八年级数学12月月测试题_2
12月八年级上月考数学试卷含答案解析-(2)

∴
.
解得:mx﹣7,m x﹣x1 ∴另一个因式为(x﹣7),m 的值为﹣x1 问题:仿照以上方法解答下面问题: 已知二次三项式 2x2+ax﹣k 有一个因式是(xx﹣5),求另一个因式以及 k 的值. 27.已知 a,b,c 为△ABC 的三条边长,当 b2+2ab=c2+2ac 时,试判断△ABC 属 于哪一类三角形,并说明理由. 28.某超市用 3000 元购进某种干果销售,由于销售状况良好,超市又调拨 9000 元资金购进该种干果,但这次的进价比第一次的进价提高了 20%,购进干 果数量是第一次的 2 倍还多 300 千克,如果超市按每千克 9 元的价格出售,当 大部分干果售出后,余下的 500 千克按售价的 8 折售完.
C. ﹣ =3 D. ﹣ =3
10.已知
= ,则 x2+ 的值为( )
第 1 页 共 19 页
A. B. C.7 D.4
二、填空题(共 8 小题,每小题 4 分,满分 32 分) 11.分解因式:2a(b+c)﹣a(b+c)= . 12.若 4a2+kab+9b2 是一个完全平方式,则 k= .
13.已知
2.多项式 mx2﹣m 与多项式 x2﹣xx+1 的公因式是( )
A.x﹣1 B.x+1 C.x2﹣1 D.(x﹣1)2
【考点】公因式.
【分析】分别将多项式 mx2﹣m 与多项式 x2﹣xx+1 进行因式分解,再寻找它们的
公因式.
八年级数学12月月考试题含解析 试题

HY2021-2021学年八年级数学12月月考试题制卷人:打自企;成别使;而都那。
审核人:众闪壹;春壹阑;各厅……日期:2022年二月八日。
一、选择题〔每一小题3分,一共计30分〕1.以下函数〔1〕y=πx;〔2〕y=2x﹣1;〔3〕y=;〔4〕y=22﹣x;〔5〕y=x2﹣1中,一次函数的个数是( ) A.4个B.3个C.2个D.1个2.假设y=〔m﹣2〕x+〔m2﹣4〕是正比例函数,那么m的取值是( )A.2 B.﹣2 C.±2D.任意实数3.假如是二元一次方程组的解,那么a,b的值是( )A.B.C.D.4.在等式y=kx+b中,当x=0时,y=﹣1;当x=﹣1时,y=0,那么这个等式是( )A.y=﹣x﹣1 B.y=﹣x C.y=﹣x+1 D.y=x+15.方程y=1﹣x与3x+2y=5的公一共解是( )A.B.C.D.6.某年级学生一共有246人,其中男生人数y比女生人数x的2倍少2人,那么下面所列的方程组中符合题意的有( )A.B.C.D.7.一次函数y=kx+b,y随着x的增大而减小,且kb<0,那么在直角坐标系内它的大致图象是( )A.B.C.D.8.以下点中,( )在一次函数y=3x﹣4上.A.〔2,3〕B.〔﹣1,﹣1〕C.〔0,﹣4〕D.〔﹣4,0〕9.假设一次函数y=kx﹣4的图象经过点〔﹣2,4〕,那么k等于( )A.﹣4 B.4 C.﹣2 D.210.2021年“国际攀岩比赛〞在举行.小丽从家出发开车前去观看,途中发现忘了带门票,于是打让妈妈马上从家里送来,同时小丽也往回开,遇到妈妈后聊了一会儿,接着继续开车前往比赛现场.设小丽从家出发后所用时间是为t,小丽与比赛现场的间隔为S.下面能反映S与t的函数关系的大致图象是( )A. B. C. D.二、填空题〔每空3分,一共计30分〕11.x=2,y=﹣1合适方程2x+3ay=1,那么a=__________.12.二元一次方程x+y=5的正整数解有__________.13.假如2a y+5b3x与﹣4a2x b2﹣4y是同类项,那么x=__________,y=__________.14.一次函数y=x+1的图象与y=﹣2x﹣5的图象的交点坐标是__________.15.一次函数y=﹣2x+3的图象不经过第__________象限.16.一次函数的图象过点〔1,2〕,且y随x的增大而减少.请写出一个符合条件的一次函数的解析式:__________.〔写出一个符合条件的解析式即可〕17.一次函数y=﹣2x+6的图象与x轴交点坐标是__________,与y轴交点坐标是__________.18.如图,点A的坐标可以看成是方程组__________的解.三、解方程〔一共1小题,满分是16分〕19.〔16分〕解方程〔1〕〔2〕〔3〕〔4〕.四、解答题〔一共计44分〕20.小明和小亮做加法游戏,小明在一个加数后面多写了一个0,得到的和为242;而小亮在另一个加数后面多写了一个0,得到的和为341,原来两个加数分别是多少?21.以绳测井.假设将绳三折测之,绳多五尺;假设将绳四折测之,绳多一尺.绳长、井深各几何?题目大意:用绳子测水井深度,假如将绳子折成三等份,一份绳长比井深多5米;假如将绳子折成四等份,一份绳长比井深多1尺.问绳长、井深各是多少尺?22.某制衣厂某车间方案用10天加工一批出口童装和成人装一共360件,该车间的加工才能是:每天能单独加工童装45件或者成人装30件.〔1〕该车间应安排几天加工童装,几天加工成人装,才能如期完成任务?〔2〕假设加工童装一件可获利80元,加工成人装一件可获利120元,那么该车间加工完这批服装后,一共可获利多少元?23.一次函数图象过点A〔2,﹣1〕,B〔0,3〕,求该一次函数解析式.24.如下图为某汽车行驶的路程S〔km〕与时间是t〔min〕的函数关系图,观察图中所提供的信息解答以下问题:〔1〕汽车在前9分钟内的平均速度是多少?〔2〕汽车中途停了多长时间是?〔3〕当16≤t≤30时,求S与t的函数关系式?25.,直线y=2x+3与直线y=﹣2x﹣1.〔1〕求两直线与y轴交点A,B的坐标;〔2〕求两直线交点C的坐标;〔3〕求△ABC的面积.2021-2021学年HY八年级〔上〕月考数学试卷〔12月份〕一、选择题〔每一小题3分,一共计30分〕1.以下函数〔1〕y=πx;〔2〕y=2x﹣1;〔3〕y=;〔4〕y=22﹣x;〔5〕y=x2﹣1中,一次函数的个数是( ) A.4个B.3个C.2个D.1个【考点】一次函数的定义.【分析】根据一次函数的定义条件进展逐一分析即可.【解答】解:〔1〕y=πx是正比例函数,是特殊的一次函数;〔2〕y=2x﹣1是一次函数;〔3〕y=是反比例函数;〔4〕y=22﹣x是一次函数;〔5〕y=x2﹣1是二次函数.应选:B.【点评】此题主要考察了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.2.假设y=〔m﹣2〕x+〔m2﹣4〕是正比例函数,那么m的取值是( )A.2 B.﹣2 C.±2D.任意实数【考点】正比例函数的定义.【专题】待定系数法.【分析】正比例函数的一般式y=kx,k≠0,所以使m2﹣4=0,m﹣2≠0即可得解.【解答】解:根据题意得:;得:m=﹣2.应选B.【点评】考察了正比例函数的定义,比拟简单.3.假如是二元一次方程组的解,那么a,b的值是( )A.B.C.D.【考点】二元一次方程组的解.【专题】计算题.【分析】将x=1,y=2代入方程组得到关于a与b的方程组,即可求出a与b的值.【解答】解:将x=1,y=2代入方程组得:,①×2﹣②得:3b=3,即b=0,将b=1代入①得:a=1,那么.应选B.【点评】此题考察了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.4.在等式y=kx+b中,当x=0时,y=﹣1;当x=﹣1时,y=0,那么这个等式是( )A.y=﹣x﹣1 B.y=﹣x C.y=﹣x+1 D.y=x+1【考点】解二元一次方程组.【专题】待定系数法.【分析】根据题意,把的两组值代入原式,将得到一个关于k、b的二元一次方程组,运用适当的解法解答即可.【解答】解:在y=kx+b中,当x=0时,y=﹣1;当x=﹣1时,y=0.所以,解得b=﹣1,k=﹣1.代入等式y=kx+b得y=﹣x﹣1.应选A.【点评】根据题意列出方程组求解,再代入原等式即可.此题用代入法解方程组比拟简单.5.方程y=1﹣x与3x+2y=5的公一共解是( )A.B.C.D.【考点】一次函数与二元一次方程〔组〕.【专题】计算题.【分析】先画出函数y=1﹣x和函数3x+2y=5的图象,确定它们的交点坐标,然后根据函数图象交点坐标为两函数解析式组成的方程组的解即可得到答案.【解答】解:如图,所以方程y=1﹣x与3x+2y=5的公一共解为.应选C.【点评】此题考察了一次函数与二元一次方程〔组〕:函数图象交点坐标为两函数解析式组成的方程组的解.6.某年级学生一共有246人,其中男生人数y比女生人数x的2倍少2人,那么下面所列的方程组中符合题意的有( )A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】此题中的等量关系有:①某年级学生一共有246人,那么x+y=246;②男生人数y比女生人数x的2倍少2人,那么2x=y+2【解答】解:根据某年级学生一共有246人,那么x+y=246;②男生人数y比女生人数x的2倍少2人,那么2x=y+2.可列方程组为.应选B.【点评】找准等量关系是解决应用题的关键,注意代数式的正确书写,字母要写在数字的前面.7.一次函数y=kx+b,y随着x的增大而减小,且kb<0,那么在直角坐标系内它的大致图象是( )A.B.C.D.【考点】一次函数图象与系数的关系.【分析】利用一次函数的性质进展判断.【解答】解:∵一次函数y=kx+b,y随着x的增大而减小∴k<0又∵kb<0∴b>0∴此一次函数图形过第一,二,四象限.应选A.【点评】纯熟掌握一次函数的性质.k>0,图象过第1,3象限;k<0,图象过第2,4象限.b>o,图象与y轴正半轴相交;b=0,图象过原点;b<0,图象与y轴负半轴相交.8.以下点中,( )在一次函数y=3x﹣4上.A.〔2,3〕B.〔﹣1,﹣1〕C.〔0,﹣4〕D.〔﹣4,0〕【考点】一次函数图象上点的坐标特征.【专题】计算题.【分析】分别把各点代入一次函数y=3x﹣4进展检验即可.【解答】解:A、∵当x=2时,y=3×2﹣4=2≠3,∴点〔2,3〕不在此函数的图象上,故本选项错误;B、∵当x=﹣1时,y=3×〔﹣1〕﹣4=﹣7≠﹣1,∴点〔﹣1,﹣1〕不在此函数的图象上,故本选项错误;C、当x=0时,y=0﹣4=﹣4,∴点〔0,﹣4〕在此函数的图象上,故本选项正确;D、当x=﹣4时,y=3×〔﹣4〕﹣4=﹣16≠0,∴点〔﹣4,0〕不在此函数的图象上,故本选项错误.应选C.【点评】此题考察的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定合适此函数的解析式是解答此题的关键.9.假设一次函数y=kx﹣4的图象经过点〔﹣2,4〕,那么k等于( )A.﹣4 B.4 C.﹣2 D.2【考点】待定系数法求一次函数解析式.【专题】计算题.【分析】将点〔﹣2,4〕代入函数解析式可得出关于k的方程,解出即可得出k的值.【解答】解:将点〔﹣2,4〕代入得:4=﹣2k﹣4,解得:k=﹣4.应选A.【点评】此题考察待定系数求函数的解析式,属于根底性,注意在代入点的坐标时要细心求解.10.2021年“国际攀岩比赛〞在举行.小丽从家出发开车前去观看,途中发现忘了带门票,于是打让妈妈马上从家里送来,同时小丽也往回开,遇到妈妈后聊了一会儿,接着继续开车前往比赛现场.设小丽从家出发后所用时间是为t,小丽与比赛现场的间隔为S.下面能反映S与t的函数关系的大致图象是( )A. B. C. D.【考点】函数的图象.【专题】数形结合.【分析】根据题意,把图象分为四段,第一段,小丽从家出发到往回开,第二段到遇到妈妈,第三段与妈妈聊了一会,第四段,接着开往比赛现场分析图象,然后选择答案.【解答】解:根据题意可得,S与t的函数关系的大致图象分为四段,第一段,小丽从家出发到往回开,与比赛现场的间隔在减小,第二段,往回开到遇到妈妈,与比赛现场的间隔在增大,第三段与妈妈聊了一会,与比赛现场的间隔不变,第四段,接着开往比赛现场,与比赛现场的间隔逐渐变小,直至为0,纵观各选项,只有B选项的图象符合.应选B.【点评】此题考察了函数图象的知识,读懂题意,把整个过程分解成分段图象是解题的关键.二、填空题〔每空3分,一共计30分〕11.x=2,y=﹣1合适方程2x+3ay=1,那么a=1.【考点】二元一次方程的解.【分析】把x=2,y=﹣1代入方程2x+3ay=1求解即可.【解答】解:把x=2,y=﹣1代入方程2x+3ay=1,得4﹣3a=1,解得a=1,故答案为:1.【点评】此题主要考察了二元一次方程的解,解题的关键是把解代入方程求解.12.二元一次方程x+y=5的正整数解有解:.【考点】解二元一次方程.【专题】计算题.【分析】令x=1,2,3…,再计算出y的值,以不出现0和负数为原那么.【解答】解:令x=1,2,3,4,那么有y=4,3,2,1.正整数解为.故答案为:.【点评】此题考察理解二元一次方程,要知道二元一次方程的解有无数个.13.假如2a y+5b3x与﹣4a2x b2﹣4y是同类项,那么x=2,y=﹣1.【考点】同类项;解二元一次方程组.【分析】此题考察同类项的定义,所含字母一样且一样字母的指数也一样的项是同类项,同类项与字母的顺序无关.故可列出方程:,再根据二元一次方程的解法得出x,y的值.【解答】解:依题意得:,由①,得y=2x﹣5③,将③代入②,得3x=2﹣4〔2x﹣5〕,11x=22,x=2,那么y=4﹣5=﹣1.答:x=2,y=﹣1.【点评】同类项定义中的两个“一样〞:〔1〕所含字母一样;〔2〕一样字母的指数一样,是易混点,还有注意同类项与字母的顺序无关.14.一次函数y=x+1的图象与y=﹣2x﹣5的图象的交点坐标是〔﹣2,﹣1〕.【考点】两条直线相交或者平行问题.【专题】计算题.【分析】根据两直线相交的问题得到方程组的解就是一次函数y=x+1的图象与y=﹣2x﹣5的图象的交点坐标,然后解方程组即可.【解答】解:解方程组得,所以一次函数y=x+1的图象与y=﹣2x﹣5的图形的交点坐标是〔﹣2,﹣1〕.故答案为〔﹣2,﹣1〕.【点评】此题考察了两直线平行或者相交的问题:直线y=k1x+b1〔k1≠0〕和直线y=k2x+b2〔k2≠0〕平行,那么k1=k2;假设直线y=k1x+b1〔k1≠0〕和直线y=k2x+b2〔k2≠0〕相交,那么交点坐标满足两函数的解析式.15.一次函数y=﹣2x+3的图象不经过第三象限.【考点】一次函数图象与系数的关系.【专题】数形结合.【分析】由于k=﹣2<0,b=3>0,根据一次函数图象与系数的关系得到一次函数y=﹣2x+3的图象经过第二、四象限,与y轴的交点在x轴上方,即还要过第一象限.【解答】解:∵k=﹣2<0,∴一次函数y=﹣2x+3的图象经过第二、四象限,∵b=3>0,∴一次函数y=﹣2x+3的图象与y轴的交点在x轴上方,∴一次函数y=﹣2x+3的图象经过第一、二、四象限,即一次函数y=﹣2x+3的图象不经过第三象限.故答案为三.【点评】此题考察了一次函数图象与系数的关系:一次函数y=kx+b〔k、b为常数,k≠0〕是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为〔0,b〕.16.一次函数的图象过点〔1,2〕,且y随x的增大而减少.请写出一个符合条件的一次函数的解析式:y=﹣x+3〔不唯一〕.〔写出一个符合条件的解析式即可〕【考点】一次函数的性质.【专题】开放型.【分析】首先设一次函数为y=kx+b,再根据y随x的增大而减少可得k<0,故可的函数解析式y=﹣x+b,再把〔1,2〕代入y=﹣x+b,即可算出b的值,进而得到一次函数的解析式.【解答】解:设一次函数为y=kx+b,∵y随x的增大而减少,∴k<0,∴y=﹣x+b,∵图象过点〔1,2〕,∴﹣1+b=2,b=3,∴一次函数解析式为:y=﹣x+3.故答案为:y=﹣x+3.【点评】此题主要考察了一次函数的性质,关键是一次函数的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.17.一次函数y=﹣2x+6的图象与x轴交点坐标是〔3,0〕,与y轴交点坐标是〔0,6〕.【考点】一次函数图象上点的坐标特征.【专题】计算题.【分析】利用一次函数y=﹣2x+6的图象与x轴交点y=0,与y轴交点x=0的特点求解.【解答】解:当y=0时,x=3;当x=0时,y=6.∴一次函数y=﹣2x+6的图象与x轴交点坐标是〔3,0〕,与y轴交点坐标是〔0,6〕.【点评】此题考察的知识点为:函数与x轴的交点的纵坐标为0,函数与y轴的交点的横坐标为0.18.如图,点A的坐标可以看成是方程组的解.【考点】一次函数与二元一次方程〔组〕.【专题】计算题.【分析】先利用待定系数法分别求出两直线的解析式,然后根据函数图象交点坐标为两函数解析式组成的方程组的解即可得到答案.【解答】解:设过点〔0,5〕和点〔2,3〕的解析式为y=kx+b,那么,解得,所以该一次函数解析式为y=﹣x+5;设过点〔0,﹣1〕和点〔2,3〕的解析式为y=mx+n,那么,解得,所以该一次函数解析式为y=2x﹣1,所以点A的坐标可以看成是方程组解.故答案为.【点评】此题考察了一次函数与二元一次方程〔组〕:函数图象交点坐标为两函数解析式组成的方程组的解.也考察了待定系数法求次函数解析式.三、解方程〔一共1小题,满分是16分〕19.〔16分〕解方程〔1〕〔2〕〔3〕〔4〕.【考点】解二元一次方程组.【专题】计算题;一次方程〔组〕及应用.【分析】〔1〕方程组利用代入消元法求出解即可;〔2〕方程组利用加减消元法求出解即可;〔3〕方程组利用加减消元法求出解即可;〔4〕方程组利用加减消元法求出解即可.【解答】解:〔1〕,把②代入①得:x+4x=10,即x=2,把x=2代入②得:y=4,那么方程组的解为;〔2〕,①+②得:5x=5,即x=1,把x=1代入②得:y=1,那么方程组的解为;〔3〕,①×3﹣②得:11y=﹣11,即y=﹣1,把y=﹣1代入①得:x=2,那么方程组的解为;〔4〕,①×5﹣②得:6x=3,即x=,把x=代入①得:y=5,那么方程组的解为.【点评】此题考察理解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.四、解答题〔一共计44分〕20.小明和小亮做加法游戏,小明在一个加数后面多写了一个0,得到的和为242;而小亮在另一个加数后面多写了一个0,得到的和为341,原来两个加数分别是多少?【考点】二元一次方程组的应用.【专题】应用题.【分析】在后面多写一个0,实际就是扩大了10倍.两个等量关系为:10×一个加数+另一个加数=242;一个加数+10×另一个加数=341.【解答】解:设一个加数为x,另一个加数为y.根据题意得解得.答:原来两个加数分别是21,32.【点评】解决此题的关键是弄清在后面多写一个0,实际就是扩大了10倍.21.以绳测井.假设将绳三折测之,绳多五尺;假设将绳四折测之,绳多一尺.绳长、井深各几何?题目大意:用绳子测水井深度,假如将绳子折成三等份,一份绳长比井深多5米;假如将绳子折成四等份,一份绳长比井深多1尺.问绳长、井深各是多少尺?【考点】一元一次方程的应用.【分析】用代数式表示井深即可得方程.此题中的等量关系有:①将绳三折测之,绳多四尺;②绳四折测之,绳多一尺.【解答】解:设井深为x米,那么绳长为:3〔x+5〕,依题意得:3〔x+5〕=4〔x+1〕.解得x=,那么4〔x+1〕=16.答:井深为米,绳长为16米.【点评】此题主要考察了由实际问题抽象出一元一次方程,不变的是井深,用代数式表示井深是此题的关键.22.某制衣厂某车间方案用10天加工一批出口童装和成人装一共360件,该车间的加工才能是:每天能单独加工童装45件或者成人装30件.〔1〕该车间应安排几天加工童装,几天加工成人装,才能如期完成任务?〔2〕假设加工童装一件可获利80元,加工成人装一件可获利120元,那么该车间加工完这批服装后,一共可获利多少元?【考点】二元一次方程组的应用.【分析】〔1〕利用某车间方案用10天加工一批出口童装和成人装一共360件,分别得出方程组成方程组求出即可;〔2〕利用〔1〕中所求,分别得出两种服装获利即可得出答案.【解答】解:〔1〕设该车间应安排x天加工童装,y天加工成人装,由题意得:,解得:,答:该车间应安排4天加工童装,6天加工成人装;〔2〕∵45×4=180,30×6=180,∴180×80+180×120=180×〔80+120〕=36000〔元〕,答:该车间加工完这批服装后,一共可获利36000元.【点评】此题主要考察了二元一次方程组的应用,得出正确的等量关系是解题关键.23.一次函数图象过点A〔2,﹣1〕,B〔0,3〕,求该一次函数解析式.【考点】待定系数法求一次函数解析式.【分析】设一次函数的解析式是y=kx+b,把点A〔2,﹣1〕,B〔0,3〕代入即可得到一个关于k和b的方程组,求得k和b的值,从而求得函数的解析式.【解答】解:设一次函数的解析式是y=kx+b,根据题意得:,解得:.那么一次函数的解析式为:y=﹣2x+3.【点评】此题考察了用待定系数法求函数的解析式.纯熟掌握用待定系数法求函数的解析式,根据题意得出方程组是解决问题的关键.24.如下图为某汽车行驶的路程S〔km〕与时间是t〔min〕的函数关系图,观察图中所提供的信息解答以下问题:〔1〕汽车在前9分钟内的平均速度是多少?〔2〕汽车中途停了多长时间是?〔3〕当16≤t≤30时,求S与t的函数关系式?【考点】一次函数的应用.【分析】〔1〕根据速度=路程÷时间是,列式计算即可得解;〔2〕根据停车时路程没有变化列式计算即可;〔3〕利用待定系数法求一次函数解析式解答即可.【解答】解:〔1〕平均速度==km/min;〔2〕从9分到16分,路程没有变化,停车时间是t=16﹣9=7min.〔3〕设函数关系式为S=kt+b,将〔16,12〕,C〔30,40〕代入得,,解得.所以,当16≤t≤30时,求S与t的函数关系式为S=2t﹣20.【点评】此题考察了一次函数的应用,待定系数法求函数解析式,比拟简单,准确识图并获取信息是解题的关键.25.,直线y=2x+3与直线y=﹣2x﹣1.〔1〕求两直线与y轴交点A,B的坐标;〔2〕求两直线交点C的坐标;〔3〕求△ABC的面积.【考点】两条直线相交或者平行问题.【专题】计算题;数形结合.【分析】易求得A、B两点的坐标,联立两个函数的解析式,所得方程组的解即为C点的坐标.了A、B的坐标,可求得AB的长,在△ABC中,以AB为底,C点横坐标的绝对值为高,可求得△ABC的面积.【解答】解:〔1〕在y=2x+3中,当x=0时,y=3,即A〔0,3〕;在y=﹣2x﹣1中,当x=0时,y=﹣1,即B〔0,﹣1〕;〔2〕依题意,得,解得;∴点C的坐标为〔﹣1,1〕;〔3〕过点C作CD⊥AB交y轴于点D;∴CD=1;∵AB=3﹣〔﹣1〕=4;∴S△ABC=AB•CD=×4×1=2.【点评】此题主要考察了函数图象交点、图形面积的求法等知识,函数图象交点坐标为两函数解析式组成的方程组的解.制卷人:打自企;成别使;而都那。
上海初中数学八年级12月月考卷

上海初中数学八年级12月月考卷一、选择题(每题1分,共5分)1. 下列选项中,哪一个数是二次根式?()A. √3B. 3^2C. 2√5D. 1/√22. 已知等腰三角形的底边长为8cm,腰长为5cm,则该三角形的周长为()cm。
A. 18B. 20C. 22D. 243. 下列函数中,哪一个是一次函数?()A. y = 2x^2B. y = 3x + 1C. y = √xD. y = x^2 + 2x4. 一个正方体的体积是64立方厘米,那么它的表面积是()平方厘米。
A. 64B. 96C. 128D. 1445. 若a、b为实数,且a≠b,则下列等式中正确的是()A. (a+b)^2 = a^2 + b^2B. (ab)^2 = a^2 b^2C. (a+b)(ab) = a^2 b^2D. (a+b)^3 = a^3 + b^3二、判断题(每题1分,共5分)1. 任何两个实数的和都是实数。
()2. 平行四边形的对角线互相平分。
()3. 一元二次方程的解一定是实数。
()4. 同旁内角互补,两直线平行。
()5. 两个等边三角形可以拼成一个正方形。
()三、填空题(每题1分,共5分)1. 已知一个数的平方是9,那么这个数是______。
2. 一次函数y = 2x + 3的图象经过______、______两个象限。
3. 一个等腰三角形的底角是45°,那么它的顶角是______°。
4. 4x^2 9y^2 = 36是______方程。
5. 若|a| = 5,则a的值可以是______。
四、简答题(每题2分,共10分)1. 请简要说明平行线的性质。
2. 如何判断一个三角形是否为直角三角形?3. 请写出完全平方公式。
4. 已知一个数的算术平方根是4,求这个数。
5. 请解释概率的意义。
五、应用题(每题2分,共10分)1. 某商店举行打折活动,一件商品原价200元,打八折后售价是多少元?2. 一辆汽车以60km/h的速度行驶,行驶了2小时后,行驶的距离是多少?3. 一个长方体的长、宽、高分别是10cm、6cm、4cm,求它的体积。
八年级数学十二月月考试卷

一、选择题(每题3分,共30分)1. 下列各数中,正数是()A. -2.5B. 0C. -1.2D. 32. 若a > 0,b < 0,则下列不等式中正确的是()A. a + b > 0B. a - b < 0C. -a - b > 0D. -a + b < 03. 下列各组数中,成等差数列的是()A. 1, 4, 7, 10B. 2, 5, 8, 11C. 3, 6, 9, 12D. 4, 7, 10, 134. 已知函数f(x) = 2x + 3,则f(2)的值为()A. 7B. 8C. 9D. 105. 在直角坐标系中,点P(2, -3)关于y轴的对称点是()A. (2, 3)B. (-2, -3)C. (-2, 3)D. (2, -3)6. 若等腰三角形底边长为6,腰长为8,则该三角形的面积为()A. 24B. 30C. 36D. 427. 下列各图中,图形对称轴的条数最多的是()A. 图①B. 图②C. 图③D. 图④8. 若a、b、c为三角形的三边,且a + b > c,b + c > a,c + a > b,则下列结论正确的是()A. a > b > cB. b > c > aC. c > a > bD. 无法确定9. 下列函数中,有最小值的是()A. y = x^2B. y = -x^2C. y = x^2 + 1D. y = -x^2 + 110. 若x^2 - 2x + 1 = 0,则x的值为()A. 1B. -1C. 0D. 无法确定二、填空题(每题5分,共20分)11. 若a > b,则a - b的符号是_________。
12. 若一个数列的前三项分别为2, 5, 8,则该数列的公差是_________。
13. 函数y = 3x - 2的图象是一条_________直线。
14. 在直角坐标系中,点A(1, 2),点B(-3, 4)的中点坐标是_________。
八年级数学12月月考试题2

卜人入州八九几市潮王学校第八二零二零—二零二壹八年级数学12月月考试题选择题〔每一小题3分,一共30分〕1.以下计算正确的选项是〔〕A.x3•x4=x7B.x•x7=x7C.b4•b4=2b8D.a3+a3=2a62.以下各式中与x3n+1相等的是〔〕A.〔x3〕n+1B.〔x n+1〕3C.x3•x n•xD.x•x3n3.计算:〔﹣2〕2021•等于〔〕A.﹣2B.2C.﹣D.4.以下关于两个三角形全等的说法:①三个角对应相等的两个三角形全等;②三条边对应相等的两个三角形全等;③有两角和其中一个角的对边对应相等的两个三角形全等;④有两边和一个角对应相等的两个三角形全等.正确的说法个数是〔〕A.1个B.2个C.3个D.4个5.以下式子的变形,不是因式分解的有〔〕①〔x+1〕〔x﹣2〕=x2﹣x﹣2;②x2﹣2x+1=x〔x﹣2〕+1③x2﹣9y2=〔x+3y〕〔x﹣3y〕④x2y﹣2xy+y=〔x﹣1〕2y.A.1个B.2个C.3个D.4个6.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC.将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器构造,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.那么说明这两个三角形全等的根据是()A.SASB.ASAC.AASD.SSS7.光年是一种长度单位,它表示光在一年中所通过的间隔,光每秒的速度为3×105千米,一年以3×107秒计算,一光年约为〔〕A.3×1012千米B.9×1015千米C.9×1035千米D.9×1012千米8.到△ABC三个顶点间隔相等的点是△ABC的〔〕A.三条角平分线的交点B.三条中线的交点C.三条高的交点D.三条边的垂直平分线的交点9.假设〔x﹣2〕〔x+3〕=x2+ax+b,那么a、b的值分别为〔〕A.a=5,b=6B.a=1,b=﹣6C.a=1,b=6D.a=5,b=﹣610.如下列图,将正方形纸片三次对折后,沿图中AB线剪掉一个等腰直角三角形,展开铺平得到的图形是()A.B.C.D.填空题〔每一小题3分,一共18分〕11.计算〔2a+3b〕〔2a﹣3b〕.12.一个多边形的内角和是外角和的2倍,那么这个多边形的边数为__________.13.假设□×6xy=3x3y2,那么□内应填的单项式是.14.(x-y)(-y-x)=.15.点P关于x轴的对称点P1的坐标是〔1,2〕,那么点P的坐标是__________.16.边长分别为a和2a的两个正方形按如图的款式摆放,那么图中阴影局部的面积为.解答题〔一共52分〕17.计算:〔1〕3x 2y•〔﹣2xy 2〕〔2〕〔2a 3〕•〔﹣b 3〕2÷4a 3b 4〔3〕〔5x+2y 〕〔3x ﹣2y 〕〔5〕〔2x ﹣y 〕〔2x+y 〕﹣〔2x ﹣y 〕218.分解因式〔1〕12ac -2c 2;〔2〕4x 2+4xy+y 2〔3〕39x x 〔4〕(x +y)2+2(x +y)+1. 19.如图,某有一块长为〔3a+b 〕米、宽为〔2a+b 〕米的长方形地, 规划部门方案将阴影局部进展绿化,中间将修建一座边长为〔a+b 〕米 的正方形雕像.〔1〕试用含a 、b 的式子表示绿化局部的面积〔结果要化简〕. 〔2〕假设a=3,b=2,恳求出绿化局部的面积.20..如图,△ABC 中,AC=BC ,∠ACB=90°,点D 在AB 上,E 在 BC 上,且AD=BE ,BD=AC ,连接DE .〔1〕求证:△ACD ≌△BDE ;〔2〕求∠BED 的度数;。
西南大学附属中学校2023-2024学年八年级上学期12月月考数学试卷(含答案)

初2025届12月月考一、单选题(每小题4分,共40分)1. 下列银行标志,属于轴对称图形的是()A. B. C. D.2. 已知点关于轴的对称点为,则点的坐标为()A. B. C. D.3. 平面直角坐标系中,点所在象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限4. 函数的自变量的取值范围是()A. 且B.C. 且D.5. 下列命题错误的是()A. 内错角相等,两直线平行B. 16的平方根是C. 三角形三条角平分线的交点到三角形三边的距离相等D. 直角三角形两直角边的平方和等于斜边的平方6. 估计的值应在()A. 4和5之间B. 5和6之间C. 6和7之间D. 7和8之间7. 某班学生去距学校的博物馆参观,一部分学生骑自行车先走,过了后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,设骑车学生的速度为,下列方程正确的是()A. B. C. D.8. 如图,△ABC中,∠BAC的平分线与BC的垂直平分线DE相交于点D,DF⊥AB于点F,AB=6,AC=4,则BF的长度是( )A. B. C. 1 D.9. 如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=6,CD=2,点P′是AB上的动点,则PC+PD的最小值是( )A 7 B. 8 C. 9 D. 1010. 有一台特殊功能计算器,对任意两个整数只能完成求差后再取绝对值的运算,其运算过程是:输入第一个整数,只显示不运算,接着再输入整数,后则显示的结果,比如依次输入1,2,则输出结果是;此后每输入一个整数都是与前次显示的结果进行求差后再取绝对值的运算.①依次输入1,2,3,4,则最后输出的结果是1;②若将2,3,6这3个整数任意的一个一个输入,全部输入完毕后显示的结果的最大值是4;③若随意地一个一个地输入三个互不相等的正整数,2,,全部输入完毕后显示的最后结果为,若的最大值为2021,那么的最小值为2019.以上说法正确的个数有()个.A. 0B. 1C. 2D. 3二、填空题(每小题4分,共32分)11. 最近正值气温骤降感冒高发期,感冒病毒极易传染,同学们注意防寒保暖,其中有一种感冒病毒直径约为毫米,将数据用科学记数法表示为________.12. 已知等腰三角形的周长为24,一边长是4,则此等腰三角形的腰长为________.13. 平面直角坐标系中,点在第二象限,且点到轴的距离是1,则的坐标为________.14. 已知,则_____.15. 如图,中,,,,将沿翻折,使点A与点B重合,则长为______.16. 如图是一个边长为6正方体木箱,点Q在上底面的棱上,,一只蚂蚁从P点出发沿木箱表面爬行到点Q,则蚂蚁爬行的最短路程为__________.17. 关于x的分式方程的解为正数,且关于的不等式组的解集为,则所有满足条件的整数的值之和是______.18. 若一个四位正整数各数位上的数字均不为0,且千位数字与个位数字不相等,百位数字与十位数字不相等,那么称这个四位正整数为“不同数”.将一个“不同数”m的其中一个数位上的数字去掉,可以得到四个新三位数,把这四个新三位数的和与3的商记为.例如,“不同数”,去掉其中任意一位数后得到的四个新三位数分别为:135、235、215、213,这四个三位数之和为,,所以.计算:________,若“不同数”n的百位数字比千位数字大2,个位数字是十位数字的2倍,且能被13整除,则n的值为_________.三、解答题(19题20分;20题10分;21,22每题8分;23,24每题10分;25题12分,共78分)19. 计算:(1);(2);(3);(4).20. 解方程(1);(2).21. 先化简,再求值:,其中,.22. 已知:如图,中,,,为中点,为上一点,于.(1)尺规作图:作的角平分线交于.(保留作图痕迹,不写作法)(2)在(1)中所作的图形中,求证:.补全下列证明过程:证明:,,,平分,(_______________),__________,,,,,__________,≌(__________).23. 如图,将△ABC向右平移3个单位长度,再向上平移2个单位长度,可以得到.(1)画出平移后的;(2)写出三个顶点的坐标;(3)已知点P在x轴上,以A1、B1、P为顶点的三角形面积为4,求点P的坐标.24. 老友粉入选广西非物质文化遗产名录.为满足消费者需求,某超市购进甲、乙两种品牌老友粉,已知甲品牌老友粉比乙品牌老友粉每袋进价少2元,用2700元购进甲品牌老友粉与用3300元购进乙品牌老友粉数量相同.(1)求甲、乙两种品牌老友粉每袋的进价;(2)本次购进甲、乙品牌老友粉共800袋,均按13元出售,且购进甲品牌老友粉的数量不超过乙品牌老友粉数量的3倍.若该批老友粉全部售完,则该超市应购进甲、乙两种老友粉各多少袋才能获得最大利润?最大利润是多少?25. 如图,在等腰三角形中,,,点为直线上一点,于点,直线与直线交于点,为直线上一点,且.(1)若为线段上一点,如图1,如果,,,求的长;(2)若为线段上一点,如图1,求证:;(3)若为延长线上一点,如图2,求证:.初2025届12月月考一、单选题(每小题4分,共40分)1题答案:C2题答案:B3题答案:D4题答案:A5题答案:B6题答案:A7题答案:D8题答案:C9题答案:D10题答案:B二、填空题(每小题4分,共32分)11题答案:12题答案:1013题答案:14题答案:115题答案:16题答案:1017题答案:1318题答案:①484 ②. 4648三、解答题(19题20分;20题10分;21,22每题8分;23,24每题10分;25题12分,共78分)19题答案:(1)(2)(3)(4)20题答案:(1)(2)无解21题答案:,原式22题答案:(1)略(2)角平分线的定义;;;23题答案:略24题答案:(1)甲品牌老友粉每袋9元,乙品牌老友粉每袋11元(2)当购进甲种老友粉600袋,乙种老友粉200袋时获利最大,最大利润为2800元25题答案:(1)(2)略(3)略。
初中八年级数学第一学期十二月月考

第一学期十二月月考八年级数学(考试用时90分钟,满分120分)姓名班级总得分题号 1 2 3 4 5 6 7 8 9 10 答案一、选择题(本大题10小题,每小题3分,共30分。
把答案写在答题框中去)1、已知△ABC≌△DEF,∠A=80°,∠E=50°,则∠F的度数为()A. 30°B. 50°C. 80°D. 100°2、下列图形对称轴最多的是()A.正方形 B.等边三角形 C.等腰三角形 D.线段3、下列说法中正确的是()A.两个全等三角形成轴对称B.两个三角形关于某直线对称,不一定全等C.线段AB的对称轴垂直平分ABD.直线MN垂直平分线段AB,则直线MN是线段AB的对称轴4、如图,在△ABC中,AB⊥AC,AD⊥BC,点D是BC的中点,DE⊥AB,DF⊥AC,连接EF,则图中等腰直角三角形的个数是()A.8个 B.10个 C.12个 D.13个5、与的和为 ( )A. B. C. D.6、下列计算错误的是()A.2m+3n=5mn B.a6÷a2=a4 C.(x2)3=x6 D.a?a2=a37、下列等式一定成立的是()A.a2+a3=a5 B.(a+b)2=a2+b2C.(2ab2)3=6a3b6 D.(x﹣a)(x﹣b)=x2﹣(a+b)x+ab8、把x2y﹣2y2x+y3分解因式正确的是()A.y(x2﹣2xy+y2) B.x2y﹣y2(2x﹣y) C.y(x﹣y)2 D.y(x+y)29、下面是按一定规律排列的一列数:第1个数:;第2个数:;第3个数:;……第个数:.那么,在第10个数、第11个数、第12个数、第13个数中,最大的数是()A.第10个数 B.第11个数 C.第12个数 D.第13个数10、如图,在△ABC中,∠ACB=9O°,AC=BC,BE⊥CE于D,DE=4cm,AD=6 c m,则BE的长是 ( ) A.2cm B.1.5 cm C.1 cm D.3 cm二、填空题(本大题6小题,每小题4分,共24分)11、若与的和是单项式,则=_________.12、计算:﹣x2?x3= .13、如果把多项式x2﹣8x+m分解因式得(x﹣10)(x+n),那么m+n= .14、如右图,△ABC是等腰三角形,AD是底边BC上的高,若AB=5cm,BD=3cm,则△ABC的周长是______.15、如右图,△ABC中,∠C=90°,∠BAC的平分线交BC于点D,若CD=4,则点D到AB的距离是______.16、若(2x+1)0=(3x-6)0,则x的取值范围是__三、解答题(一)(本大题3小题,每小题6分,共18分)17、如右图在△ABC中,D是BC的中点,,DE⊥AB于E,DF⊥AC于F,BE=CF.求证:AD是△ABC的角平分线.18、已知,如右图,AB=CD,AB∥CD,BE=FD,求证:△ABF≌△CDE.19、如下图所示,△ABC在正方形网格中,若点A的坐标为(0,3),按要求回答下列问题:(1)在图中建立正确的平面直角坐标系;(2)根据所建立的坐标系,写出点B和点C的坐标;(3)作出△ABC关于x轴的对称图形△A′B′C′.(不用写作法)四、解答题(二)(本大题3小题,每小题7分,共21分)20、如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE垂足为E,AD⊥CE垂足为D,AD=2.5cm,BE=1.7cm,求DE的长.21、如图,已知中,厘米,厘米,点为的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A 点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,与是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使与全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿三边运动,求经过多长时间点P与点Q第一次在的哪条边上相遇?22、解方程:五、解答题(三)(本大题3小题,每小题9分,共27分)23、先化简,再求值:,其中,24、因式分解:﹣3x3+6x2y﹣3xy2.25、÷题号 1 2 3 4 5 6 7 8 9 10 答案 B A D D B A D C A A11、12、﹣x5.13、﹣18 .14、16cm .15、4 .16、x≠-且x≠2__.17、证明:(1)∵DE⊥AB于E,DF⊥AC于F ∴∠DEB=∠DFC=90°∵D是BC的中点∴BD=CD…在Rt△BED和Rt△CFD中 BD=CD BE=CF ∴Rt△BED≌Rt△CFD(HL) ∴DE=DF ∵DE⊥AB DF⊥AC ∴AD平分∠BAC 18、解:∵AB∥CD,∴∠B=∠D,∵BE=DF,∴BE+EF=DF+EF,即BF=DE,在△ABF和△CDE中,,∴△ABF≌△CDE(SAS).19、解:(1)所建立的平面直角坐标系如下所示:(2)点B和点C的坐标分别为:B(﹣3,﹣1)C(1,1);(3)所作△A'B'C'如下图所示.20、解:∵AD⊥CE,∴∠E=∠ADC=90°,即∠CAD+∠ACD=90°,∵∠ACB=90°,∴∠BCE+∠ACD=90°,∴∠BCE=∠CAD,又∵AC=BC,∴△BCE≌△CAD(AAS),∴CE=AD,BE=CD,∵AD=2.5cm,DE=1.7cm,∴DE=CE﹣DC=2.5﹣1.7=0.8cm.21、解:(1)①∵秒,∴厘米,∵厘米,点为的中点,∴厘米.又∵厘米,∴厘米,∴.又∵,∴,∴.②∵,∴,又∵,,则,∴点,点运动的时间秒,∴厘米/秒.(2)设经过秒后点与点第一次相遇,由题意,得,解得秒.∴点共运动了厘米.∵,∴点、点在边上相遇,∴经过秒点与点第一次在边上相遇.四、计算题22、解:原方程变形为23、解:当,时,原式=24、﹣3x3+6x2y﹣3xy2=﹣3x(x2﹣2xy+y2)=﹣3x(x﹣y)2.25、解:原式=(ax-2ax+4ax)÷ax= -2a+4ax。
八年级数学12月月考试题2

2016-2017学年度肖港初中八年级12月份月考数学试卷一.选择题(每小题3分,共30分)1.下列四个图形中,线段BE 是△ABC 的高的是( )A .B .C .D .2.已知:如图所示,AC=CD,∠B=∠E=90°,AC ⊥CD ,则不正确的结论是: ( )A .∠1=∠2B .∠A=∠2C .△ABC ≌△CED D .∠A 与∠D 互为余角3.如图,在等腰△ABC 中,AB=AC ,BD ⊥AC ,∠ABC=72°,则∠ABD=( )A .36°B .54°C .18°D .64°4.如果点P (﹣2,b )和点Q (a ,﹣3)关于x 轴对称,则a+b 的值是( )A .﹣1B .1C .﹣5D .5 5.若P=(x-2)(x-4),Q=(x-3)2,则P 与Q 的关系为( )A .P=QB .P >QC .P <QD .P 与Q 的大小无法确定(第2题图) (第3题图) (第9题图)6.计算)1)(1)(1)(1(24-+++x x x x 的结果是( ).A .18+xB .14+xC .8)1(+xD .18-x 7.若2(4)(2)x x x mx n +-=++,则m 、n 的值分别是( )A.2,8B.-2,-8C. -2,8D. 2,-88.下列各式中,运算结果为422y x xy 21+-的是( )A 、22)xy 1(+-B 、22)xy 1(--C 、222)1(y x +-D 、222)y x 1(-- 9.如图,点P 是∠AOB 内任意一点,OP=5cm ,点M 和点N 分别是射线OA 和射线OB 上的动点,△PMN 周长的最小值是5cm ,则∠AOB 的度数是( ).A .25︒B .30︒C .35︒D .40︒10.如图,△ABC 中,∠BAC=60°,∠BAC 的平分线AD 与边BC 的垂直平分线MD 相交于D ,DE ⊥AB 交AB 的延长线于E ,DF ⊥AC 于F ,现有下列结论:①DE=DF;②DE+DF=AD;③DM 平分∠EDF ;④AB+AC=2AE;其中正确的有( )A .1个B .2个C .3个D .4个二.填空题(每小题3分,共18分)A B C D E x y CA BO 11.一个三角形的两边长分别是2和3,若它的第三边长为奇数,则这个三角形的周长为 .12.若表示是用则n m n m y x y x ,10,10,1023+==_____________13.计算:a (a+2)﹣(a ﹣1)2= .14.(-2x+y )(-2x -y )=___________. 15. 如图,ABC ∆是等腰直角三角形,AB AC =,已知 点A 的坐标为()20-,,点B 的坐标为()01,,则点C 的坐标为 .16若n 满足()112=-+n n ,则整数n 的值是______________________三.解答题(共72分)17.(8分)计算. ()()[]y x y x x y xy y x x 23222÷---18.(8分)求值 : ()()2211x x x x x --+-,其中12x = 19.(8分)已知6,5=-=+ab b a ,求下列代数式的值:(1)()()11--b a(2)22b a +20.(9分)如图,在边长为1的正方形组成的网格中,△AOB 的顶点均在格点上,点A 、B 的坐标分别是A (3,2),B (1,3),△AOB 关于y 轴对称的图形为△A 1OB 1. (1)画出△A 1OB 1并写出点B 1的坐标为 ;(2)写出△A 1OB 1的面积为 ;(3)点P 在x 轴上,使△POB 是等腰三角形,满足条件的点P 共有 个.21.(10分)如图,在△ABC 中,AC =BC ,∠ACB =90°,D 为△ABC 内一点,∠BAD =15°,AD =AC ,CE ⊥AD 于E ,且CE =5.(1)求BC 的长;(2)求证:BD =CD.(提示:过点D 作DF ⊥BC 于F)22.(3分+6分)如图,△ABC 中,A C=BC ,∠ACB=120°,点D 在AB 边上运动(D 不与A 、B 重合),连结CD .作∠CDE=30°,DE 交AC 于点E .(1)当DE ∥BC 时,△ACD 的形状按角分类是___________________;(2)在点D 的运动过程中,△ECD 的形状可以是等腰三角形吗?若可以,请求出∠AED 的度数;若不可以,请说明理由.23.(5分+5分)在ABC ∆中,︒=∠90ACB ,BC AC =,直线MN 经过点C ,且MN AD ⊥于D ,MN BE ⊥于E .(1)当直线MN 绕点C 旋转到图1的位置时,求证:①ADC ∆≌CEB ∆;②BE AD DE +=;(2)当直线MN 绕点C 旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,说明理由.24.(3分+3分+4分)你能化简(x -1)(x 99+x 98+x 97+……+x +1)吗?遇到这样的问题,我们可以先思考一下,从简单的情形入手.分别计算下列各式的值:①(x -1)(x +1)=x 2-1;②(x -1)(x 2+x +1)=x 3-1;;③(x -1)(x 3+x 2+1)=x 4-1;;……由此我们可以得到:(1)(x -1)(x 99+x 98+x 97+…+x +1)=________________;请你利用上面的结论,完成下面两题的计算:(2) 299+298+297+……+2+1;(3)(-2)50+(-2)49+(-2)48+……+(-2)+11. D2. A3. B4. B5. C6. D7. D8. A9. B10.C11.812.m3n213. 4a-114. 4x2-y215.(-3,2)16. -2,0,2(答对一个给1分)17. 2xy-218. -2x2+x=019. (1)12 (2)1320. (1)(-1,3)(2)3.5 (3)421. (1) BC=10 (2)略22. (1)直角三角形. (2)600或105023. (1)略. (2)①成立,②不成立,DE=AD-BE24. (1)x100-1 (2)2100-1 (3)51 21 3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学12月月测试题
一、 填空。
(每题5分,共20分)
1、矩形是轴对称图形,它有______条对称轴.
2、在矩形ABCD 中,对角线AC ,BD 相交于点O ,若对角线AC=10cm ,•边BC=•8cm ,•则△ABO 的周长为________.
3、已知菱形的周长为16cm ,则菱形的边长为_____cm .
4、已知四边形ABCD 是菱形,O 是两条对角线的交点,AC=8cm ,DB=6cm ,•菱形的边长是________cm .
二、选择题。
(每题5分,共10分)
1、关于平行四边形的性质,下面说法中不正确的是 ( )
A .两个邻角互补
B .两个邻角的平分线互相垂直
C .一组对角的两条角平分线平行或重合
D .平行四边形的外角大于与它不相邻的任何一个内角
2、如图,□ABCD
( )
A .∠1+∠2=180°
B .∠2+∠3=180
C .∠3+∠4=180°
D .∠2+∠4=180°
三、解答题。
1、如图,在菱形ABCD 中,CE ⊥AB ,E 为垂足,
BC=2,BE=1,求菱形的周长和面积.(20分)
2、如图,□ABCD 的两对角线AC 和BD 交于点O ,AB=8cm ,BC=6cm ,若△AOB 的周长是18cm ,求△AOD 的周长. (10分)
3、如图,已知四边形ABCD ,E 是BC 延长线上一点,∠A+∠1=180°,∠B=∠D ,试说明它是个平行四边形.(20分)
4、矩形ABCD 中,AB=3,BC=4,B E ⊥AC 。
试求出BE 的长?(20分)
A C
B D
E。