位数字之和,那么称这个数m 为“筋斗数”.例如:m =5321,满足1+2=3,2×2+1=5,所以5321是“筋斗数”.例如:m =8523,满足2+3=5,但2×2+3=7≠8,所以8523不是“筋斗数”.(1)判断9633和2642是不是“筋斗数”,并说明理由;(2)若m 是“筋斗数”,且m 与13的和能被11整除,求满足条件的所有“筋斗数”m .【答案】(1)9633是“筋斗数”;2642不是“筋斗数”; 理由见解析(2)m 的值为9909或2110或6422【解析】(1)解:9633是“筋斗数”,2642不是“筋斗数”,理由如下:∵6=3+3,9=2×3+3,∴9633是“筋斗数”;∵6=4+2,28+2¹,∴2642不是“筋斗数”;(2)设m 的个位数为a ,0≤a ≤9,十位数为0<b ≤9,且a 、b 为整数∵m 是“筋斗数”,∴m 的百位数为a +b ,千位数为2b +a ;∴m =1000(2b +a )+100(a +b )+10b +a =1100a +110b +2000b +a∵m 与13的和能被11整除,∴1100a +110b +2000b +a +13能被11整除,∵2b +a ≤9且a 、b 为整数,∴b ≤4.5∵1100a +110b 能被11整除,∴2000b +a +13能被11整除,∴b =0,a =9或b =1,a =0或b =2,a =2或b =3,a =4,或b =4,a =6,∴a +b =9,2b +a =9或a +b =1,2b +a =2或a +b =4,2b +a =6或a +b =7,2b +a =10(舍去)或a +b =10,2b +a =14(舍去),∴m 的值为9909或2110或642212.看图填空:如图,把一个面积为1的正方形等分成两个面积为12的长方形,接着把面积为12的长方形等分成两个面积为14的长方形,再把面积为14的长方形等分成面积为18的长方形,如此进行下去……(1)试利用图形揭示的规律计算:1111111112481632641282562n ++++++++L =_______.并使用代数方法证明你的结论.(2)请给利用图(2),再设计一个能求:2341111122222n +++++L 的值的几何图形.【答案】(1)112n - ,证明见解析;(2)见解析【解析】(1)解:①由题意可知当最后一个小长方形的面积为12n时 ,1111111112481632641282562n ++++++++L 的值为正方形面积减去最后一个小长方形面积,即:112n - ,1111111111124816326412825622n n \++++++++=-L ;②设1111111112481632641282562n s =++++++++L ,111111111212481632641282n s -=++++++++L ,1212n s s \-=-,即112ns =-,1111111111124816326412825622n n \++++++++=-L ;(2)如图所示,将面积为1的正方形等分成两个面积为12的三角形,接着把面积为12的三角形等分成两个面积为14的三角形,再把面积为14的三角形等分成面积为18的三角形,如此进行下去,则2341111122222n +++++L 的值即为正方形面积减去最后一个小三角形面积:112n -。

人教版七年级数学上册期末规律探索专题训练-带有答案

人教版七年级数学上册期末规律探索专题训练-带有答案

人教版七年级数学上册期末规律探索专题训练-带有答案学校:___________班级:___________姓名:___________考号:___________一.选择题1.按照一定规律排列的式子:23x ,45x 与67x ,89x ……第7个式子是( )A .3413xB .1415xC .1613xD .1615x2.已知122=,224=与328=,4216=和5232=…请你推算20242的个位数字是( ) A .8B .6C .4D .23.将正整数1,2,3,4,5,…,按以下方式排放(如图),根据排放规律,从100到102的箭头依次为( )A .↓→B .→↑C .↑→D .→↓4.观察下列图形中点的个数,若按其规律再画下去,可以得到第10个图形中所有点的个数为( )A .81个B .100个C .121个D .144个5.将一列有理数-1,2,-3,4,-5,6,……按如图所示进行排列,则2024应排在( )A .A 位置B .B 位置C .C 位置D .D 位置6.用同样大小的正方形按如图所示的规律拼图案,其中第①个图案中有9个正方形,第①个图案中有14个正方形,第①个图案中有19个正方形,…,按此规律排列下去,则第①个图案中正方形个数是( )A .45B .49C .50D .547.用边长相等的等边三角形按一定规律摆放成的图案(如图所示),第1个图案中有4个三角形,第2个图案中有7个三角形,第3个图案中有10个三角形…照此规律摆下去:第2023个图案中三角形的个数是()A.6064B.6067C.6070D.60738.如图,是由相同的小圆圈按照一定规律摆放而成的,第(1)个图形中小圆圈的个数是5个,第(2)个图形中小圆圈的个数是8个,第(3)个图形中小圆圈的个数是11个,则第10个图形中小圆圈的个数是()A.32B.35C.36D.40二.填空题9.观察图形找规律.根据规律,.3576561,观察归纳可得111三.解答题17.下面各图均由边长相同的正方形按一定规律拼接而成,请你观察、分析并解决下列问题:(1)第5个图中的正方形的个数是______;(2)求第n个图中正方形的个数.18.将一张长方形的纸对折,如图所示可得到1条折痕(图中虚线),这条折痕将长方形分成了2个长方形;继续对折,对折时每次折痕与上次的折痕保持平行.(1)连续对折4次,可以得到__________条折痕,这些折痕把长方形分成了__________个长方形.(2)连续对折n次,可以得到__________条折痕,这些折痕把长方形分成了__________个长方形.(3)请你简要说明探究得到此结论的过程和方法.19.如图是用大小相等的小五角星按一定规律拼成的一组图案,第1个图案中有4颗五角星,第2个图案中有7颗五角星,第3个图案中有10颗五角星,…,请根据你的观察完成下列问题.(1)根据上述规律,分别写出第4个图案和第5个图案中小五角星的颗数;(2)按如图所示的规律,求出第n个图案中小五角星的颗数;(用含n的代数式表示)(3)第2023个图案中有多少颗五角星?20.观察下列关于自然数的等式:234141-⨯=+,①2-⨯=+,①5421612-⨯=+,①743361……根据上述规律解决下列问题.(1)写出第四个等式;(2)写出你猜想的第n个等式.(用含n的式子表示)参考答案:17.(1)16 (2)31n +18.(1)15,16 (2)21n - 2n19.(1)第4个图案有13颗小五角星,第5个图案有16颗小五角星 (2)()31n +颗 (3)6070颗20.(1)2944641-⨯=+ (2)()()2221421n n n +-=+。

七年级数学上册专题训练五图形的规律探索新版新人教版

七年级数学上册专题训练五图形的规律探索新版新人教版

专题训练(五) 图形的规律探究——教材P70T10的式与用教材母:(教材P70T10)如所示,由一些点成形如三角形的形,每条“”(包含两个点)有n(n>1)个点,每个形的点数S是多少?当n=5,7,11,S是多少?【思路点】察形,可获得点的数S与n之的关系,用含n的式子表示S,即可分求出当n=5,7,11,S的.【解答】察形,当 n=2,有两排点,的点数1+2=3(个);当n=3,有三排点,的点数1+2+3=6(个);当n=4,有四排点,的点数1+2+2+4=9(个);当n=5,有五排点,的点数1+2+2+2+5=12(个).依据此律,可知点的数S=1+2(n-2)+n=3n-3,n=7,S=3×7-3=18;n=11,S=3×11-3=30.故当n=5,7,11,S的分是12,18,30.【方法】解决形律探究,第一从的基本形下手,跟着“序号”或“号”增添,后一个形与前一个形对比,在数目上的化状况或形化状况,找出化律,进而推出一般性.1.如是用同样度的小棒成的一有律的案,此中1需要4根小棒,2需要10根小棒,⋯,按此律下去,第11个案所需小棒的根数(C)A.70B.68C.64D.582.(州中考)如,用黑白两种色的片,按黑色片数逐增添1的律拼成以下案.若第n 个案中有2017个白色片,n的()BA.671B.672C.673D.6743.(益阳中考)小李用棋子排成以下一有律的案,此中第1个案有1枚棋子,第2个案有3枚棋子,第3个案有4枚棋子,第4个案有6枚棋子,⋯,那么第9个案的棋子数是13枚.4.如是用棋子成的案:依据中棋子的摆列律解决以下:第4此中有22枚棋子,第5此中有32枚棋子;写出你猜想的第n此中棋子的枚数(用含n的式子表示)是n+2+n2.5.下边是用棋子成的“小房屋”.第10个的“小房屋”需要多少枚棋子?第n个的“小房屋”呢?你是怎样获得的?解:第1个“小房屋”,下正方形棋子4×2-4=4(枚),上1枚,共4+1=5(枚);2个“小房屋”,下正方形棋子4×3-4=8(枚),上3枚,共8+3=11(枚);3个“小房屋”,下正方形棋子4×4-4=12(枚),上5枚,共12+5=17(枚);4个“小房屋”,下正方形棋子4×5-4=16(枚),上7枚,共16+7=23(枚);⋯n个“小房屋”,下正方形棋子4×(n+1)-4=4n(枚),上(2n-1)枚,共4n+2n-1=(6n-1)(枚).当n=10,6n-1=6×10-1=59(枚).。

七年级数学上册综合训练探索规律图形规律天天练无答案新版新人教版20180828151

七年级数学上册综合训练探索规律图形规律天天练无答案新版新人教版20180828151

图形规律学生做题前请先回答以下问题问题1:学习图形规律的思考方向:①观察图形构成:________________________;②转化:________________________________.问题2:观察图1至图4中点的摆放规律,按照这样的规律继续摆放,则第n个图中点的个数为_______.(用含n代数式表示)图形规律(人教版)一、单选题(共10道,每道10分)1.下列是由火柴棒拼出的一系列图形,依此规律,第100个图形中的火柴棒有( )根.A.400B.304C.301D.3002.观察下列图形的构成规律,按此规律,第10个图形中棋子的个数为( )A.31B.42C.45D.513.按如图所示规律摆放阴影三角形,则第13个图形中阴影三角形的个数是( )A.40B.41C.42D.394.按照如图所示的方法排列黑色小正方形地砖,则第9个图形中的黑色小正方形地砖有( )A.85块B.113块C.145块D.181块5.一块瓷砖的图案如图1所示,用这种瓷砖铺设地面,如果铺设成如图2的图案,其中完整的圆一共有5个,如果铺设成如图3的图案,其中完整的圆一共有13个,如果铺设成如图4的图案,其中完整的圆一共有25个,依此规律,第10个图中,完整的圆一共有( )A.100个B.101个C.181个D.221个6.有一长条型链子,其外型由边长为1的正六边形排列而成.如图是此链子的任意一段示意图,其中每个黑色六边形与6个白色六边形相邻.若此链子上共有35个黑色六边形,则共有( )个白色六边形.A.140B.142C.210D.2127.观察下列图形,图1由3张同样大小的小正方形纸片组成,图2由6张同样大小的小正方形纸片组成,图3由10张同样大小的小正方形纸片组成,…,依此规律,图8需要同样大小的小正方形纸片( )张.A.28B.36C.45D.668.下列图形是由同样大小的五角星按一定的规律排列组成,其中第1个图形共有2个五角星,第2个图形共有8个五角星,第3个图形共有18个五角星,…,则第10个图形中五角星的个数为( )A.100B.162C.196D.2009.下面是按照一定规律画出的“树形图”,经观察可以发现:图2比图1多出2个“树枝”,图3比图2多出4个“树枝”,图4比图3多出8个“树枝”,…,照此规律,图6比图5多出( )个“树枝”.A.60B.32C.16D.6410.观察下列图形中每一个大三角形中黑色三角形的排列规律,则第6个图形中黑色三角形的个数为( )A.729B.364C.243D.720附:什么样的考试心态最好大部分学生都不敢掉以轻心,因此会出现很多过度焦虑。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题训练(五) 图形的规律探索
——教材P70T10的变式与应用
教材母题:(教材P70T10)如图所示,由一些点组成形如三角形的图形,每条“边”(包括两个顶点)有n(n>1)个点,每个图形总的点数S是多少?当n=5,7,11时,S是多少?
【思路点拨】观察图形,可得到点的总数S与n之间的关系,用含n的式子表示S,便可分别求出当n=5,7,11时,S的值.
【解答】观察图形,当n=2时,有两排点,总的点数为1+2=3(个);
当n=3时,有三排点,总的点数为1+2+3=6(个);
当n=4时,有四排点,总的点数为1+2+2+4=9(个);
当n=5时,有五排点,总的点数为1+2+2+2+5=12(个).
根据此规律,可知点的总数S=1+2(n-2)+n=3n-3,
当n=7时,S=3×7-3=18;
当n=11时,S=3×11-3=30.
故当n=5,7,11时,S的值分别是12,18,30.
【方法归纳】解决图形规律探索问题,首先从简单的基本图形入手,随着“序号”或“编号”增加时,后一个图形与前一个图形相比,在数量上的变化情况或图形变化情况,找出变化规律,从而推出一般性结论.
1.如图是用相同长度的小棒摆成的一组有规律的图案,其中图1需要4根小棒,图2需要10根小棒,…,按此规律摆下去,则第11个图案所需小棒的根数为(C)
A.70 B.68 C.64 D.58
2.(荆州中考)如图,用黑白两种颜色的纸片,按黑色纸片数逐渐增加1的规律拼成下列图案.若第n个图案中有2 017个白色纸片,则n的值为(B)
A.671 B.672 C.673 D.674
3.(益阳中考)小李用围棋子排成下列一组有规律的图案,其中第1个图案有1枚棋子,第2个图案有3枚棋子,第3个图案有4枚棋子,第4个图案有6枚棋子,…,那么第9个图案的棋子数是13枚.
4.如图是用棋子摆成的图案:
根据图中棋子的排列规律解决下列问题:
(1)第4个图中有22枚棋子,第5个图中有32枚棋子;
(2)写出你猜想的第n个图中棋子的枚数(用含n的式子表示)是n+2+n2.
5.下面是用棋子摆成的“小房子”.摆第10个这样的“小房子”需要多少枚棋子?摆第n 个这样的“小房子”呢?你是如何得到的?
解:第1个“小房子”,下边正方形棋子4×2-4=4(枚),上边1枚,共4+1=5(枚);
第2个“小房子”,下边正方形棋子4×3-4=8(枚),上边3枚,共8+3=11(枚);
第3个“小房子”,下边正方形棋子4×4-4=12(枚),上边5枚,共12+5=17(枚);
第4个“小房子”,下边正方形棋子4×5-4=16(枚),上边7枚,共16+7=23(枚);

第n个“小房子”,下边正方形棋子4×(n+1)-4=4n(枚),上边(2n-1)枚,共4n +2n-1=(6n-1)(枚).
当n=10时,6n-1=6×10-1=59(枚).。

相关文档
最新文档