Xikxxi小学数学思想方法
小学的数学思想方法

小学的数学思想方法
1. 培养好奇心:
小学生的数学思想方法的第一步是培养好奇心。
好奇心能够激发他们对数学问题的兴趣和热情,鼓励他们主动探索和尝试解决问题,从而形成坚实的数学基础。
2. 建立逻辑思维:
小学生的数学思想方法还包括建立逻辑思维。
逻辑思维能够帮助他们发现数学问题的规律和本质,从而更容易理解数学知识,解决数学问题。
3. 实践出真知:
小学生学习数学,最能锻炼其数学思想方法的是实践出真知。
实践可以激发他们的创造力和想象力,从而更好地掌握数学知识和技能。
4. 归纳总结:
小学生在学习数学的过程中,需要不断进行归纳和总结。
归纳和总结能够帮助他们发现数学问题的规律和本质,从而更好地理解、掌握、应用数学知识。
5. 独立思考:
小学生在解决数学问题时,需要独立思考。
独立思考可以让他们从不同视角发现问题和解决问题的方法,提高应用数学知识的能力。
6. 错误分析:
小学生在学习数学的过程中,还需要学会正确地分析和解决错误。
错误分析可以帮助他们发现和纠正错误,加深对数学知识的理解,提高数学水平。
小学数学思想方法

小学数学思想方法一、整体观念思想方法整体观念是指将问题看作一个整体,并从整体中进行思考和分析。
在学习数学知识和解决数学问题时,学生应该培养整体观念,即从整体去理解和把握问题。
比如,在学习分数的概念时,学生可以通过将一块糖分成几份来理解分数的含义,而不仅仅是记住分数的定义。
二、归纳和演绎思想方法归纳是从具体的事例中总结出一般规律,而演绎是根据一般规律推出具体的结论。
在学习数学知识时,学生应该培养归纳和演绎的思维方法,即从具体例子中归纳出一般规律,然后用这个规律去解决其他类似的问题。
比如,在学习加法运算时,学生可以通过多个具体的例子来总结出加法的规律,再用这个规律去解决其他的加法问题。
三、抽象思维方法抽象是指将事物的共同属性提炼出来,形成概念或规律。
在学习数学知识时,学生应该培养抽象思维方法,即将具体的问题抽象化为数学符号或概念,用符号或概念来表示并解决问题。
比如,在学习几何图形时,学生可以将具体的图形抽象成几何图形的概念,并用几何图形的属性来解决相关问题。
四、逻辑思维方法逻辑思维是指根据前提和推理规则,进行合乎逻辑的推理和判断。
在学习数学知识和解决数学问题时,学生应该培养逻辑思维方法,即根据已知条件和数学规则,进行逻辑推理和判断,得出正确的结论。
比如,在解决代数方程的问题时,学生可以根据方程的性质和运算规则,进行逻辑推理,得出方程的解。
五、实践思维方法实践思维是指通过实际操作和体验,来加深对数学知识的理解和掌握。
在学习数学知识时,学生应该注重实践思维,即通过实际的物体、实际的活动和实际的问题来引导学生进行数学思维和解决问题。
比如,在学习分数的概念时,学生可以通过将物体切割成几份,比较几份的大小,加深对分数大小关系的理解。
小学数学思想方法是数学学习的基础,也是培养学生数学思维能力和解决问题能力的关键。
学生在学习数学时,应该注重培养这些思想方法,并灵活运用到解决问题中,从而提高学习效果。
通过培养这些思想方法,可以使学生更好地理解和掌握数学知识,提高数学水平。
小学数学中常见的数学思想方法有哪些

小学数学中常见的数学思想方法有哪些1.归纳法:通过观察一般情况,从而推断出普遍规律。
例如,通过寻找一些数列的规律,利用归纳法可以推出数列的通项公式。
2.逆向思维:通过逆向思考问题,从结果出发逆推回起始状态。
逆向思维常用于解决逻辑推理和问题求解。
例如,将一个求和问题转化为找到使得等式成立的数。
3.分解与组合:将一个大问题分解为若干个较小的子问题,然后通过解决子问题得到解决整个问题的方法。
这种思想方法常用于解决复杂的问题,可以降低问题的难度。
4.比较与类比:通过比较或类比不同的情况或对象,找到相似之处或变化的规律,从而解决问题。
例如,可以通过类比找到两个数的最大公约数和两个数的最大公倍数之间的关系。
5.推理与证明:通过逻辑推理和数学证明解决问题。
推理与证明是数学思维中最基本和最重要的方法之一、通过推理和证明,可以建立数学定理和推理规则,从而解决更复杂的问题。
6.抽象与泛化:将问题抽象为一般性质或模式,从而简化问题,找到问题的本质。
抽象与泛化是数学思想中的核心思维方法之一,通过抽象和泛化,可以建立数学概念和定理。
7.反证法:通过反证得到正证结论。
反证法常用于证明一些结论的唯一性或否定性。
通过假设结论不成立,然后推导出与已知条件矛盾的结果,从而得到结论的成立性。
8.猜想与验证:通过猜想和验证的方法解决问题。
猜想与验证是一种探索性的方法,通过发现规律和验证猜想的正确性,找到问题的解决方法。
9.近似与估算:通过近似和估算的方法解决问题。
近似与估算是数学思维中的实用方法之一,可以在缺乏精确计算方法时得到近似的结果。
以上是小学数学中常见的数学思想方法,请注意,数学思想方法的具体应用还受到问题性质、题型以及学生认识和思维水平的影响,因此,教学中还应根据具体情况灵活运用。
小学数学思想方法

小学数学思想方法
首先,小学数学思想方法的培养要注重启发式教学。
启发式教学是指教师在教
学中通过提出问题、引导思考、启发发现、引导总结等方式,激发学生的求知欲和探究欲望,培养学生的创造性思维和解决问题的能力。
在数学教学中,教师可以通过提出具体问题,引导学生去探究、发现规律,培养学生的数学思维方法。
其次,小学数学思想方法的培养要注重实践性教学。
实践性教学是指教师在教
学中注重培养学生的实际操作能力,引导学生通过实际操作去感受数学知识,从而形成数学思维方法。
在数学教学中,教师可以设计一些实际生活中的问题,让学生通过实际操作去解决问题,培养学生的实际操作能力,提高学生的数学思维方法。
再次,小学数学思想方法的培养要注重交互式教学。
交互式教学是指教师和学
生之间通过互动、交流、讨论等方式,促进学生的思维方法的培养和发展。
在数学教学中,教师可以通过提出问题,引导学生进行讨论,促进学生之间的交流和互动,培养学生的思维方法。
最后,小学数学思想方法的培养要注重启发性教学。
启发性教学是指教师在教
学中通过提出新颖的问题、引导学生去思考、启发学生发现问题的解决方法,培养学生的创造性思维方法。
在数学教学中,教师可以通过提出一些新颖的问题,引导学生去思考,启发学生发现问题的解决方法,培养学生的创造性思维方法。
总之,小学数学思想方法的培养是非常重要的。
教师在教学中要注重启发式教学、实践性教学、交互式教学和启发性教学,培养学生的数学思维方法,提高学生的数学学习能力和数学素养,促进学生全面发展。
希望广大教师能够重视小学数学思想方法的培养,为学生的数学学习打下坚实的基础。
Xikxxi小学数学思想方法

生命中,不断地有人离开或进入。
于是,看见的,看不见的;记住的,遗忘了。
生命中,不断地有得到和失落。
于是,看不见的,看见了;遗忘的,记住了。
然而,看不见的,是不是就等于不存在?记住的,是不是永远不会消失?小学数学思想方法教育2009-12-16 23:07 阅读32评论0字号:大中小1、对应思想方法对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。
如直线上的点(数轴)与表示具体的数是一一对应。
2、假设思想方法假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。
假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。
3、比较思想方法比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。
在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。
4、符号化思想方法用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。
如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。
如定律、公式、等。
5、类比思想方法类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。
如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。
类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟的自然和简洁。
6、转化思想方法转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。
如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。
7、分类思想方法分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。
小学数学思想方法

小学数学思想方法数学思想方法是解决数学问题的灵魂和精髓,是数学创造活动的基本方法。
学习数学思想方法有利于增强小学生的数学观念和数学意识,有利于小学生建立数学体系,丰富数学知识,这对其未来的生活和工作都有着深远的影响。
小学数学思想方法的重要性在于,它能够帮助学生理解和掌握数学知识的本质,促进学生的思维能力和解决问题的能力。
数学思想方法是一种普遍存在于现实生活中的思想方法,它不仅能够帮助学生解决数学问题,还能够帮助学生解决实际问题。
抽象概括法。
这种方法是通过对具体事例的分析和比较,概括出一般规律,然后用字母、符号等来表示,从而抽象出一般规律。
归纳法。
这种方法是通过观察和研究一系列具体事实,发现其中的共同规律,然后归纳总结出一般规律。
化归法。
这种方法是将复杂的问题转化为简单的问题,将未知的问题转化为已知的问题,将实际问题转化为数学问题。
类比法。
这种方法是通过比较两个或多个事物的相似之处,推断它们在其他方面也可能相似。
演绎法。
这种方法是从一般规律出发,通过推理证明特殊情况下的结论是否正确。
在小学数学教学中,应该注重数学思想方法的培养,通过具体的问题和实践来引导学生掌握数学思想方法。
例如,在讲解加法交换律时,可以通过举例和归纳法来引导学生发现加法交换律的规律;在讲解平行四边形的面积时,可以通过化归法和演绎法来引导学生推导出平行四边形面积的计算公式;在讲解三角形的内角和时,可以通过类比法和归纳法来引导学生发现三角形内角和的规律。
注重实例的积累和总结。
教师应该引导学生多观察、多思考、多实践,发现生活中的数学问题,并尝试用所学知识去解决。
同时,教师也应该注重课堂上的实例积累和总结,帮助学生更好地掌握数学知识。
注重思维能力和创新能力的培养。
教师应该引导学生多角度思考问题,发现问题的本质和规律,同时注重培养学生的创新能力和实践能力。
注重数学语言的使用。
教师应该引导学生正确使用数学语言来表达自己的想法和思路,帮助学生更好地理解和掌握数学知识。
小学数学思想方法有哪些

小学数学思想方法有哪些数学作为一门重要的学科,对于小学生来说,既是一种学习工具,也是一种思维方式的培养。
在学习数学的过程中,培养学生的数学思想方法至关重要。
那么,小学数学思想方法有哪些呢?下面我们来一一探讨。
首先,小学数学思想方法之一是逻辑思维。
数学是一门严谨的学科,逻辑思维是数学思维的基础。
在学习数学的过程中,学生需要培养严密的逻辑思维能力,学会分析问题、归纳规律、推理论证。
例如,在解决数学题目时,学生需要按部就班地进行思考,找出问题的关键点,进行逻辑推理,找出解题的正确方法。
这种逻辑思维方法不仅能够帮助学生解决数学问题,也能够培养学生的严谨思维能力,对学习其他学科也大有裨益。
其次,小学数学思想方法之二是抽象思维。
数学是一门抽象的学科,学生需要具备一定的抽象思维能力。
在学习数学的过程中,学生需要将具体的问题进行抽象,找出其中的共性和规律。
例如,在学习几何图形的时候,学生需要将具体的图形进行抽象,找出它们的共同特点,从而得出一般性的结论。
这种抽象思维方法不仅能够帮助学生理解数学知识,也能够培养学生的抽象思维能力,提高学生的综合分析问题的能力。
再次,小学数学思想方法之三是直观思维。
数学是一门具有直观性的学科,学生需要具备一定的直观思维能力。
在学习数学的过程中,学生需要通过观察、感觉、想象等方式来理解数学概念和规律。
例如,在学习数学几何的时候,学生需要通过观察图形、感受形状、想象变化等方式来理解几何概念。
这种直观思维方法不仅能够帮助学生理解数学知识,也能够培养学生的直观思维能力,提高学生的空间想象能力。
最后,小学数学思想方法之四是创新思维。
数学是一门富有创造性的学科,学生需要具备一定的创新思维能力。
在学习数学的过程中,学生需要通过灵活的思维方式来解决问题,发现新的方法和规律。
例如,在解决数学问题的时候,学生可以通过不同的思路,找出不同的解题方法,培养自己的创新思维能力。
这种创新思维方法不仅能够帮助学生提高解决问题的能力,也能够培养学生的创新意识,激发学生对数学的兴趣和热情。
小学学习数学的思想方法

小学学习数学的思想方法数学是一门十分重要的学科,早在小学阶段就开始接触。
学好数学对于整个学习生涯都具有重要的影响。
但是,要学好数学并不是一件容易的事情,需要一些正确的思想方法,下面将介绍一些小学学习数学的思想方法。
1. 学会理解理解是学好数学的第一步,也是非常重要的一步。
学习数学不仅仅是记忆或机械式地求解题目,更是要理解概念和思想。
因此,当遇到新的数学概念或公式时,不要着急去背诵和应用,要耐心地思考,理解它们的本质。
只有当你真正理解了这些概念和思想,才能更好地应用它们解决具体问题。
2. 善于归纳总结数学是一门高度抽象的学科,需要具有较强的逻辑思维和归纳能力。
在学习过程中,要善于总结归纳,把学过的知识整合起来形成自己的体系,从而更好地理解和掌握各种数学思想。
当然,在总结归纳时,我们还需要分清主次,重点突出,才能使得总结更有针对性和深度。
3. 练习、练习、再练习要学好数学,必须多多练习。
练习不仅能够巩固已学的知识,深化理解,还能够发现自身的不足之处,从而更好地补充自己的知识短板。
在练习中,我们不仅要注重提高计算速度,更重要的是要注重提高自己的思考能力和问题解决能力。
只有细心、全面、严谨地思考,才能更好地突破各种难关。
4. 学会质疑在学习数学的过程中,不仅仅是要学会接受老师所讲的知识,更要学会质疑。
质疑能够促进思考,让人更加深入地了解数学的本质。
在质疑中,我们也可以发现自己的不足,从而更好地补充自己的知识。
同时,质疑也是创新和发展的基础,只有敢于质疑,才有可能发现新的思路和解决问题的方法。
5. 学会探究在学习数学的过程中,要学会探究。
数学不仅是循序渐进的求解过程,也是创造性的思考过程。
当我们学习了一些数学概念和思想,也可以通过探究发现一些数学规律和趣味,从而更好地体会数学的美和魅力。
不妨通过探究,发掘出自己的数学天赋。
结论学好数学需要一些正确的思想方法,例如理解、归纳总结、练习、质疑、探究等等,这些方法都需要我们在学习数学的过程中不断地实践和探索。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生命中,不断地有人离开或进入。
于是,看见的,看不见的;记住的,遗忘了。
生命中,不断地有得到和失落。
于是,看不见的,看见了;遗忘的,记住了。
然而,看不见的,是不是就等于不存在?记住的,是不是永远不会消失?小学数学思想方法教育 2009-12-16 23:07 阅读32 评论0字号:大中小1、对应思想方法对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。
如直线上的点(数轴)与表示具体的数是一一对应。
2、假设思想方法假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。
假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。
3、比较思想方法比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。
在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。
4、符号化思想方法用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。
如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。
如定律、公式、等。
5、类比思想方法类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。
如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。
类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟的自然和简洁。
6、转化思想方法转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。
如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。
7、分类思想方法分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。
如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。
又如三角形可以按边分,也可以按角分。
不同的分类标准就会有不同的分类结果,从而产生新的概念。
对数学对象的正确、合理分类取决于分类标准的正确、合理性,数学知识的分类有助于学生对知识的梳理和建构。
8、集合思想方法集合思想就是运用集合的概念、逻辑语言、运算、图形等来解决数学问题或非纯数学问题的思想方法。
小学采用直观手段,利用图形和实物渗透集合思想。
在讲述公约数和公倍数时采用了交集的思想方法。
9、数形结合思想方法数和形是数学研究的两个主要对象,数离不开形,形离不开数,一方面抽象的数学概念,复杂的数量关系,借助图形使之直观化、形象化、简单化。
另一方面复杂的形体可以用简单的数量关系表示。
在解应用题中常常借助线段图的直观帮助分析数量关系。
10、统计思想方法:小学数学中的统计图表是一些基本的统计方法,求平均数应用题是体现出数据处理的思想方法。
11、极限思想方法:事物是从量变到质变的,极限方法的实质正是通过量变的无限过程达到质变。
在讲“圆的面积和周长”时,“化圆为方”“化曲为直”的极限分割思路,在观察有限分割的基础上想象它们的极限状态,这样不仅使学生掌握公式还能从曲与直的矛盾转化中萌发了无限逼近的极限思想。
12、代换思想方法:它是方程解法的重要原理,解题时可将某个条件用别的条件进行代换。
如学校买了4张桌子和9把椅子,共用去504元,一张桌子和3把椅子的价钱正好相等,桌子和椅子的单价各是多少?13、可逆思想方法:它是逻辑思维中的基本思想,当顺向思维难于解答时,可以从条件或问题思维寻求解题思路的方法,有时可以借线段图逆推。
如一辆汽车从甲地开往乙地,第一小时行了全程的1/7,第二小时比第一小时多行了16千米,还有94千米,求甲乙之距。
14、化归思维方法:把有可能解决的或未解决的问题,通过转化过程,归结为一类以便解决可较易解决的问题,以求得解决,这就是“化归”。
而数学知识联系紧密,新知识往往是旧知识的引申和扩展。
让学生面对新知会用化归思想方法去思考问题,对独立获得新知能力的提高无疑是有很大帮助。
化归的方向应该是化隐为显、化繁为简、化难为易、化未知为已知。
15、变中抓不变的思想方法:在纷繁复杂的变化中如何把握数量关系,抓不变的量为突破口,往往问了就迎刃而解。
如:科技书和文艺书共6 30本,其中科技书20%,后来又买来一些科技书,这时科技书占30%,又买来科技书多少本?16、数学模型思想方法:所谓数学模型思想是指对于现实世界的某一特定对象,从它特定的生活原型出发,充分运用观察、实验、操作、比较、分析综合概括等所谓过程,得到简化和假设,它是把生活中实际问题转化为数学问题模型的一种思想方法。
培养学生用数学的眼光认识和处理周围事物或数学问题乃数学的最高境界,也是学生高数学素养所追求的目标。
17、整体思想方法:对数学问题的观察和分析从宏观和大处着手,整体把握化零为整,往往不失为一种更便捷更省时的方法。
一、前言:我们的教学实践表明:中小学数学教育的现代化,主要不是内容的现代化,而是数学思想及教育手段的现代化,加强数学思想的教学是基础数学教育现代化的关键。
特别是对能力培养这一问题的探讨与摸索,以及社会对数学价值的要求,使我们更进一步地认识到数学思想的重要性,因此,小学教学的教学过程中,数学思想的渗透是至关重要的。
二、下面介绍几种小学数学中常用的思想方法符号思想用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学的内容,这就是符号思想。
符号思想是将所有的数据实例集为一体,把复杂的语言文字叙述用简洁明了的字母公式表示出来,便于记忆,便于运用。
把客观存在的事物和现象及它们相互之间的关系抽象概括为数学符号和公式,有一个从具体到表象再抽象符号化的过程。
用符号来体现的数学语言是世界性语言,是一个人数学素养的综合反映。
在数学中各种量的关系,量的变化以及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式来表达大量的信息,如乘法分配律(a+b)×c=a×c+b×c;又如在“有余数的除法”教学中,最后出现一道思考题:“六一”联欢会上,小明按照3个红气球、2个黄气球、1个蓝气球的顺序把气球串起来装饰教室。
你能知道第24个气球是什么颜色的吗?解决这个问题可以用书写简便的字母a、b、c分别表示红、黄、蓝气球,则按照题意可以转化成如下符号形式:aaabbc aaabbc aaabbc……从而可以直观地找出气球的排列规律并推出第24个气球是蓝色的。
这是符号思想的具体体现。
化归思想化归思想是数学中最普遍使用的一种思想方法,其基本思想是:把甲问题的求解,化归为乙问题的求解,然后通过乙问题的解反向去获得甲问题的解。
一般是指不可逆向的“变换”。
它的基本形式有:化难为易,化生为熟,化繁为简,化整为零,化曲为直等。
如求组合图形的面积时先把组合图形割补成学过的简单图形,然后计算出各部分面积的和或差,均能使学生体会化归法的本质。
分解思想分解思想就是先把原问题分解为若干便于解决的子问题,分解出若干便于求解的范围,分解出若干便于层层推进的解题步骤,然后逐个加以解决并达到最后顺利解决原问题的目的的一种思想方法。
如在五年级《解决问题的策略》教学中“倒退着想”的解题策略就体现了这种思想。
转换思想转换思想是一种解决数学问题的重要策略,是由一种形式变换成另一种形式的思想方法,这里的变换是可逆的双向变换。
在解决数学问题时,转换是一种非常有用的策略。
对问题进行转换时,既可转换已知条件,也可转换问题的结论;转换可以是等价的,也可以是不等价的,用转换思想来解决数学问题,转换仅是第一步,第二步要对转换后的问题进行求解,第三步要将转换后问题的解答反演成问题的解答。
如果采用等价关系作转换,可直接求出解而省略反演这一步。
如计算:2.8÷113÷17÷0.7,直接计算比较麻烦,而分数的乘除运算比小数方便,故可将原问题转换为:28/10×3/4×7/1×10/7,这样,利用约分就能很快获得本题的解。
再如:某班上午缺席人数是出席人数的1/7,下午因有1人请病假,故缺席人数是出席人数的1/6。
问此班有多少人?此题因上下午出席人数起了变化,解题遇到了困难。
如将上午缺席人数转换成是全班人数的1/7 1=1/8,下午缺席人数是全班人数的1/6 1=1/7,这样,很快发现其本质关系:1/7与1/8的差是由于缺席1人造成的,故全班人数为:1÷(1/7-1/8)=56(人)。
分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。
如自然数的分类,若按能否被2整除分奇数和偶数;按因数的个数分素数和合数。
又如三角形可以按边分,也可以按角分。
不同的分类标准就会有不同的分类结果,从而产生新的概念。
对数学对象的正确、合理的分类取决于分类标准的正确、合理性,数学知识的分类有助于学生对知识的梳理和建构归纳思想数学归纳法是一种数学证明方法,典型地用于确定一个表达式在所有自然数范围内是成立的或者用于确定一个其他的形式在一个无穷序列是成立的。
有一种用于数理逻辑和计算机科学广义的形式的观点指出能被求出值的表达式是等价表达式,这就是著名的结构归纳法类比思想数学上的类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想,它能够解决一些表面上看似复杂困难的问题。
类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟得自然和简洁,从而可以激发起学生的创造力,正如数学家波利亚所说:“我们应该讨论一般化和特殊化和类比的这些过程本身,它们是获得发现的伟大源泉。
”如由加法交换律a+b=b+a的学习迁移到乘法分配律a×b=b×a的学习又如长方形的面积公式为长×宽=a×b,通过类比,三角形的面积公式也可以理解为长(底)×宽(高)÷2=a×b(h)÷2。
类似的,圆柱体体积公式为底面积×高,那么锥体的体积可以理解为底面积×高÷3假设思想假设思想是一种常用的推测性的数学思考方法.利用这种思想可以解一些填空题、判断题和应用题.有些题目数量关系比较隐蔽,难以建立数量之间的联系,或数量关系抽象,无从下手.可先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,最后找到正确答案的一种思想方法。
假设思想是一种有意义的想象思维,掌握之后可以使得要解决的问题更形象、具体,从而丰富解题思路。