2019-2020年八年级12月月考数学试卷
湖北武汉部分学校2023-2024学年八年级上学期月考数学试题(原卷版)

武汉市部分学校八年级12月联考数学试卷一、选择题(共10小题,每小题3分,共30分)1. 在ABC 中,40B ∠=°,80C ∠=°,则A ∠度数为( )A. 30°B. 40°C. 50°D. 60° 2. 一个八边形的内角和的度数为( )A. 720°B. 900°C. 1080°D. 1260° 3. 已知点(),2A m 和()3,B n 关于y 轴对称,则()2023m n +的值为( ) A. 1− B. 0 C. 1 D. ()20205− 4. 如图,AB ∥CD ,∠A =35°,∠C =80°,那么∠E 等于( )A. 35°B. 45°C. 55°D. 75° 5. 如图,在等边 ABC 中,AD 是它的角平分线,DE ⊥AB 于E ,若AC =8,则BE =( )A. 1B. 2C. 3D. 46. 如图,已知AD 是△ABC 的角平分线,AD 的中垂线交AB 于点F ,交BC 的延长线于点E .以下四个结论:(1)∠EAD =∠EDA ;(2)DF ∥AC ;(3)∠FDE =90°;(4)∠B =∠CAE .恒成立的结论有( )A. (1)(2)B. (2)(3)(4)C. (1)(2)(4)D. (1)(2)(3)(4) 7. 对于实数a 、b ,定义一种运算:()2*a b a b =−.给出三个推断:①**a b b a =;②()222**a b a b =;③()()**a b a b −=−,其中正确的推断个数是( ) A. 0 B. 1 C. 2 D. 38. 等腰三角形的周长为12,则腰长a 的取值范围是( )的A. a>6B. a<3C. 4<a<7D. 3<a<69. 如图,ABC 是等边三角形,E 、F 分别在AC 、BC 上,且AE CF =,则下列结论:①AF BE =,②60BDF ∠=°,③BD CE =,其中正确的个数是( )个A. 1B. 2C. 3D. 410. 如图,AF D C ∥,BC 平分ACD ∠,BD 平分EBF ∠,且BC BD ⊥,下列结论:①BC 平分ABE ∠;②AC BE ;③90BCD D∠+∠=°;④60DBF ∠=°,其中正确个数是( )A. 1个B. 2个C. 3个D. 4个二、填空题(每小题3分,共18分)11. 已知等腰三角形的两边长分别为5 cm ,8 cm ,则该等腰三角形的周长是______cm .12. 如图,点B ,F ,C ,E 在同一条直线上,欲证ABC DEF ∆≅∆,已知AC DF =,AB DE =,还可以添加的条件是______.13. 五条线段的长度分别为1cm ,2cm ,3cm ,4cm ,5cm ,以其中三条线段为边长共可以组成_____个三角形.14 分解因:22424x xy y x y −−++=______________________.15. 如图,在ABC 中,AC 的垂直平分线PD 与BC 的垂直平分线PE 交于点P ,垂足分别为D ,E ,连接PA ,PB ,PC ,若45PAD ∠=°,则ABC ∠=_____°.的.16. 如图,在四边形ABCD 中,ACBC ⊥于点C ,且AC 平分BAD ∠,若ADC △的面积为210cm ,则ABD △的面积为________2cm .三、解答题(共8小题,共72分)17. 因式分解:(1)3−a b ab ;(2)22363ax axy ay ++18. 在ABC 中,2B A ∠=∠,40C B ∠=∠+°.求ABC 的各内角度数.19. 如图所示,已知点A 、E 、F 、D 在同一条直线上,AE=DF ,BF ⊥AD ,CE ⊥AD ,垂足分别为F 、E ,BF=CE ,求证:(1)△ABF ≌△DCE(2)AB ∥CD20 先化简,再求值:(x +3y )2﹣2x (x +2y )+(x ﹣3y )(x +3y ),其中x =﹣1,y =2.21. 如图,在平面直角坐标系中,点()30A −,,点()1,5B −. (1)①画出线段AB 关于y 轴对称的线段CD ;②在y 轴上找一点P 使PA PB +的值最小(保留作图痕迹); (2)按下列步骤,用不带刻度直尺在线段CD 找一点Q 使45BAQ ∠=°. ①在图中取点E ,使得BE BA =,且BE BA ⊥,则点E 的坐标为___________; ②连接AE 交CD 于点Q ,则点Q 即为所求.22. 如图,在Rt ABC △中,90ABC ∠=°,ABC 的角平分线AE 、CF 相交于点D ,点G 为AB 延长线上一点,DG 交BC 于点H ,ACD AGD △≌△,21GDF ∠=∠.(1)求证:GD CF ⊥;(2)求证:CH AF AC +=..的23. 已知等边ABC ,AD 是BC 边上的高.(1)如图1,点E 在AD 上,以BE 为边向下作等边BEF △,连接CF . ①求证:AE CF =;②如图2,M 是BF 的中点,连接DM ,求证:12DM AE =; (2)如图3,点E 是射线AD 上一动点,连接BE ,CE ,点N 是AE 的中点,连接NB ,NC ,当90BNC ∠=°时,直接写出BEC ∠的度数为______ .24. 在平面直角坐标系中,点A 的坐标为()0,4(1)如图1,若点B 的坐标为()3,0,ABC 是等腰直角三角形,BA BC =,90ABC ∠=°,求C 点坐标;(2)如图2,若点E 是AB 的中点,求证:2AB OE =; (3)如图3,ABC 是等腰直角三角形,BA BC =,90ABC ∠=°,ACD 是等边三角形,连接OD ,若30AOD ∠=°,求B 点坐标。
湖北省武汉二中广雅中学2019-2020学年八年级(上)月考数学试卷(四) 含解析

2019-2020学年八年级(上)月考数学试卷(四)一.选择题(共10小题)1.如下字体的四个汉字“立”“德”“树”“人”中,是轴对称图形的是()A.B.C.D.2.△ABC中,如果∠A+∠B=∠C,那么△ABC形状是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定3.下列图形具有稳定性的是()A.三角形B.四边形C.五边形D.六边形4.一定能确定△ABC≌△DEF的条件是()A.∠A=∠D,AB=DE,∠B=∠E B.∠A=∠E,AB=EF,∠B=∠DC.AB=DE,BC=EF,∠A=∠D D.∠A=∠D,∠B=∠E,∠C=∠F5.已知一个多边形的内角和是900°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形6.如图是两个全等三角形,则∠1=()A.62°B.72°C.76°D.66°7.用直尺和圆规作两个全等三角形,如图,能得到△COD≌△C'O'D'的依据是()A.SAA B.SSS C.ASA D.AAS8.如图,已知△ABC,AB=8cm,BC=6cm,AC=5cm.沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,则△AED周长为()A.5cm B.6cm C.7cm D.8cm9.如图四边形ABCD中,∠ABC=3∠CBD,∠ADC=3∠CDB,∠C=128°,则∠A的度数是()A.60°B.76°C.77°D.78°10.在平面直角坐标系中,已知A(1,2)、B(3,0),AB=2.在坐标轴上找点P,使A、B、P三点构成等腰三角形,这样的点P有()个.A.5 B.6 C.7 D.8二.填空题(共6小题)11.在平面直角坐标系中,点A,点B关于x轴对称,点A的坐标是(2,﹣8),则点B的坐标是.12.已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为.13.六边形的对角线有条.14.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧在第二象限内交于点P(a,b),则a与b的数量关系是.15.△ABC中,∠A是最小角,∠B是最大角,且2∠B=5∠A,若∠B的最大值m°,最小值n°,则m+n=.16.如图,等边△ABC中,AD为BC边上的高,点M、N分别在AD、AC上,且AM=CN,连BM、BN,当BM+BN最小时,∠MBN=度.三.解答题(共8小题)17.若∠1=∠2,∠A=∠D,求证:AB=DC.18.已知等腰三角形底边长为a,底边上的高的长为h,求作这个等腰三角形.(要求:写作法,用尺规作图,保留作图痕迹).19.如图,AE是△BAC的角平分线,AD是△ABC的高,∠C=40°,∠B=80°,求∠DAE 的度数.20.如图,△ABC中,AB=AC,BD⊥AC于点D,∠CBD=15°,BD=3,求△ABC的面积.21.(1)请画出△ABC关于直线m(直线m上各点的横坐标都为1)对称的图形.(其中A′、B′、C′分别是A、B、C的对应点,不写画法)(2)直接写出A′、B′、C′三点的坐标.(3)平面内任一点P(x,y)关于直线m对称点的坐标为.22.如图,等边△ABC中,点D、E分别在边BC、AC上,AE=CD,连接AD、BE交于点P.(1)求证:∠BPD=60°.(2)连接PC,若CP⊥PB.当AP=3,求BP的长.23.如图,AN∥CB,B、N在AC同侧,BM、CN交于点D,AC=BC,且∠A+∠MDN=180°.(1)如图1,当∠NAC=90°,求证:BM=CN;(2)如图2,当∠NAC为锐角时,试判断BM与CN关系并证明;(3)如图3,在(1)的条件下,且∠MBC=30°,一动点E在线段BM上运动过程中,连CE,将线段CE绕点C顺时针旋转90°至CF,取BE中点P,连AP、FP.设四边形APFC 面积为S,若AM=﹣1,MC=1,在E点运动过程中,请写出S的取值范围.24.如图,在平面直角坐标系中,A(a,0)、B(0,b)、D(﹣d,d),连BD交x轴于E.(1)如图1,若a、b、d满足(a﹣4)2+(a﹣b)2+=0,求△ADE的面积.(2)如图2,在(1)的条件下,点P在x轴上A点右侧,连BP过点P作PQ⊥PB交直线AD于Q,求证:PQ=PB.(3)如图3,设AB=c,且d=﹣2.当BD平分∠ABO时,试求a﹣b+c的值.参考答案与试题解析一.选择题(共10小题)1.如下字体的四个汉字“立”“德”“树”“人”中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,故本选项符合题意;B、不是轴对称图形,故本选项不合题意;C、不是轴对称图形,故本选项不合题意;D、不是轴对称图形,故本选项不合题意.故选:A.2.△ABC中,如果∠A+∠B=∠C,那么△ABC形状是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定【分析】据在△ABC中,∠A+∠B=∠C,∠A+∠B+∠C=180°可求出∠C的度数,进而得出结论.【解答】解:∵在△ABC中,∠A+∠B=∠C,∠A+∠B+∠C=180°,∴2∠C=180°,解得∠C=90°,∴△ABC是直角三角形.故选:B.3.下列图形具有稳定性的是()A.三角形B.四边形C.五边形D.六边形【分析】根据三角形具有稳定性解答.【解答】解:具有稳定性的图形是三角形.故选:A.4.一定能确定△ABC≌△DEF的条件是()A.∠A=∠D,AB=DE,∠B=∠E B.∠A=∠E,AB=EF,∠B=∠DC.AB=DE,BC=EF,∠A=∠D D.∠A=∠D,∠B=∠E,∠C=∠F【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,看看每个选项是否符合定理即可.【解答】解:A、根据ASA即可推出△ABC≌△DEF,故本选项正确;B、根据∠A=∠E,∠B=∠D,AB=DE才能推出△ABC≌△DEF,故本选项错误;C、根据AB=DE,BC=EF,∠B=∠E才能推出△ABC≌△DEF,故本选项错误;D、根据AAA不能推出△ABC≌△DEF,故本选项错误;故选:A.5.已知一个多边形的内角和是900°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形【分析】设这个多边形是n边形,内角和是(n﹣2)•180°,这样就得到一个关于n的方程,从而求出边数n的值.【解答】解:设这个多边形是n边形,则(n﹣2)•180°=900°,解得:n=7,即这个多边形为七边形.故选:C.6.如图是两个全等三角形,则∠1=()A.62°B.72°C.76°D.66°【分析】根据全等三角形的对应角相等解答.【解答】解:第一个图中,∠1=180°﹣42°﹣62°=76°,∵两个三角形全等,∴∠1=76°,7.用直尺和圆规作两个全等三角形,如图,能得到△COD≌△C'O'D'的依据是()A.SAA B.SSS C.ASA D.AAS【分析】利用作法课文确定OD=OD′=OC=OC′,CD=C′D′,然后根据全等三角形的判定方法可判断△COD≌△C'O'D'.【解答】解:由作法得OD=OD′=OC=OC′,CD=C′D′,所以可根据“SSS”证明△COD≌△C'O'D'.故选:B.8.如图,已知△ABC,AB=8cm,BC=6cm,AC=5cm.沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,则△AED周长为()A.5cm B.6cm C.7cm D.8cm【分析】根据翻折变换的性质可得DE=CD,BE=BC,然后求出AE,再根据三角形的周长列式求解即可.【解答】解:∵BC沿BD折叠点C落在AB边上的点E处,∴DE=CD,BE=BC,∵AB=8cm,BC=6cm,∴AE=AB﹣BE=AB﹣BC=8﹣6=2cm,∴△ADE的周长=AD+DE+AE,=AD+CD+AE,=AC+AE,=5+2,=7cm.9.如图四边形ABCD中,∠ABC=3∠CBD,∠ADC=3∠CDB,∠C=128°,则∠A的度数是()A.60°B.76°C.77°D.78°【分析】先设∠CBD=x°,∠CDB=y°,根据三角形的内角和整体得:x+y=52,则3x+3y =156,利用四边形的内角和可以求出∠A的度数.【解答】解:设∠CBD=x°,∠CDB=y°,则∠ABC=3x°,∠ADC=3y°,∵∠C=128°,∴∠CBD+∠CDB=180°﹣∠C=180°﹣128°=52°,即x+y=52,∴3x+3y=3×52=156,∴∠ABC+∠ADC=156°,∵∠A+∠ABC+∠ADC+∠C=360°,∴∠A=360°﹣156°﹣128°=76°,故选:B.10.在平面直角坐标系中,已知A(1,2)、B(3,0),AB=2.在坐标轴上找点P,使A、B、P三点构成等腰三角形,这样的点P有()个.A.5 B.6 C.7 D.8【分析】根据A、B、P三点构成等腰三角形,分别以A、B为圆心,AB长为半径画弧,作AB的垂直平分线,与坐标轴的交点即为所求.【解答】解:如图所示,分别以A、B为圆心,AB长为半径画弧,与坐标轴的交点P1,P2,P3,P4,P5符合题意;作AB的垂直平分线,与坐标轴的交点P6,P7符合题意,故选:C.二.填空题(共6小题)11.在平面直角坐标系中,点A,点B关于x轴对称,点A的坐标是(2,﹣8),则点B的坐标是(2,8).【分析】根据关于x轴的对称点的坐标特点:纵坐标互为相反数,横坐标不变可得答案.【解答】解:∵点A,点B关于x轴对称,点A的坐标是(2,﹣8),∴点B的坐标是(2,8),故答案为:(2,8).12.已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为40°或100°.【分析】首先知有两种情况(顶角是40°和底角是40°时),由等边对等角求出底角的度数,用三角形的内角和定理即可求出顶角的度数.【解答】解:△ABC,AB=AC.有两种情况:(1)顶角∠A=40°,(2)当底角是40°时,∵AB=AC,∴∠B=∠C=40°,∵∠A+∠B+∠C=180°,∴∠A=180°﹣40°﹣40°=100°,∴这个等腰三角形的顶角为40°和100°.故答案为:40°或100°.13.六边形的对角线有9 条.【分析】直接运用多边形的边数与对角线的条数的关系式求解.【解答】解:六边形的对角线的条数==9.故答案为9.14.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧在第二象限内交于点P(a,b),则a与b的数量关系是a+b=0 .【分析】根据作图方法可得点P在第二象限的角平分线上,根据角平分线的性质和第二象限内点的坐标符号,可得a与b的数量关系为互为相反数.【解答】解:根据作图方法可得,点P在第二象限角平分线上,∴点P到x轴、y轴的距离相等,即|b|=|a|,又∵点P(a,b)第二象限内,∴b=﹣a,即a+b=0,故答案为:a+b=0.15.△ABC中,∠A是最小角,∠B是最大角,且2∠B=5∠A,若∠B的最大值m°,最小值n°,则m+n=175 .【分析】由2∠B=5∠A,得∠B=∠A,根据三角形内角和定理得∠C=180°﹣∠A﹣∠B=180°﹣∠A;根据题意有∠A≤∠C≤∠B,则∠A≤180°﹣∠A,和180°﹣∠A≤∠A,解两个不等式得30°≤∠A≤40°,而∠A=∠B,得到∠B的范围,从而确定m,n.【解答】解:∵2∠B=5∠A,即∠B=∠A,∴∠C=180°﹣∠A﹣∠B=180°﹣∠A,又∵∠A≤∠C≤∠B,∴∠A≤180°﹣∠A,解得∠A≤40°;又∵180°﹣∠A≤∠A,解得∠A≥30°,∴30°≤∠A≤40°,即30°≤∠B≤40°,∴75°≤∠B≤100°∴m+n=175.故答案为:175.16.如图,等边△ABC中,AD为BC边上的高,点M、N分别在AD、AC上,且AM=CN,连BM、BN,当BM+BN最小时,∠MBN=30 度.【分析】如图1中,作CH⊥BC,使得CH=BC,连接NH,BH.证明△ABM≌△CHN(SAS),推出BM=HN,由BN+HN≥BH,可知B,N,H共线时,BM+BN=NH+BN的值最小,求出此时∠MBN即可解决问题.【解答】解:如图1中,作CH⊥BC,使得CH=BC,连接NH,BH.∵△ABC是等边三角形,AD⊥BC,CH⊥BC,∴∠DAC=∠DAB=30°,AD∥CH,∴∠HCN=∠CAD=∠BAM=30°,∵AM=CN,AB=BC=CH,∴△ABM≌△CHN(SAS),∴BM=HN,∵BN+HN≥BH,∴B,N,H共线时,BM+BN=NH+BN的值最小,如图2中,当B,N,H共线时,∵△ABM≌△CHN,∴∠ABM=∠CHB=∠CBH=45°,∵∠ABD=60°,∴∠DBM=15°,∴∠MBN=45°﹣15°=30°,∴当BM+BN的值最小时,∠MBN=30°,故答案为30.三.解答题(共8小题)17.若∠1=∠2,∠A=∠D,求证:AB=DC.【分析】由AAS证明△ABC≌△DCB,即可得出结论.【解答】证明:在△ABC和△DCB中,∴△ABC≌△DCB(AAS).∴AB=DC.18.已知等腰三角形底边长为a,底边上的高的长为h,求作这个等腰三角形.(要求:写作法,用尺规作图,保留作图痕迹).【分析】根据题目要求画出线段a、h,再画△ABC,使AB=a,△ABC的高为h;首先画一条直线,再画垂线,然后截取高,再画腰即可.【解答】解:作图:①画射线AE,在射线上截取AB=a,②作AB的垂直平分线,垂足为O,再截取CO=h,③再连接AC、CB,△ABC即为所求.19.如图,AE是△BAC的角平分线,AD是△ABC的高,∠C=40°,∠B=80°,求∠DAE 的度数.【分析】首先计算出∠BAC的度数,然后再根据角平分线定义可得∠BAE的度数,再根据直角三角形两锐角互余计算出∠BAD的度数,进而可得∠DAE的度数;【解答】解:∵∠BAC+∠B+∠C=180°,∠B=80°,∠C=40°,∴∠BAC=180°﹣(∠B+∠C)=180﹣(80°+40°)=60°,∵AE平分∠BAC,∴∠BAE=∠BAC=×60°=30°,∵AD⊥BC,∴∠B+∠BAD=90°,∴∠BAD=90°﹣∠B=90°﹣80°=10°,∴∠DAE=∠BAE﹣∠BAD=30°﹣10°=20°;20.如图,△ABC中,AB=AC,BD⊥AC于点D,∠CBD=15°,BD=3,求△ABC的面积.【分析】先根据等腰三角形的性质及三角形内角和定理求出∠A=30°,再根据30°角所对的直角边等于斜边的一半得出AB=2BD=6,则AC=6,然后根据△ABC的面积=AC •BD即可求解.【解答】解:∵BD⊥AC于点D,∠CBD=15°,∴∠C=75°,∵AB=AC,∴∠ABC=∠C=75°,∴∠A=180°﹣∠ABC﹣∠C=30°.在Rt△ABD中,∵∠ADB=90°,∠A=30°,∴AB=2BD=6,∴AC=AB=6,∴△ABC的面积=AC•BD=×6×3=9.21.(1)请画出△ABC关于直线m(直线m上各点的横坐标都为1)对称的图形.(其中A′、B′、C′分别是A、B、C的对应点,不写画法)(2)直接写出A′、B′、C′三点的坐标.(3)平面内任一点P(x,y)关于直线m对称点的坐标为(﹣x+2,y).【分析】(1)利用网格特点和对称性的性质,把A点右平移4格得到点A′,同理画出B′、C′点;(2)利用(1)中所画图形写出A′、B′、C′三点的坐标.(3)写出点P(x,y)关于y轴的对称点的坐标(﹣x,y),然后把点(﹣x,y)向右平移2个单位可得到点P(x,y)关于直线m对称点的坐标.【解答】解:(1)如图,△A′B′C′为所作;(2)A′、B′、C′三点的坐标分别为(3,3),(6,5),(6,1);(3)点P(x,y)关于直线m对称点的坐标为(﹣x+2,y).故答案为(﹣x+2,y).22.如图,等边△ABC中,点D、E分别在边BC、AC上,AE=CD,连接AD、BE交于点P.(1)求证:∠BPD=60°.(2)连接PC,若CP⊥PB.当AP=3,求BP的长.【分析】(1)证明△ADC≌△BEA即可说明AD=BE;证明∠BPQ=∠EBA+∠BAP=60°即可求解∠PBQ的度数;(2)延长PD至H,使PH=BP,连接BH、CH,证明△BPH是等边三角形,得出BP=BH=PH,∠HBP=∠ABD=60°,推出∠ABP=∠CBH,由SAS证得△ABP≌△CBH得出CH=AP =3,∠BCH=∠BAP,证明CH∥BE,推出CH⊥CP,∠HPC=30°,得出PH=2CH=6,即可得出结果.【解答】(1)证明:∵△ABC是等边三角形,∴AB=AC,∠BAC=∠ACB=60°,在△ABE和△CAD中,,∴△ABE≌△CAD(SAS),∴∠ABE=∠CAD,∵∠CAD+∠BAD=60°,∴∠ABE+∠BAD=60°,∴∠BPD=∠ABE+∠BAD=60°;(2)解:延长PD至H,使PH=BP,连接BH、CH,如图所示:∵△ABC是等边三角形,∴AB=BC,∠BAC=∠ABC=60°,由(1)知:∠BPD=60°,∴△BPH是等边三角形,∴BP=BH=PH,∠HBP=∠ABD=60°,∴∠ABP+∠PBD=∠CBH+∠PBD,∴∠ABP=∠CBH,在△ABP和△CBH中,,∴△ABP≌△CBH(SAS),∴CH=AP=3,∠BCH=∠BAP,∵∠ABE=∠CAD,∠BAC=∠ABC=60°,∴∠EBC=∠BAP,∴∠BCH=∠EBC,∴CH∥BE,∵CP⊥PB,∠BPD=60°,∴CH⊥CP,∠HPC=90°﹣60°=30°,∴PH=2CH=2×3=6,∴BP=6.23.如图,AN∥CB,B、N在AC同侧,BM、CN交于点D,AC=BC,且∠A+∠MDN=180°.(1)如图1,当∠NAC=90°,求证:BM=CN;(2)如图2,当∠NAC为锐角时,试判断BM与CN关系并证明;(3)如图3,在(1)的条件下,且∠MBC=30°,一动点E在线段BM上运动过程中,连CE,将线段CE绕点C顺时针旋转90°至CF,取BE中点P,连AP、FP.设四边形APFC 面积为S,若AM=﹣1,MC=1,在E点运动过程中,请写出S的取值范围1≤S≤3 .【分析】(1)先证∠N=∠CMB,再证∠ACB=∠A,可推出△ACN≌△CBM,即可得出结论;(2)如图2,延长NA至G,使AG=CM,证△GAC≌△MCB,得到GC=MB,再证GC=CN,即可推出结论;(3)如图3﹣1,当点E在线段BM上运动至与点M重合时,四边形APFC的面积最小,过点P分别作AC,BC的垂线,垂足分别为H,Q,求出此时四边形APFC的面积;当图3﹣2,当点E在线段BM上运动至与点B重合时,点P也与B,E重合,四边形APFC的面积最大,此时A,C,F在同一条直线上,即△ABF的面积,求出其面积,即可写出S的取值范围.【解答】(1)证明:∵∠NAC=90°,∠A+∠MDN=180°,∴∠NDM=90°,∴∠N+∠ACN=∠ACN+∠CMD=90°,∴∠N=∠CMB,∵AN∥CB,∴∠A+∠ACB=180°,∴∠ACB=∠A=90°,∵AC=BC,∴△ACN≌△CBM(AAS),∴BM=CN;(2)解:BM=CN,理由如下,如图2,延长NA至G,使AG=CM,∵AN∥BC,∴∠GAC=∠MCB,又∵AC=BC,∴△GAC≌△MCB(SAS),∴GC=MB,∠G=∠BMC,在四边形AMDN中,∠NAC+∠MDN=180°,∴∠N+∠AMD=180°,又∵∠AMD+∠BMC=180°,∴∠N=∠BMC,∴∠N=∠G,∴GC=CN,∴BM=CN;(3)∵AM=﹣1,MC=1,∴AC=AM+MC=,∴BC=,由(1)知,∠ACB=90°,又∵在Rt△MCB中,∠MBC=30°,∴MC=BC=1,如图3﹣1,当点E在线段BM上运动至与点M重合时,四边形APFC的面积最小,过点P分别作AC,BC的垂线,垂足分别为H,Q,∵点P是BE的中点,∴PH=BC=,PQ=MC=,∴S四边形APFC=S△APC+S△PCF=AC•PH+CF•PQ=××+×1×=1;当图3﹣2,当点E在线段BM上运动至与点B重合时,点P也与B,E重合,四边形APFC 的面积最大,此时A,C,F在同一条直线上,即△ABF的面积,∵AC=BC=CF=,∠ACB=∠BCF=90°,∴△ABF是等腰直角三角形,∴S四边形APFC=S△ABF=×2×=3,故答案为:1≤S≤3.24.如图,在平面直角坐标系中,A(a,0)、B(0,b)、D(﹣d,d),连BD交x轴于E.(1)如图1,若a、b、d满足(a﹣4)2+(a﹣b)2+=0,求△ADE的面积.(2)如图2,在(1)的条件下,点P在x轴上A点右侧,连BP过点P作PQ⊥PB交直线AD于Q,求证:PQ=PB.(3)如图3,设AB=c,且d=﹣2.当BD平分∠ABO时,试求a﹣b+c的值.【分析】(1)作DC∥OA交y轴于C,根据非负数的性质分别求出a、b、d,根据相似三角形的性质求出OE,得到AE的长,根据三角形的面积公式计算即可;(2)作DG⊥OA于G,连接BQ,根据圆周角定理得到∠QBP=∠QAP=45°,根据等腰三角形的判定定理证明;(3)作DF⊥y轴于H,DH⊥x轴于H,DK⊥BA交BA的延长线于K,根据坐标与图形性质得到DF=DH=2,根据角平分线的性质得到DF=DK=2,得到DH=DK,证明Rt△DAH≌Rt △DAK,根据全等三角形的性质得到AK=AH=a﹣2,根据BK=BF列式计算,得到答案.【解答】解:(1)∵(a﹣4)2+(a﹣b)2+=0,∴(a﹣4)2=0,(a﹣b)2=0,=0,∴a﹣4=0,a﹣b=0,d+2=0,解得,a=b=4,d=﹣2,如图1,作DC∥OA交y轴于C,则△BOE∽△BCD,∴=,即=,解得,OE=,则AE=OA﹣OE=,∴△ADE的面积=××2=;(2)如图2,作DG⊥OA于G,连接BQ,∵OA=OB,∠AOB=90°,∴∠BAO=45°,∵AG=OA﹣OG=2,∴AG=DG,∴∠DAG=45°,∴∠BAQ=∠BAD=90°,∠QAP=∠DAG=45°,∵∠BAQ=∠BPQ=90°,∴点A、B、Q、P四点共圆,∴∠QBP=∠QAP=45°,又∠BPQ=90°,∴PQ=PB;(3)作DF⊥y轴于H,DH⊥x轴于H,DK⊥BA交BA的延长线于K,则DF=DH=2,∵BD平分∠ABO,DF⊥y轴,DK⊥BA,∴DF=DK=2,∴DH=DK,BK=BF=b+2,在Rt△DAH和Rt△DAK中,,∴Rt△DAH≌Rt△DAK(HL)∴AK=AH=a﹣2,∴BK=c+a﹣2,∴c+a﹣2=b+2,∴a﹣b+c=4.。
2024年山东省青岛市崂山实验学校八年级(上)月考数学试卷(12月份)(五四学制)+答案解析

2023-2024学年山东省青岛市崂山实验学校八年级(上)月考数学试卷(12月份)(五四学制)一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.在实数、0、、、、、中,无理数的个数是()A.2个B.3个C.4个D.5个2.点M 在y 轴的左侧,到x 轴、y 轴的距离分别是3和5,点M 坐标为()A. B.C.或D.或3.两个一次函数与为常数,且,它们在同一个坐标系中的图象可能是()A. B.C. D.4.已知是关于x 、y 的二元一次方程组的解,则的立方根是()A.1B.C.D.5.点和都在直线上,则与的关系是() A.B.C. D.6.如图,长方形BCDE 的各边分别平行于x 轴或y 轴,物体甲和物体乙由点同时出发,沿长方形BCDE 的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2021次相遇地点的坐标是()A.B.C.D.7.某滑雪俱乐部12名会员被分成甲、乙两组,他们的身高情况如图所示,甲组身高的平均数为,则下列结论正确的是()A.,B.,C.,D.,8.《九章算术》中记载了一个问题,大意是:甲、乙两人各带了若干钱,如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的,那么乙也共有钱问:甲,乙两人各带了多少钱?设甲,乙两人持钱的数量分别为x,y,则可列方程组为()A. B. C. D.9.如图,两条直线的交点坐标可以看作两个二元一次方程的公共解,其中一个方程是,则另一个方程是()A.B.C.D.10.如图,在平面直角坐标系中,点,,……都在x轴上,点,,……都在直线上,,,,……都是等腰直角三角形,且,则点的坐标是()A.B.C.D.二、填空题:本题共5小题,每小题4分,共20分。
11.已知,,,若,则整数n的值为______.12.已知一平面直角坐标系内有点,点,点,若在该坐标系内存在一点D,使轴,且,点D的坐标为______.13.某人购进一批苹果到集贸市场零售,已经卖出的苹果数量与售价之间的关系如图所示,成本为5元/千克,现以8元/千克卖出,赚得______元.14.如图.点A的坐标为,点B在直线上运动,当线段AB最短时,点B的坐标为______.15.A,B两地相距20km,甲从A地出发向B地前进,乙从B地出发向A地前进,两人沿同一直线同时出发,甲先以的速度前进1小时,然后减慢速度继续匀速前进,甲乙两人离A地的距离与时间的关系如图所示,则甲出发______小时后与乙相遇.三、解答题:本题共7小题,共70分。
安徽省阜阳市八年级上学期上学期数学12月月考试卷

安徽省阜阳市八年级上学期上学期数学12月月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019八上·嵊州月考) 下列线段中不能组成三角形的是()A . 2,3,5B . 2,2,1C . 3,3,3D . 4,3,52. (2分) (2018八上·青岛期末) 在天气预报图上,有各种各样表示天气的符号,下列表示天气符号的图形中,不是是轴对称图形的是()A .B .C .D .3. (2分) (2018八上·靖远期末) 在下列四个命题中,是真命题的是()A . 两条直线被第三条直线所截,内错角相等B . 如果x2=y2 ,那么x=yC . 三角形的一个外角大于这个三角形的任一内角D . 直角三角形的两锐角互余4. (2分)已知x<y ,下列不等式成立的有().①x-3<y-3 ②-5x < -6y ③-3x+2 <-3y +2 ④-3x+2 > -3y +2A . ①②B . ①③C . ①④D . ②③5. (2分)(2019·阜新) 如图,CB为⊙O的切线,点B为切点,CO的延长线交⊙O于点A,若∠A=25°,则∠C的度数是()A . 25°B . 30°C . 35°D . 40°6. (2分)下列定理中没有逆定理的是()A . 内错角相等,两直线平行B . 直角三角形中,两锐角互余C . 等腰三角形两底角相等D . 相反数的绝对值相等7. (2分)(2020·龙华模拟) 不等式组的解集在数轴上可表示为()A .B .C .D .8. (2分) (2015八下·滦县期中) 已知点P的坐标(2a,6﹣a),且点P到两坐标轴的距离相等,则点P的坐标是()A . (12,﹣12)或(4,﹣4)B . (﹣12,12)或(4,4)C . (﹣12,12)D . (4,4)9. (2分)(2019·安徽) 如图,在正方形ABCD中,点E,F将对角线AC三等分,且AC=12,点P在正方形的边上,则满足PE+PF=9的点P的个数是()A . 0B . 4C . 6D . 810. (2分) (2019八下·嘉陵期中) 如图所示圆柱形玻璃容器,高,底面周长为,在外侧下底面点处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口处的点处有一苍蝇,急于捕获苍蝇充饥的蜘蛛,所走的最短路线的长度是()A .B .C .D .二、填空题 (共6题;共7分)11. (1分)(2018·常州) 已知点P(﹣2,1),则点P关于x轴对称的点的坐标是________.12. (2分)圆的面积s与半径r之间的关系式为S=πr2 ,其中常量是________ ,变量是________13. (1分) (2019八下·厦门期末) 一个水库的水位在最近的10小时内将持续上涨.如表记录了3小时内5个时间点对应的水位高度,其中t表示时间,y表示对应的水位高度.根据表中的数据,请写出一个y关于t的函数解析式合理预估水位的变化规律.该函数解析式是:________.(不写自变量取值范围)t/小时00.51 2.53y/米3 3.1 3.2 3.5 3.614. (1分)(2018·龙东模拟) 在函数y= 中,自变量x的取值范围是________.15. (1分) (2019八下·尚志期中) 在矩形中,,是矩形边上的点,且,则的长是________.16. (1分)(2018·眉山) 如图,菱形OABC的一边OA在x轴的负半轴上,O是坐标原点,A点坐标为(-10,0),对角线AC和OB相交于点D且AC·OB=160.若反比例函数y= (x<0)的图象经过点D,并与BC的延长线交于点E,则S△OCE∶S△OAB=________.三、解答题 (共7题;共77分)17. (10分) (2019七下·哈尔滨期中) 解不等式和不等式组:(1) 5x+15>2x-1(2) .18. (10分)(2020·吉林模拟) 如图,△ABC中,AB=BC,点D在BC的延长线上、连接AD、E为AD的中点。
陕西省西安市碑林区西北工业大学附属中学2019-2020学年八年级下学期第二次月考数学试卷 解析版

2019-2020学年陕西省西安市碑林区西北工大附中八年级(下)第二次月考数学试卷一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的)1.若m>n,则下列不等式一定成立的是()A.1+m<1+n B.m﹣2<n﹣2C.>D.﹣4m>﹣4n 2.下列汽车标志中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.下列等式从左到右的变形,属于因式分解的是()A.m(a+b)=ma+mb B.x2+2x+1=x(x+2)+1C.x2+x=x2(1+)D.x2﹣9=(x+3)(x﹣3)4.如图,在△ABC中,AB=AC,点D是BC边上的中点,∠BAD=50°,则∠C的大小为()A.20°B.30°C.40°D.50°5.在直角坐标系中,点O为坐标原点,点A(3,4),把线段OA绕点O顺时针旋转90°得到线段OA',则点A'的坐标为()A.(4,3)B.(4,﹣3)C.(﹣4,3)D.(3,﹣4)6.如图,在平行四边形ABCD中,AB⊥AC,若AB=8,AC=12,则BD的长是()A.22B.16C.18D.207.如图,直线y=kx+b交x轴于点A(﹣1,0),直线y=mx+n交x轴于点B(3,0),这两条直线相交于点C(1,3),则不等式kx+b<mx+n的解集为()A.x<1B.x>1C.x<﹣2D.x<58.如图,在△ABC中,∠B=60°,AB=3.将△ABC绕点A按逆时针方向旋转得到△ADE,若点B的对应点D恰好落在BC边上,且DC=2,则DE的长为()A.3B.4C.5D.69.若,则的值为()A.B.3C.5D.710.如图,△ABC中,D、E分别是BC、AC的中点,BF平分∠ABC,交DE于点F,若AB=10,BC=8,则EF的长是()A.B.1C.D.1.5二、填空题(共4小题,共12分)11.若已知分式的值为0,则m的值为.12.有一个正多边形的内角和等于它外角和的2倍,则这个正多边形每一个内角的大小为.13.若关于x的分式方程﹣=1有增根,则a的值.14.如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,AB=4.如果在三角形内部有一条动线段MN∥AC,且MN=2,则AM+BN+CN的最小值为.三、解答题(共9小题,共58分)15.将下列各式因式分解:(1)2a2﹣4a+2;(2)x2﹣25﹣10(x﹣5).16.解不等式组并把解集在数轴上表示出来.17.尺规作图:如图,已知▱ABCD,在DC边上求作一点M,使得MA=MC.(不写作法,保留作图痕迹)18.如图,已知△ABC,作∠BAC的角平分线与BC的垂直平分线相交于点P,过点P作PM⊥AB于点M,PN⊥AC交AC的延长线于点N,连接BP、CP.求证:∠BPM=∠CPN.19.先化简:(﹣)÷,再从﹣3、﹣2、﹣1、0、1中选一个合适的数作为a的值代入求值.20.如图,▱ABCD的对角线AC、BD交于点O,M,N分别是AB、AD的中点.(1)求证:四边形AMON是平行四边形;(2)若AC=6,BD=4,∠AOB=90°,求四边形AMON的周长.21.“垃圾分一分,环境美十分”.某校为积极响应有关垃圾分类的号召,从百货商场购进了A,B两种品牌的垃圾桶作为可回收垃圾桶和其他垃圾桶.已知B品牌垃圾桶比A品牌垃圾桶每个贵50元,用4000元购买A品牌垃圾桶的数量是用3000元购买B品牌垃圾桶数量的2倍.(1)求购买一个A品牌、一个B品牌的垃圾桶各需多少元?(2)若该中学决定再次准备用不超过6000元购进A,B两种品牌垃圾桶共50个,恰逢百货商场对两种品牌垃圾桶的售价进行调整:A品牌按第一次购买时售价的九折出售,B 品牌比第一次购买时售价提高了20%,那么该学校此次最多可购买多少个B品牌垃圾桶?22.如图,直线l1:y=2x+4与x轴交于点A,与y轴交于点B,直线l2:y=﹣x+2与y轴交于点C.(1)直接写出点A、B、C的坐标分别为:A,B,C;(2)是否存在将直线l2:y=﹣x+2向上或向下平移使其经过点D,且使得以A、B、C、D为顶点的四边形为平行四边形?若存在,求出所有可能的平移方式;若不存在,请说明理由.23.问题探究(1)如图①,已知∠A=45°,∠ABC+∠ADC=60°,则∠BCD的大小为;(2)如图②,在四边形ABCD中,AB=BC,∠ABC=∠ADC=90°,对角线BD=6,求四边形ABCD的面积;问题解决(3)如图③,四边形ABCD是正在建设的地铁站的施工围挡,受地方限制,要求AB=BC;∠ABC=∠ADC=45°,对角线BD=6米,那么四边形ABCD的面积是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.2019-2020学年陕西省西安市碑林区西北工大附中八年级(下)第二次月考数学试卷参考答案与试题解析一.选择题(共10小题)1.若m>n,则下列不等式一定成立的是()A.1+m<1+n B.m﹣2<n﹣2C.>D.﹣4m>﹣4n 【分析】利用不等式的性质,直接判断得结论.【解答】解:A、∵m>n,∴1+m>1+n,不等式不成立,不符合题意;B、∵m>n,∴m﹣2>n﹣2,不等式不成立,不符合题意;C、∵m>n,∴,不等式成立,符合题意;D、∵m>n,∴﹣4m<﹣4n,不等式不成立,不符合题意;故选:C.2.下列汽车标志中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】直接利用轴对称图形和中心对称图形的概念求解.【解答】解:A、既是中心对称图形也是轴对称图形,故此选项符合题意;B、不是轴对称图形,也不是中心对称图形,故此选项不合题意;C、是轴对称图形,不是中心对称图形,故此选项不合题意;D、不是轴对称图形,是中心对称图形,故此选项不合题意;故选:A.3.下列等式从左到右的变形,属于因式分解的是()A.m(a+b)=ma+mb B.x2+2x+1=x(x+2)+1C.x2+x=x2(1+)D.x2﹣9=(x+3)(x﹣3)【分析】根据因式分解是把一个多项式化为几个整式的积的形式,可得答案.【解答】解:A、是整式的乘法,不是因式分解,故此选项不符合题意;B、没把一个多项式化为几个整式的积的形式,故此选项不符合题意;C、没把一个多项式化为几个整式的积的形式,故此选项不符合题意;D、把一个多项式化为几个整式的积的形式,故此选项符合题意;故选:D.4.如图,在△ABC中,AB=AC,点D是BC边上的中点,∠BAD=50°,则∠C的大小为()A.20°B.30°C.40°D.50°【分析】根据等腰三角形的三线合一定理可得AD⊥BC,然后根据三角形的内角和定理求得∠B的度数,然后根据等腰三角形中等边对等角即可求解.【解答】解:∵AB=AC,点D为BC的中点,∴AD⊥BC,又∵∠BAD=50°,∴∠B=90°﹣∠BAD=90°﹣50°=40°,又∵AB=AC,∴∠C=∠B=40°.故选:C.5.在直角坐标系中,点O为坐标原点,点A(3,4),把线段OA绕点O顺时针旋转90°得到线段OA',则点A'的坐标为()A.(4,3)B.(4,﹣3)C.(﹣4,3)D.(3,﹣4)【分析】解题的关键是抓住旋转的三要素:旋转中心O,旋转方向顺时针,旋转角度90°,通过画图得A′的坐标.【解答】解:如图,由题意A(3,4),把线段OA绕点O顺时针旋转90°得到线段OA',观察图象可知A′(4,﹣3).故选:B.6.如图,在平行四边形ABCD中,AB⊥AC,若AB=8,AC=12,则BD的长是()A.22B.16C.18D.20【分析】由四边形ABCD是平行四边形,根据平行四边形的对角线互相平分,可得OA 的长,然后由AB⊥AC,AB=8,OA=6,根据勾股定理可求得OB的长,继而求得答案.【解答】解:∵四边形ABCD是平行四边形,AC=12,∴OA=AC=6,BD=2OB,∵AB⊥AC,AB=8,∴OB==10,∴BD=2OB=20.故选:D.7.如图,直线y=kx+b交x轴于点A(﹣1,0),直线y=mx+n交x轴于点B(3,0),这两条直线相交于点C(1,3),则不等式kx+b<mx+n的解集为()A.x<1B.x>1C.x<﹣2D.x<5【分析】结合函数图象,写出直线y=kx+b不在直线y=mx+n的上方所对应的自变量的范围即可.【解答】解:根据函数图象,当x<1时,kx+b<mx+n,所以不等式kx+b<mx+n的解集为x<1.故选:A.8.如图,在△ABC中,∠B=60°,AB=3.将△ABC绕点A按逆时针方向旋转得到△ADE,若点B的对应点D恰好落在BC边上,且DC=2,则DE的长为()A.3B.4C.5D.6【分析】根据等边三角形的判定与性质,可以得到BD的长,再根据DC的长,即可得到BC的长,然后根据旋转的性质可知,△ABC≌△ADE,从而可以得到BC=DE,然后即可得到DE的长.【解答】解:由题意可得,AB=AD,∵∠B=60°,∴△ABD是等边三角形,AB=3.∴BD=AB=3,∵DC=2,∴BC=BD+DC=3+2=5,由题意可知,△ABC≌△ADE,∴BC=DE,∴DE=5,故选:C.9.若,则的值为()A.B.3C.5D.7【分析】法1:已知等式整理得到关系式5=(+)(a+b),计算即可求出值;法2:已知等式左边通分并利用同分母分式的加法法则运算,整理后得到a2+b2=3ab,原式变形后代入计算即可求出值.【解答】解:法1:∵+=,∴5=(+)(a+b)=2++,则+=5﹣2=3;法2:已知等式变形得:=,即(a+b)2=5ab,整理得:a2+2ab+b2=5ab,即a2+b2=3ab,则+===3.故选:B.10.如图,△ABC中,D、E分别是BC、AC的中点,BF平分∠ABC,交DE于点F,若AB=10,BC=8,则EF的长是()A.B.1C.D.1.5【分析】根据三角形中位线定理得到DE∥AB,DE=AB=5,根据平行线的性质、角平分线的定义求出DF,计算即可.【解答】解:∵D、E分别是BC、AC的中点,∴DE∥AB,DE=AB=5,BD=BC=4,∴∠ABF=∠BFD,∵BF平分∠ABC,∴∠ABF=∠DBF,∴∠DBF=∠BFD,∴DF=DB=4,∴EF=DE﹣DF=1,故选:B.二.填空题(共4小题)11.若已知分式的值为0,则m的值为﹣1.【分析】分式的值为0的条件是:(1)分子为0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题.【解答】解:由题意可得m2﹣1=0且m﹣1≠0,解得m=﹣1.故答案为:﹣1.12.有一个正多边形的内角和等于它外角和的2倍,则这个正多边形每一个内角的大小为120°.【分析】根据一个正多边形的内角和等于它外角和的2倍,任意多边形的外角和都是360°,可以得到这个多边形的内角和,然后根据内角和公式,可以得到这个多边形的边数,从而可以得到这个正多边形每一个内角的度数.【解答】解:∵一个正多边形的内角和等于它外角和的2倍,任意多边形的外角和都是360°,∴这个多边形的内角和是360°×2=720°,设这个正多边形的边数为n,则(n﹣2)×180°=720°,解得n=6,故这个正多边形每一个内角的大小为720°÷6=120°,故答案为:120°.13.若关于x的分式方程﹣=1有增根,则a的值4.【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x﹣2=0,确定可能的增根;然后代入化为整式方程的方程求解,即可得到正确的答案.【解答】解:﹣=1,去分母,方程两边同时乘以x﹣2,得:x+x﹣a=x﹣2,由分母可知,分式方程的增根可能是2,当x=2时,2+2﹣a=2﹣2,解得a=4.故答案为:4.14.如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,AB=4.如果在三角形内部有一条动线段MN∥AC,且MN=2,则AM+BN+CN的最小值为2.【分析】在AC上取一点A′,使得AA′=MN=2,连接A′N.首先证明AM+BN+CN =A′N+BN+CN,将△NCB绕点C顺时针旋转60°得到△GCT,连接NG,过点T作TH ⊥AC交AC的延长线于H.证明A′N+CN+BN=A′N+NG+GT≥A′T,求出A′T可得结论.【解答】解:在AC上取一点A′,使得AA′=MN=2,连接A′N.∵AA′=MN,AA′∥MN,∴四边形AMNA′是平行四边形,∴AM=A′N,∴AM+BN+CN=A′N+BN+CN,将△NCB绕点C顺时针旋转60°得到△GCT,连接NG,过点T作TH⊥AC交AC的延长线于H.∵CN=CG,∠NCG=60°,∴△NCG是等边三角形,∴CN=NG,∴A′N+CN+BN=A′N+NG+GT,∵A′N+NG+GT≥A′T,∵∠ACB=90°,∠BAC=30°,AB=4,∴BC=CT=AB=2,AC=BC=6,∴CA′=6﹣2=4,∵∠ACH=90°,∠BCT=60°,∴∠TCH=30°,∵∠THC=90°,∴TH=CT=,CH=TH=3,∴A′H=4+3=7,∴A′T===2.∴AM+BN+CN≥2,∴AM+BN+CN的最小值为2,故答案为:2.三.解答题15.将下列各式因式分解:(1)2a2﹣4a+2;(2)x2﹣25﹣10(x﹣5).【分析】(1)原式提取公因式,再利用完全平方公式分解即可;(2)原式结合后,提取公因式即可.【解答】解:(1)原式=2(a2﹣2a+1)=2(a﹣1)2;(2)原式=(x+5)(x﹣5)﹣10(x﹣5)=(x﹣5)(x+5﹣10)=(x﹣5)2.16.解不等式组并把解集在数轴上表示出来.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解4(x+1)≤7x+13得:x≥﹣3,解>x﹣4得:x<2,不等式组的解集为:﹣3≤x<2,在数轴上表示:17.尺规作图:如图,已知▱ABCD,在DC边上求作一点M,使得MA=MC.(不写作法,保留作图痕迹)【分析】连接AC,作AC的垂直平分线交CD于点M即可.【解答】解:如图,点M即为所求.18.如图,已知△ABC,作∠BAC的角平分线与BC的垂直平分线相交于点P,过点P作PM⊥AB于点M,PN⊥AC交AC的延长线于点N,连接BP、CP.求证:∠BPM=∠CPN.【分析】由角平分线的性质可得PM=PN,由垂直平分线的性质可得PB=PC,由“HL”可证Rt△BPM≌Rt△CPN,可得结论.【解答】证明:∵AP平分∠BAC,PM⊥AB,PN⊥AC,∴PM=PN,∵PD是BC的垂直平分线,∴PB=PC,在Rt△BPM和Rt△CPN中,,∴Rt△BPM≌Rt△CPN(HL),∴∠BPM=∠CPN.19.先化简:(﹣)÷,再从﹣3、﹣2、﹣1、0、1中选一个合适的数作为a的值代入求值.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=•===,当a=﹣3,﹣1,0,1时,原式没有意义,舍去,当a=﹣2时,原式=﹣.20.如图,▱ABCD的对角线AC、BD交于点O,M,N分别是AB、AD的中点.(1)求证:四边形AMON是平行四边形;(2)若AC=6,BD=4,∠AOB=90°,求四边形AMON的周长.【分析】(1)根据平行四边形的性质得到AO=BO,BO=CO,AB∥CD,AD∥BC,根据三角形中位线的性质得到∴MO∥BC,NO∥CD,根据平行四边形的判定可证得结论;(2)由勾股定理求得AB=,根据直角三角形斜边的中线等于斜边的一半得到OM =AM=,进而可求得结论.【解答】(1)根据平行四边形的性质得到AO=OC,BO=OD,AB∥CD,AD∥BC,由三角形的中位线的性质得到MO∥BC,NO∥CD,∴MO∥AN,NO∥AM,∴四边形AMON是平行四边形;(2)解:∵AC=6,BD=4,∴AO=3,BO=2,∵∠AOB=90°,∴AB===,∴OM=AM=MB=,∴NO=AN=,四边形AMON的周长=AM+OM+AN+NO=2.21.“垃圾分一分,环境美十分”.某校为积极响应有关垃圾分类的号召,从百货商场购进了A,B两种品牌的垃圾桶作为可回收垃圾桶和其他垃圾桶.已知B品牌垃圾桶比A品牌垃圾桶每个贵50元,用4000元购买A品牌垃圾桶的数量是用3000元购买B品牌垃圾桶数量的2倍.(1)求购买一个A品牌、一个B品牌的垃圾桶各需多少元?(2)若该中学决定再次准备用不超过6000元购进A,B两种品牌垃圾桶共50个,恰逢百货商场对两种品牌垃圾桶的售价进行调整:A品牌按第一次购买时售价的九折出售,B品牌比第一次购买时售价提高了20%,那么该学校此次最多可购买多少个B品牌垃圾桶?【分析】(1)设购买一个A品牌垃圾桶需x元,则购买一个B品牌垃圾桶需(x+50)元,根据数量=总价÷单价结合购买A品牌垃圾桶数量是购买B品牌垃圾桶数量的2倍,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设该学校此次购买m个B品牌垃圾桶,则购买(50﹣m)个A品牌垃圾桶,根据总价=单价×数量结合总费用不超过6000元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.【解答】解:(1)设购买一个A品牌垃圾桶需x元,则购买一个B品牌垃圾桶需(x+50)元,依题意,得:=2×,解得:x=100,经检验,x=100是原方程的解,且符合题意,∴x+50=150.答:购买一个A品牌垃圾桶需100元,购买一个B品牌垃圾桶需150元.(2)设该学校此次购买m个B品牌垃圾桶,则购买(50﹣m)个A品牌垃圾桶,依题意,得:100×0.9(50﹣m)+150×(1+20%)m≤6000,解得:m≤16.因为m是正整数,所以m最大值是16.答:该学校此次最多可购买16个B品牌垃圾桶.22.如图,直线l1:y=2x+4与x轴交于点A,与y轴交于点B,直线l2:y=﹣x+2与y轴交于点C.(1)直接写出点A、B、C的坐标分别为:A(﹣2,0),B(0,4),C(0,2);(2)是否存在将直线l2:y=﹣x+2向上或向下平移使其经过点D,且使得以A、B、C、D为顶点的四边形为平行四边形?若存在,求出所有可能的平移方式;若不存在,请说明理由.【分析】(1)用待定系数法即可求解;(2)分AB是边、AB是对角线两种情况,利用平移的性质和中点公式分别求解即可.【解答】解:(1)直线l1:y=2x+4,令x=0,则y=4,令y=2x+4=0,解得x=﹣2,对于直线l2:y=﹣x+2,令x=0,则y=2,故点A、B、C的坐标分别为(﹣2,0)、(0,4)、(0,2),故答案为(﹣2,0)、(0,4)、(0,2);(2)存在,理由:设平移后的直线表达式为y=﹣x+b,则设点D(m,﹣m+b),①当AB是边时,点A向右平移2个单位向上平移4个单位得到点B,则点C(D)向右平移2个单位向上平移4个单位得到点D(C),则0+2=m,2+4=﹣m+b或0﹣2=m,2﹣4=﹣m+b,解得:或;②当AB是对角线时,由中点公式得:(﹣2+0)=(0+4)=(2﹣m+b),解得,故平移后的直线表达式为y=﹣x+8或y=﹣x﹣4或y=﹣x,故直线l2平移的方式是:向上平移6个单位或向下平移6个单位或向下平移2个单位.23.问题探究(1)如图①,已知∠A=45°,∠ABC+∠ADC=60°,则∠BCD的大小为105°;(2)如图②,在四边形ABCD中,AB=BC,∠ABC=∠ADC=90°,对角线BD=6,求四边形ABCD的面积;问题解决(3)如图③,四边形ABCD是正在建设的地铁站的施工围挡,受地方限制,要求AB=BC;∠ABC=∠ADC=45°,对角线BD=6米,那么四边形ABCD的面积是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.【分析】(1)利用外角的性质可求解;(2)将△BCD绕点B逆时针旋转90°得到△BAF,可得∠FBD=90°,BF=BD,∠BAF =∠BCD,S△ABF=S△BCD,可得S△BDF=S四边形ABCD=18;(3)将△BCD绕点B逆时针旋转45°,得到△BAH,连接HD,过点H作HG⊥BD于G,由旋转的性质可得CD=AH,BH=BD=6(米),∠HBA=∠DBC,∠HAB=∠BCD,S△BCD=S△BAH,由四边形ABCD的面积=S△HBD﹣S△HAD,可得当△HAD的面积最大时,四边形ABCD的面积最小,即可求解.【解答】解:(1)如图1,延长BC交AD于E,∵∠BCD=∠BED+∠CDA,∠BED=∠A+∠ABC,∴∠BCD=∠A+∠ADC+∠ABC=45°+60°=105°故答案为:105°;(2)如图2,将△BCD绕点B逆时针旋转90°得到△BAF,∴△BCD≌△BAF,∠FBD=90°,∴BF=BD,∠BAF=∠BCD,CD=AF,S△ABF=S△BCD,∵∠ABC=∠ADC=90°,∴∠BAD+∠BCD=180°,∴∠BAD+∠BAF=180°,∴点F,点A,点D三点共线,∵BF=BD=6,∠DBF=90°,∴S△BDF=×BF×BD=18,∴S△BDF=S△ABF+S△ABD=S△BCD+S△ABD=S四边形ABCD=18;(3)如图3,将△BCD绕点B逆时针旋转45°,得到△BAH,连接HD,过点H作HG ⊥BD于G,∴△BCD≌△BAH,∴CD=AH,BH=BD=6(米),∠HBA=∠DBC,∠HAB=∠BCD,S△BCD=S△BAH,∵∠ABC=45°=∠ABD+∠DBC,∴∠ABD+∠ABH=45°=∠HBG,∵HG⊥BD,∴∠HBG=∠BHG=45°,∴BG=HG,∴BH=BG=6,∴BG=HG=3,∴S△HBD=BD×HG=×6×3=9,DG=6﹣3,∴HD2=DG2+HG2=(6﹣3)2+(3)2=72﹣36,∵∠ABC=∠ADC=45°,∴∠BAD+∠BCD=270°,∴∠BAD+∠BAH=270°,∴∠HAD=90°,∴HA2+AD2=HD2,∵(HA﹣AD)2≥0,∴2•HA•AD≤HA2+AD2,∴HA•AD≤36﹣18,∵四边形ABCD的面积=S△ABD+S△BCD=S△ABD+S△ABH,∴四边形ABCD的面积=S△HBD﹣S△HAD,∴当△HAD的面积最大时,四边形ABCD的面积最小,∵四边形ABCD的面积=9﹣•HA•AD,∴四边形ABCD的面积的最小值=9﹣(18﹣9)=18﹣18.。
2019-2020南通市启秀中学初二上册第二次月考数学【试卷+答案】

( ) ( ) (1) − 2a−2b3 ÷ a3b−1 3
1
(2)
8-
0.5 -
41 +2
50
2
2
20、(本题 5 分)地球在流浪,学习不能忘。已知 a = 1 ,求 a2 − 9 − 2+ 3 a−3
a2 − 4a + 4
的
a2 − 2a
值。
21、(本题 6 分)有些歌听一句就喜欢上了,有些题看一眼就念念不忘。这一题一定深入人
启秀 2019—2020 学年度第一学期 12 月月考 初二数学
一、选择题
1、有些试卷看第一题就不想做了,但这一题我想你们会做的~在分式 2ab ( a、b 为正数) a+b
中,字母 a, b 的值分别扩大为原来的 2 倍,则此分式的值( )
A、扩大为原来的 2 倍
1
B、缩小为原来的
2
C、不变 D、扩大为原来的 4 倍
A、 (x −1) − x
B、 − (x +1) x
C、 (1- x) − x D、 (x −1) x
9、所有的相遇都是命中注定,这题我们相遇过分别过现在又重逢了~~若 0 < x < 1 ,则
x − 1 2 + 4 − x + 1 2 − 4 等于( )
xቤተ መጻሕፍቲ ባይዱ
x
2
A、
x
B、 - 2 x
C、 - 2x
a2 − 2a +1 ;④
1
;⑤
0.75 中最简二次根式是(
)
x
A、①②
B、③④⑤
C、②③
D、只有④
4、人丑就要多读书,不然这题做不出。使代数式 1 + 3 − 3x 有意义的整数 x 有( ) x+3
辽宁省大连市八年级上学期数学12月月考试卷

辽宁省大连市八年级上学期数学12月月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列计算正确的是()A . (-y)7÷(-y)4=y3B . (x+y)5÷(x+y)=x4+y4C . (a-1)6÷(a-1)2=(a-1)3D . -x5÷(-x3)=x22. (2分) (2017八上·沂水期末) 下列计算正确的是()A . (x+y)2=x2+y2B . (x﹣y)2=x2﹣2xy﹣y2C . (x+1)(x﹣1)=x2﹣1D . (x﹣1)2=x2﹣13. (2分)下列运算中,正确的是()A . x2•x3=x6B . (a﹣1)2=a2﹣1C . (a+b)(﹣a﹣b)=a2﹣b2D . (﹣2a2)2=4a44. (2分)下列等式从左到右的变形,属于因式分解的是()A . a(x-y)=ax-ayB . x2+2x+1=x(x+2)+1C . (x+1)(x+3)=x2+4x+3D . x3-x=x(x+1)(x-1)5. (2分) t2﹣(t+1)(t﹣5)的计算结果正确的是()A . ﹣4t﹣5B . 4t+5C . t2﹣4t+5D . t2+4t﹣56. (2分)分解因式﹣2xy2+6x3y2﹣10xy时,合理地提取的公因式应为()A . ﹣2xy2B . 2xyC . ﹣2xyD . 2x2y7. (2分) (2018七上·襄州期末) 已知点A的坐标为(﹣2,3),点B与点A关于x轴对称,点C与点B关于y轴对称,则点C关于x轴对称的点的坐标为()A . (2,﹣3)B . (﹣2,3)C . (2,3)D . (﹣2,﹣3)8. (2分)(2016·衢州) 若式子的值为0,则()A . x=﹣2B . x=3C . x≠3D . x≠﹣29. (2分) (2017八上·哈尔滨月考) 若是完全平方式,则m的值等于()A . 3B .C .D . 7或-110. (2分)(2019·乌鲁木齐模拟) 如图,CD//AB,AC⊥BC,∠ACD=60°,那么∠B的度数是()A . 60°B . 40°C . 45°D . 30°二、填空题 (共5题;共5分)11. (1分) (2018七下·惠来开学考) 计算:(3m2n)2×(-2m2)3÷(-m2n)2=________。
沪科版2019----2020学年度第一学期第一次月考八年级数学试卷

绝密★启用前沪科版2019----2020学年度第一学期第一次月考八年级数学试卷一、单选题1.(3分)某一次函数的图象经过点(,2),且函数的值随自变量x 的增大而减小,则下列函数符合条件的是( )A .y=4x+6B .y=-xC .y=-x+1D .y=-3x+52.(3分)坐标平面上,有一线性函数过(-3,4)和(-7,4)两点,则此函数的图象会过( ) A .第一、二象限 B .第一、四象限 C .第二、三象限 D .第二、四象限 3.(3分)点A (1,2)先向右平移2个单位长度,再向下平移1个单位长度得到点A ′,则点A ′的坐标是( )A .(3,3)B .(-1,3)C .(-1,-1)D .(3,1)4.(3分)某人骑车沿直线旅行,先前进了千米,休息了一段时间,又原路原速返回了千米(),再掉头沿原方向加速行驶,则此人离起点的距离与时间的函数关系的 大致图象是5.(3分)如图,小手盖住的点的坐标可能为 ( )6.(3分)如图所示的象棋盘上,若“帅”位于(1,2)-,“相”位于(3,2)-,则“炮”位于( )A .(1,1)-B .(1,2)-C .(2,1)-D .(2,2)-7.(3分)如果点(2,3)A m +,点(4,5)B n -+关于y 轴对称,则m+n 的值是( ) A .0B .-2C .4D .-4 :8.(3分)若点(,)P x y 在第四象限,且2x =,29y =,则点P 的坐标是( )A .(3,2)-B .(3,2)-C .(2,3)-D .(2,3)-9.(3分)在一条笔直的公路上,依次有A 、C 、B 三地.小明从A 地途经C 地前往距A 地20千米的B 地,到B 地休息一段时间后立即按原路返回到A 地.小明出发4小时的时候距离A 地12千米.小明去时从C 地到B 地,返回时再由B 地到C 地(包括在B 地休息的时间)共用2小时.他与A 地的距离s (单位:千米)和所用的时间t (单位:小时)之间的函数关系如图所示.下列说法:①小明去时的速度为10千米/时;②小明在B 地休息了小时;③小明回来时的速度为6千米/时;④C 地与A 地的距离为15千米,其中正确的个数为( )A .1个B .2个C .3个D .4个10.(3分)在平面直角坐标系中,0为原点,直线1y kx b =+交y 轴于B (0, 5),交x 轴于A ,且三角形AOB 的面积为10,则k=( ) A .1 B .54C .-2或-4D .54-或54二、填空题11.(4分)函数中自变量x 的取值范围是________. 12.(4分)商品的销售量也受销售价格的影响,比如,某衬衣定价为100元时,每月可卖出2000件,价格每上涨10元,销售量便减少50件.那么,每月售出衬衣的总件数y (件)与衬衣价格x (元)销售之间的函数关系式为_________.13.(4分)已知函数2(1)1y m x m =-+-是正比例函数,则m =__________.14.(4分)平面上有一点P(a ,b ),点P 到x 轴、y 轴的距离分別为3、4,且0ab <,则点P 的坐标是________.15.(4分)若点()3,4M a a -+在y 轴上.则M 点的坐标为_______.16.(4分)将直线34y x =+向下平移5个单位得到直线l ,则直线l 对应的函数表达式为________.17.(4分)若点()11,A y 和点()22,By 都在一次函数2y x =-+的图象上,则1y ________2y (选择“>”、“<”、“=”填空).18.(4分)如图所示,一列快车从甲地开往乙地,一列慢车从乙地开往甲地,两车同时出发,设慢车行驶的时间为x 小时,两车之间的距离为y 千米,图中的折线表示y 与x 之间的函数关系,则快车到达终点时慢车距离终点还有_______km三、解答题19.(7分)长方形的周长为30㎝,(1)写出长y(㎝)与宽x(㎝)之间的函数关系式; (2)当宽为5㎝时,长是多少?20.(7分)已知一次函数 5)1(+-=x k y 的图象经过点)31(,. (1)求出k 的值;(2)求当y =1时,x 的值.21.(7分)如图,已知直线l 1经过点A (0,﹣1)与点P (2,3),另一条直线l 2经过点P ,且与y 轴交于点B (0,m ). (1)求直线l 1的解析式;(2)若△APB 的面积为3,求m 的值.22.(7分)已知一次函数的图象经过(2,5)和(-1,-1)两点. (1)求这个一次函数的解析式;(2)求此一次函数的图象与两坐标轴所围成的三角形面积.23.(7分)六年级(1)班从学校出发,乘大巴车去农场进行实践活动,之后返回学校(大巴车行驶速度不变),下图反映的是大巴车行驶路程与时间之间的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年八年级12月月考数学试卷
一、填空题:(每空2分,共40分) 1、
7
13,,303.3
- 8,38无理数有 。
2、如图1,平行四边形ABCD 中,AB=,AD=8,则它的周长为= .
B
A
C D
B A
C
D
B
A
C D
(1) (2) (3) (4) 3、如图2,正方形ABCD 的对角线AC=4,则它的边长AB= 。
4。
5、如图3,平行四边形ABCD ,添加一个条件使它成为一个矩形,你会加上 .
6、如图3的平行四边形ABCD 中,线段CD 是由 平移而得,而△AOD 可以看作是由△COB 而来的。
7、图4是b kx y +=的图象,则=b ,与x 轴的交点坐标为 ,y 的值
随x 的增大而 。
8、四边形的各顶点坐标(x,y)变成(x+1,3y),四边形的面积会变为原来的
倍。
9、某汽车的油缸能盛油100升,汽车每行驶50千耗油6升,加满油后,油缸中的
剩油量y (升)与汽车行驶路程x (千米)之间的函数关系式是 。
10、A 、B 两人相距3千米,他们同时朝同一目的地匀速直行,并同时到达目的地,已知A 的速度比B 快,请根据图象进行判断:(1)图中的直线 表示A ;(2)
B 的速度是 千米/小时。
11、正多边形的每个外角都为60°,它是 _______ 边形。
12、 ____________ 的平方根是它本身, ___ 的立方根是它本身。
13、已知点A (2,5),则与A 关于x 轴对称的点B 的坐标为 ,与A 关于y 轴对称的点C 的坐标为 。
14、菱形的对角线的长分别为6和8,则它的高为 。
二、选择题:(每小题2分,共8分)
15、 一次测验中的填空题如下: (1)当m 取1时,一次函数3)2(+-=x m y 的图像,y 随x 的增大而 增大 ;
(2)等腰梯形ABCD ,上底AD =2,下底BC =8,∠B =60°,则腰长AB = 6 ;
(3)菱形的边长为6cm ,一组相邻角的比为1:2,则菱形的两条对角线的长分别为6cm 和
)
cm 36;
(4)如果一个多边形的内角和为900°,则这个多边形是 五 边形; 你认为正确的添空个数是( )
A .1
B .2
C .3
D .4 16、用形状、大小完全相等的下列图形不能进行密铺的是( )
A .等腰三角形
B .平行四边形
C .正五边形
D .正六边形
17、(-7)2
的算术平方根是( )
A .+7
B .±7
C .7
D .±7 18、一个圆桶,底面直径为24cm ,高32cm,则桶内所能容下的最长木棒为( ) A .20cm B .50cm C .40cm D .45cm 三、计算:
19、(每小题3分,共9分)
(1)2)13(+; (2)3348-; (3)3
27
12+.
四、解方程组:(每小题4分,共12分) 20、(1)解方程组⎩⎨⎧=+=122y x x y (2) 解方程组⎩⎨
⎧=+-=-23
3421
52y x y x
21.利用图象解方程组:⎩
⎨⎧--=+=15
2x y x y
22、(10分)如图,E 是正方形ABCD 的边BC 延长线上的点,且CE =AC.
(1) 求∠ACE 、∠CAE 的度数;
(2) 若AB =3cm ,请求出△ACE 的面积。
B A
C D
E
五.(21分)
23、(3分)如图,若O是菱形ABCD对角线的交点,作DE∥AC,CE∥BD,DE、CE交于点E,四边形OCED是矩形吗?说说你的理由。
B A
C
D
E O
24.(本题5分)机动车出发前油箱内有油42升,行驶若干小时后,途中在加油站加油若
干升,油箱中余油量Q(升)与行驶时间(t)之间的函数关系如图所示,根据图回答:
(1)机动车行驶__________小时后加油;
(2)加油前油箱余油量Q与行驶时间t的函数关系式是___________________;中途加油
_____________升;
(3)如果加油站距目的地还有230千米,车速为40千米/时,要达到目的地,油箱中的油是
否够用?请说明理由?
25.(本题5分)将点(0,0),(5,4),(3,0),(5,1), (5,-1),(3,0),(4,-2), (0 , 0), 在上面坐标系A中描出,并顺次连接画在A中。
(对以下问题请将图形代码填入相应的括号内)
做如下变化:
(1)横坐标保持不变,纵坐标分别乘以-1,再将所得的点用线段依次连接起来,所得的图案是()(2)纵坐标保持不变,横坐标分别变为原来的2倍,再将所得的点用线段依次连接起来,所得的图案是( )
(3)纵坐标保持不变,横坐标分别加3,再将所得的点用线段依次连接起来,所得的图案是()
26.(本题5分)
小明手中有3000元压岁钱,爸妈要他学习投资理财。
小明想买年利率为2.89%的三年期国库卷,到银行时,银行所剩国库卷已不足3000元,小明全部买下着国库卷后,余下的钱改成三年定期银行存款,年利率为2.7%,且到期要交纳20%的利息税,三年后,小明得到的本息和为3233.82元,小明到底买了多少的国库卷,在银行存款又是多少元?
27 (本题3分)
我校需刻录一批电脑光盘,若到电脑公司刻录,每张需要4元(包括空白光盘费);若学校自刻,除买刻录机60元外,每张还需成本2元(包括空白光盘费),问刻录这批电脑光盘,到电脑公司刻录费用省,还是自刻费用省?请说明理由。
答案:
一、1、8 2、7416+ 3、22 4、> 5、AC=BD 6、AB 绕O 点旋转180°
7、(1,2) =b -2 (21,0) 增大 8、3 9、x y 50
6100-= 10、L1 3
11、六 12、0 0、1和-1 13、(1,-2) (-1,2) 14、5
24
.
二、15B 16C 17A 18C 三、19、324+、3、5
20. (1)⎩⎨⎧==84y x (2) ⎩
⎨⎧==52
y x
21.⎩⎨
⎧=-=2
3y x
22. 135°22.5°25.4cm
2
23.略
24、(1)5小时
(2)Q=42-6t,加油24升
(3)够用,,由图可知加完油再行驶6小时用完油箱中的油但75.540230=÷<6 25. BCD 26.
解:设小明买了x 元的国库卷,在银行存款y 元
根据题意则有方程组⎩
⎨⎧-=-⨯+⨯=+300082.3233%)201(37.23%89.23000
y x y x
解得⎩⎨
⎧==1200
1800
y x
答:小明买了1800元的国库卷,在银行存款1200元 27.解: 设需刻录
X 张光盘,则到电脑公司刻录需Y 1=4X 元,自刻录需Y 2=60+2X 元。
问题转化为当X>0时,求Y 1、Y 2中的较小值。
在同一线坐标系中,画出两个函数的图象,如右图
由图象知,当这批光盘多于30张时,Y 1>Y 2,即自刻费用省。
当这批光盘少于30张时,Y 1<Y 2,即到电脑公司刻录费用省;当这批光盘为30张时,到电脑公司与自刻费用一样。