小学奥数周期问题教师版

合集下载

小学奥数——周期性行程问题 教师题库版

小学奥数——周期性行程问题 教师题库版

【最值问题】1、一条单线铁路上有A,B,C,D,E 5个车站,它们之间的路程如图所示(单位:千米).两列火车同时从A,E两站相对开出,从A站开出的每小时行60千米,从E站开出的每小时行50千米.由于单线铁路上只有车站才铺有停车的轨道,要使对面开来的列车通过,必须在车站停车,才能让开行车轨道.因此,应安排哪个站相遇,才能使停车等候的时间最短.先到这一站的那一列火车至少需要停车多少分钟?【解析】两列火车同时从A,E两站相对开出,假设途中都不停.可求出两车相遇的地点,从而知道应在哪一个车站停车等待时间最短.从图中可知:AE的距离是:225+25+15+230=495(千米),两车相遇所用的时间是:495÷(60+50)=4.5(小时),相遇处距A站的距离是:60×4.5=270(千米),而A,D两站的距离为:225+25+15=265(千米),由于270千米>265千米,因此从A站开出的火车应安排在D站相遇,才能使停车等待的时间最短.因为相遇处离D站距离为270-265=5(千米),那么,先到达D站的火车至少需要等待:1156055060÷+÷=(小时) ,1160小时=11分钟2、从花城到太阳城的公路长12公里.在该路的2千米处有个铁道路口,是每关闭3分钟又开放3分钟的.还有在第4千米及第 6 千米有交通灯,每亮2分钟红灯后就亮3分钟绿灯.小糊涂驾驶电动车从花城到太阳城,出发时道口刚刚关闭,而那两处交通灯也都刚刚切换成红灯.已知电动车速度是常数,小糊涂既不刹车也不加速,那么在不违反交通规则的情况下,他到达太阳城最快需要多少分钟?【解析】画出反映交通灯红绿情况的s t-图,可得出小糊涂的行车图像不与实线相交情况下速度最大可以是0.5 千米/分钟,此时恰好经过第6千米的红绿灯由红转绿的点,所以他到达太阳城最快需要24分钟.3、下图中有两个圆只有一个公共点A,大圆直径48厘米,小圆直径30厘米。

四年级 奥数 讲义 303学子 教案库 第2讲.精英班.教师版周期性问题

四年级 奥数 讲义 303学子 教案库 第2讲.精英班.教师版周期性问题

第二讲周期性问题1. 掌握周期的概念和特征;2. 掌握各类周期问题的解决方法。

客观世界中存在着一些数、图形和事物,它们的变化是周而复始循环出现的,我们把具有这种规律性的问题称为周期问题。

我们把连续两次出现所经过的时间叫作周期。

研究周期问题,就是要发现问题的周期性和确定周期,从而解决有关问题。

确定周期有时可采用枚举法,将某一变化过程按要求一直进行下去,从而找到变化的周期;有时还可采用图表法,通过画图来确定周期。

【分析】 观察发现这一列数中每个数都是由4个连续自然数组成的,所以从1开始的自然数每4个数一个周期即构成了这个数列。

这个数列中的十三位数,组成它的四个数不能都是三位数,也不能都是四位数,所以只能是既有三位数又有四位数,只能是9979989991000。

【例1】 有一串数字8,9,2,8,6从第三个数字起,每个数字都是它前面两个数字积的个位数字,求第300个数字是几?前300个数字的和是多少?【分析】 可以试着将这串数字多写几位出来,看看是否会重复出现,重复出现的数字是否有规律:8,9,2,8,6,8,8,4,2,8,6,8,8,4可以看到2,8,6,8,8,4这6个数字重复出现,它的周期是6,不过周期是从第3个数字开始的,所以计算中要将前2个数字去掉。

(3002)6494-÷=,所以第300个数字是第50个周期中的第4个数字,即8。

前300 个数字的和是:89(286884)4928681805+++++++⨯++++=。

教学目标数字串中的周期问题经典精讲 (2008年5月11日日本第12届小学算术奥林匹克大赛初赛试题) 在下面的一列数中,只有一个十三位数,它是:__________。

1234,5678,9101112,13141516,……[前铺] 有一串数:5,8,13,21,34,55,89……,其中第一个数是5,第二个数是8,从第三个数起,每个数恰好是前两个数的和。

那么在这串数中,第1995个数被3除后所得余数是几?[分析] 这一串数除以3的余数如下:2,2,1,0,1,1,2,0,2,2,可见这串数被3除的余数每隔八个数循环一次,199582493÷=,在(2,2,1,0,1,1,2,0)这个周期中,第3个数是1。

(完整word)奥数 周期问题

(完整word)奥数   周期问题

六年级数学讲义周期问题一、教学衔接上次作业检查及讲解二、教学内容(一)知识介绍周期问题是指事物在运动变化的发展过程中,某些特征循环往复出现,其连续两次出现所经过的时间叫做周期。

在数学上,不仅有专门研究周期现象的分支,而且平时解题时也常常碰到与周期现象有关的问题。

这些数学问题只要我们发展某种周期现象,并充分加以利用,把要求的问题和某一周期的等式相对应,就能找到解题关键.(二)例题精讲例题1:2001年10月1日是星期一,问10月25日是星期几?分析:我们知道,每个星期有7天,也就是说以7天为一个周期不断地重复。

那么从10月1日到10月25日经过了25—1=24(天).因此用除法算式解答。

解:(1)、从10月1日到10月25日有:25—1=24(天)(2)、24天里有多少个星期余多少天?24÷7=3(个星期)……3(天)(说明24天中包含3个星期还多3天,最后一天起,再过3天就应是星期四)答:10月25日是星期四。

巩固练习:1、2001年5月3日是星期四,问5月20日是星期几?2、2008年8月1日是星期三,问8月28日是星期几?例题2:100个3相乘,积的个位数字是几?分析:我们只需考虑积的个位数的排列规律就可以了。

解:(1)、1×3=3……1个3相乘积的个位数字是:3(2)、3×3=9……2个3相乘积的个位数字是:9(3)、3×3×3=27……3个3相乘积的个位数字是:7(4)、3×3×3×3=81……4个3相乘积的个位数字是:1(5)、3×3×3×3×3=243……5个3相乘积的个位数字是:3(已经重复出现)(说明:可以发现积的个位数分别以3、9、7、1不断出重复出现的.即每4个3的积的个位数为一个周期。

)所以100个有多少个周期?100÷4=25(个)(整除说明是最后一个即个位为1)答:积的个位数字是1。

最新小学奥数 周期问题教师版

最新小学奥数 周期问题教师版

最新小学奥数周期问题一、知识要点周期问题是指事物在运动变化的发展过程中,某些特征循环往复出现,其连续两次出现所经过的时间叫做周期。

在数学上,不仅有专门研究周期现象的分支,而且平时解题时也常常碰到与周期现象有关的问题。

这些数学问题只要我们发展某种周期现象,并充分加以利用,把要求的问题和某一周期的等式相对应,就能找到解题关键。

二、精讲精练【例题1】流水线上生产小木球涂色的次序是:先5个红,再4个黄,再3个绿,再2个黑,再1个白,然后又依次5红、4黄、3绿、2黑、1白……如此涂下去,到2001个小球该涂什么颜色?【思路导航】根据题意可知,小木球涂色的次序是5红、4黄、3绿、2黑、1白,即5+4+3+2+1=15个球为一个周期,不断循环。

因为2001÷15=133……6,也就是经过133个周期还余6个,每个周期中第6个是黄的,所以第2001个球涂黄色。

练习1:1.跑道上的彩旗按“三面红、两面绿、一面黄”的规律插下去,第50面该插什么颜色?2.有一串珠子,按4个红的,3个白的,2个黑的顺序重复排列,第160个是什么颜色?3.1/7=0.142857142857……,小数点后面第100个数字是多少?【例题2】有47盏灯,按二盏红灯、四盏蓝灯、三盏黄灯的顺序排列着。

最后一盏灯是什么颜色的?三种颜色的灯各占总数的几分之几?【思路导航】(1)我们把二盏红灯、四盏蓝灯、三盏黄灯这9盏灯看作一组,47÷9=5(组)……2(盏),余下的两盏是第6组的前两盏灯,是红灯,所以最后一盏灯是红灯;(2)由于47÷9=5(组)……2(盏),所以红灯共有2×5+2=12(盏),占总数的12/47;蓝灯共有4×5=20(盏),占总数的20/47;黄灯共有3×5=15(盏),占总数的15/47。

练习2:1.有68面彩旗,按二面红的、一面绿的、三面黄的排列着,这些彩旗中,红旗占黄旗的几分之几?2.黑珠和白珠共2000颗,按规律排列着:○●○○○●○○○●○○……,第2000颗珠子是什么颜色的?其中,黑珠共有多少颗?3.在100米长的跑道两侧每隔2米站着一个同学。

四年级奥数-教师版-第四讲周期问题

四年级奥数-教师版-第四讲周期问题

第四讲周期问题知识导航解决周期问题时,关键在于找到周期的长度.只要能找到周期的长度,再用总数除以周期长度,得到的商就是完整的周期的个数,余数就是除去完整周期的部分后剩下的个数.例1:2001年10月1日是星期一,问10月25日是星期几?解析:我们知道,每个星期有7天,也就是说以7天为一个周期不断地重复。

那么从10月1日到10月25日经过了25—1=24(天)。

因此用除法算式解答。

解:(1)从10月1日到10月25日有:25—1=24(天)(2)24天里有多少个星期余多少天?24÷7=3(个星期)……3(天)(说明24天中包含3个星期还多3天,最后一天起,再过3天就应是星期四)答:10月25日是星期四。

(注:在计算日期的过程中,日期一般“算头不算尾”数星期的时候也要从当天的后面数起。

本题中的当天是星期一,应该从星期二数起。

)【巩固1】2001年5月3日是星期四,问5月20日是星期几?解析:天数比较少,容易计算,而且出现在同一个月内。

解:20-3=17天17÷7=2 (3)从星期五数起,第三天是星期日。

【巩固2】公历2000年1月1日是星期六,公历2008年1月1日是星期几?解析:先求出从公历2000年1月1日到公历2008年1月1日一共经过的天数,其中平年有6年,闰年有2年,最后还有2008年1月1日这一天。

+⨯+⨯(天)365=2612923366=÷2923Λ44177从星期六开始数4天得星期二,所以公历2008年1月1日是星期二。

例2:100个3相乘,积的个位数字是几?解析:我们只需考虑积的个位数的排列规律就可以了。

解:(1)1×3=3……1个3相乘积的个位数字是:3(2)3×3=9……2个3相乘积的个位数字是:9(3)3×3×3=27……3个3相乘积的个位数字是:7(4)3×3×3×3=81……4个3相乘积的个位数字是:1(5)3×3×3×3×3=243……5个3相乘积的个位数字是:3(已经重复出现)规律:可以发现积的个位数分别以3、9、7、1不断出重复出现的。

二年级《周期问题》奥数教案

二年级《周期问题》奥数教案

师:老师听到有人说到了重复这个词语,其实在我们的日常生活中,同样有一些现象按照一定规律周而复始,不断重复出现,我们把这种特殊的规律问题称为周期问题。

那么今天我们就一起来学习周期问题。

【探究新知,引入新课:我们已经学过了除法,有余数的除法,应用这些知识可以解决一些简单的问题。

这节课我们就来学习周期问题。

】【板书课题:周期问题】二、探索发现授课(40分)(一)例题1:(10分)根据规律找出第17个图形是什么?第23个呢?讲解重点:利用余数的知识来解答,理解周期问题中余数表示的意思。

师:老师这里没有给出那么多的图形,但是想知道第17个应该是什么图形,你们愿意帮助老师解决吗?生:愿意。

师:同学们仔细观察一下这组图形,你们发现什么了吗?生:这个图形里只有三角形和圆形。

师:对,2个三角形,3个圆形,2个三角形,3个圆形,2个三角形,3个圆形……你们看,这里有什么奇怪的地方?生:5个图形之后开始重复前面的图形。

师:很明显这是一个周期问题,我们把前面的5个图形看做一组,也就是一个周期,那么想要知道第17个图形是什么,就要知道第17个图形是第几组里面的第几个。

所以我们可以怎么求?生:用除法。

师:怎么求呢?生:17÷5=3(组)……2(个)。

师:有余数,余数2是什么意思?生:表示第17个图形是第4组的第2个。

师:所以这个图形是哪个?生:是△。

师:那第23个是什么图形呢?生:23÷5=4(组)……3(个),余数是3,表示第23个是第5组的第3个,是○。

师:很好,接下来,老师要给你们一个机会来挑战一下自己。

板书:17÷5=3(组)……2(个)23÷5=4(组)……3(个)答:第17个图形是△,第23个图形是○。

练习1:(5分)阿派按照下面的规律画圆,第14个圆应该是什么颜色?……分析:这列图形的排列是有一定的规律的,它是按照2个、2个的次序排列的,也就是每4个图形为一组,不断重复出现。

五年级奥数(教案)第2讲:周期问题

五年级奥数(教案)第2讲:周期问题
答:第200棵是杨树。
练习1:[6分]
节日的公园大门口,挂着同样大小的红、绿、蓝气球共180只,按先6只红的,再4只绿的,再2只蓝的顺序排列着。第129只气球是什么颜色?
分析:
从第一只气球开始,都是按照6只红的,再4只绿的,再2只蓝的顺序排列,也就是说12只气球为一组,129只气球有几组呢?129÷12=10[组]……9[只]。余数是9,那么就是第11组的9个,说明是第129只气球是绿色。
就是今天我们要学习的周期问题。
【板书课题:周期问题】
二、探索发现授课[40分]
[一]例题1:[13分]
米德放学回家的路上种了200棵树,第1棵是梧桐树,后面2棵是杨树,再后面3棵是松树,接下去总是1棵梧桐树,2棵杨树,3棵松树,问:第200棵是什么树?
师:同学们,米德走在回家的路上,他也是生活的有心人,你们知道:第15个数字是3214。
练习4:[7分]
用3、4、6、7这四张卡片可以组成不同的四位数,如果把它们按从小到大的顺序依次排列出来,第一个数是3467,第二个数是3476,第十六个数是多少?
分析:
一共可以组成24和不同的四位数,每个数字在千位上都出现6次,以6次为一个周期,16÷6=2[组]……4[个],第16个数应该是第3个周期中的第4个数,千位上是6的数有6347,6374,6437,6473,6734,6743。第4个数是6473。所以第16个数是6473。
师:是的,要求的第15个数在第3个周期里,第3个周期的数有哪些呢?谁来
说一说?
生:3124,3142,3214,3241,3412,3421。
师:第3个周期里的第3个数是多少呢?
生:3214。
师:也就是第15个数是3214。
板书:

小学数学3年级培优奥数讲义 第09讲-周期问题(教师版)

小学数学3年级培优奥数讲义 第09讲-周期问题(教师版)

第09讲周期问题学会对一个周期问题进行分析、推理;利用我们的规律来解决一些较简单的问题;通过学生解决问题的过程,激发学生的创新思维,培养学生学习的主动性和坚韧不拔、勇于探索的意志品质.一、周期问题在日常生活中,有一些按照一定的规律不断重复的现象,如:人的十二生肖,一年有春夏秋冬四个季节,一个星期七天等等.像这样日常生活中常碰到的有一定周期的问题,我们称为简单周期问题.这类问题一般要利用余数的知识来解答.二、解题策略在研究这些简单周期问题时,我们首先要仔细审题,判断其不断重复出现的规律,也就是找出循环的固定数,然后利用除法算式求出余数,最后根据余数得出正确的结果.考点一:一般周期问题例1、小丁把同样大小的红、白、黑珠子按先2个红的、后1个白的、再3个黑的的规律排列(如下图),请你算一算,第32个珠子是什么颜色?【解析】从上图可以看出,珠子是按“两红一白三黑”的规律重复排列,即6个珠子为一周期.32÷6=5(组)……2(个),32个珠子中含有5个周期多2个,所以第32个珠子就是重复5个周期后的第2个珠子,应为红色.例2、你能找出下面每组图形的排列规律吗?根据发现的规律,算出每组第20个图形分别是什么.(1)□△□△□△□△……(2)□△△□△△□△△……教学目标知识梳理典例分析【解析】第(1)题排列规律是“□△”两个图形重复出现,20÷2=10,即“□△”重复出现10次,所以第20个图形是△.第(2)题的排列规律是“□△△”三个图形重复出现,20÷3=6…2,即“□△△”重复出现6次后又出现了两个图形“□△”,所以第20个图形是△.例3、100个3相乘,积的个位数字是几?【解析】这道题我们只考虑积的个位数字的排列规律.1个3.积的个位是3;2个3相乘积的个位数字是9;3个3相乘积的个位数字是7;4个3相乘积的个位数字是1;5个3相乘积的个位数字是3……可以发现,积的个位数字分别以3、9、7、1不断重复出现,即每4个3积的个位数字为一周期.100÷4=25(个),因此100个3相乘积的个位数字是第25个周期中的最后一个,即是1.例4、有一列数按“432791864327918643279186……”排列,那么前54个数字之和是多少?【解析】上面一列数中,从第1个数字开始重复出现的部分是“43279186”,周期数是8.要求出这列数字的和,就要先求出这列数里共有多少组“43279186”.54÷8=6(组)……6(个)因此,前6组数字和是(4+3+2+7+9+1+8+6)×6=240,余下6个数字之和是4+3+2+7+9+1=26.所以,这列数中前54个数字之和是240+26=266.例5、小红买了一本童话书,每两页文字之间有3页插图,也就是说3页插图前后各有1页文字.如果这本书有128页,而第1页是文字,这本童话书共有插图多少页?【解析】已知这本童话书3页插图前后各有1页文字,也就是说这本书是按“1页文字3页插图“的规律重复排列的,把“1页文字3页插图”看作一周期,128页中含有128÷(1+3)=32个周期,所以这本童话书共有插图3×32=96页.考点二:较复杂周期问题例1、有一列数,按5、6、2、4、5、6、2、4…排列.(1)第129个数是多少?(2)这129个数相加的和是多少?【解析】(1)从排列可以看出,这组数是按“5、6、4、2”一个循环依次重复出现进行排列,那么一个循环就是4个数,则129÷4=32…1,可知有32个“5、6、4、2”还剩一个.所以第129个数是5.(2)每组四个数之和是5+6+4+2=17,所以,这129个数相加的和是17×32+5=549.例2、假设所有的自然数排列起来,如下所示39应该排在哪个字母下面?88应该排在哪个字母下面?A B C D1 2 3 45 6 7 89…【解析】从排列情况可以知道,这些自然数是按从小到大4个数一个循环,我们可以根据这些数除以4所得的余数来分析.39÷4=9…3 88÷4=22所以,39应排在第10个循环的第三个字母C下面,88应排在第22个循环的第四个字母D下面.例3、1991年1月1日是星期二,(1)该月的22日是星期几?该月28日是星期几?(2)1994年1月1日是星期几?【解析】(1)一个星期是7天,因此,7天为一个循环,这类题在计算天数时,可以采用“算尾不算头”的方法.(22-1)÷7=3,没有余数,该月22日仍是星期二;(28-1)÷7=3…6,从星期三开始(包括星期三)往后数6天,28日是星期一.(2)1991年、1993年是平年,1992年是闰年,从1991年1月2日到1994年1月1日共1096天,1096÷7=156…4,从星期三开始往后数4天,1994年1月1日是星期六.例4、我国农历用鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪12种动物按顺序轮流代表年号,例如,第一年如果属鼠年,第二年就属牛年,第三年就是虎年….如果公元1年属鸡年,那么公元2001年属什么年?【解析】一共有12种动物,因此12为一个循环,为了便于思考,我们把“狗、猪、鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡”看作一个循环,从公元2年到公元2001年共经历了2000年(算头不算尾),2000÷12=166…8,从狗年开始往后数8年,公元2001年是蛇年.实战演练➢课堂狙击1、“数学趣味题数学趣味题……”依次重复排列,第2010个字是什么?【解析】2010÷5=402所以第2010个字是第402循环周期的最后一个字,是“题”.2、盼望祖国早日统一盼望祖国早日统一盼望祖国早日统一…第2001个字是什么字?【解析】2001÷8=250 (1)所以第2001个字是“盼”.3、2001年8月1日是星期三,8月28日是星期几?【解析】28-1等于27天,27除以7等于3个星期余六天那么往后退六天正好是星期二,所以是星期二.4、100个2相乘,积的个位数字是几?【解析】5个2相乘等于32,那么5个32相乘个位数也是2因此25个2相乘个位数是2.因此以25为一份,100个2相乘可以分为4份,每份25个2相乘100个2相乘,个位数相当于2*2*2*2,因此个位数是65、有一列数按“9453672945367294……”排列,那么前50个数字之和是多少?【解析】“9453672945367294”……9 4 5 3 6 7 2 这7个数字循环50/7=7......1 9 +4 +5 +3 +6 +7+ 2=36前50个数字之和是36×7+9=2616、同学们做早操,36个同学排成一列,每两个女生中间是两个男生,第一个是女生,这列队伍中男生有多少人?【解析】每3个人循环一次,依次按照女生,男生,男生的顺序循环排列,36÷3=12,所以36人一共有12个循环周期;一共有男生:12×2=24(人).7、我国农历用鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪12种动物按顺序轮流代表年号.(1)如果公元3年属猪年,那么公元2000年属什么年?(2)如果公元6年属虎年,那么公元21世纪的第一个虎年是哪一年?(3)公元2001年属蛇年,公元2年属什么年?【解析】(1)龙年;(2)2000是龙年,第一个虎年是2010年;(3)狗年.8、有a、b、c三条直线,从a线开始,从1起依次在三条直线上写数(如下图),22、59、2001各在哪一条线上?【解析】用22,59,2001,分别除3,22除3余1,所以和1在一条线上,59余2所以和2在一条线上,2001刚好除尽,所以和3在一条线上,所以是a,b,c.➢课后反击1、把38面小三角旗按下图排列,其中有多少面白旗?【解析】27+2=29.2、公园门口挂了一排彩灯泡按“二红三黄四蓝”重复排列,第63只灯泡是什么颜色?第112只呢?【解析】9个一组,一共7组.所以第63个是蓝色的.3、2001年6月1日是星期五,9月1日是星期几?【解析】2001年6月1日到9月1日有92天,92除以7余数是1,9月1日是星期六.4、50个7相乘,积的个位数字是几?【解析】7的一次方尾数是7,二次方尾数是9,三次方尾数是3,四次方是1,五次方是7,然后再是9,依次循环50个7相乘,应该是7的50次方,个位数字应该是95、有一列数“7231652316523165……”,请问从左起第2个数字到第25个数字之间(含第2个与第25个数字)所有数字的和是多少?【解析】7 23165 23165 23165,2+3+1+6+5=17,17×5=85从左起第2个数字到第25个数字之间所有数字的和是85-5=80.第二个数是2,第25个数是6.6、一个圆形花辅周围长30米,沿周围每隔3米插一面红旗,每两面红旗中间插两面黄旗.花辅周围共插了多少面黄旗?【解析】30÷3×2=10×2=20(面).7、河岸上种了100棵桃树,第一棵是蟠桃,后面两棵是水蜜桃,再后面三棵是大青桃.接下去一直这样排列.问:第100棵是什么桃树?三种树各有多少棵?【解析】1+2+3=6,每6棵一轮回,96共可有16个回次,100-96=4,余下的是1+2+1,就是1棵蟠桃,2棵水蜜桃,1棵大青桃,16+1=17,16×2+2=34,16×3+1=49,有17棵蟠桃,34棵水蜜桃,49棵大青桃,第100棵是大青桃8、2001个学生按下列方法编号排成五列:一二三四五1 2 3 4 59 8 7 610 11 12 1317 16 15 14…问:最后一个学生应该排在第几列?【解析】根据给出的排列方式找出一下规律:1.奇数行的最后一个数字是(该奇数*4+1)得到;2.偶数行的第一个数字是(该偶数*4+1)得到;而2001=500*4+1.500为偶数,根据规律就可以得到2001是在第500行的第一列直击赛场1、●表示实心圆,○表示空心圆,若干个实心圆与空心圆排成一行如下:○●○●●○●●●○●○●●○●●●○●○●●○●●●……在前200个圆中有________个实心圆.(第一届小学“希望杯”全国数学邀请赛四年级第2试)【解析】200÷9=22…2,22×6+1=133(个),在前200个圆中有133个实心圆.2、今天(2010年4月11日)是星期日,则2010年的六一儿童节是星期.(第八届小学“希望杯”全国数学邀请赛四年级第2试)【解析】4月11日到4月30日经过了:30-11=19(天);5月份有31天,那么一共经过了:19+31+1=51(天);51÷7=7(周)…2(天);余数是2,那么6月1日就是星期二重点回顾(1)能够发现周期问题的规律;(2)利用我们的规律来解决的问题;名师点拨重点和难点突破:(1)在研究这些简单周期问题时,我们首先要仔细审题,判断其不断重复出现的规律,也就是找出循环的固定数(2)然后利用除法算式求出余数,最后根据余数得出正确的结果.学霸经验➢本节课我学到了➢我需要努力的地方是。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八讲:周期循环与数表规律知识点说明周期问题:周期现象:事物在运动变化过程中,某些特征有规律循环出现;周期:我们把连续两次出现所经过的时间叫周期;解决有关周期性问题的关键是确定循环周期.分类: 1.图形中的周期问题;2.数列中的周期问题;3.年月日中的周期问题.周期性问题的基本解题思路是:首先要正确理解题意,从中找准变化的规律,利用这些规律作为解题的依据;其次要确定解题的突破口。

主要方法有观察法、逆推法、经验法等。

主要问题有年月日、星期几问题等。

⑴观察、逆推等方法找规律,找出周期.确定周期后,用总量除以周期,如果正好有整数个周期,结果就为周期里的最后一个;例如:1,2,1,2,1,2,…那么第18个数是多少?这个数列的周期是2,1829÷=,所以第18个数是2.⑵如果比整数个周期多n个,那么为下个周期里的第n个;例如:1,2,3,1,2,3,1,2,3,…那么第16个数是多少?这个数列的周期是3,16351÷=⋅⋅⋅,所以第16个数是1.⑶如果不是从第一个开始循环,可以从总量里减掉不是循环的个数后,再继续算.例如:1,2,3,2,3,2,3,…那么第16个数是多少?这个数列从第二个数开始循环,周期是2,(161)271-÷=⋅⋅⋅,所以第16个数是2.板块一、图形中的周期问题【例 1】小兔和小松鼠做游戏,他们把黑、白两色小球按下面的规律排列:●●○●●○●●○…你知道它们所排列的这些小球中,第90个是什么球?第100个又是什么球呢?【解析】仔细观察图中球的排列,不难发现球的排列规律是:2个黑球,1个白球;2个黑球,1个白球;……也就是按“2个黑球,1个白球”的顺序循环出现,因此,这道题的周期为3(2个黑球,1个白球).再看看90、100里包含有几个这样的周期,若正好有整数个周期,结果为周期里的最后一个,若是有整数个周期多几个,结果就为下一个周期里的第几个.因为90330÷=,正好有30个周期,第90个是白球.100333÷=…1,有33个周期还多1个,所以,第100个是黑球.【巩固】美美有黑珠、白珠共102个,她想把它们做成一个链子挂在自己的床头上,她是按下面的顺序排列的:○●○○○●○○○●○○○……那么你知道这串珠子中,最后一个珠子应是什么颜色吗?美美怕这种颜色的珠子数量不够,你能帮她算出这种颜色在这串珠子中共有多少个吗?【解析】观察可以发现,这串珠子是按“一白、一黑、二白”4个珠子组成一组,并且不断重复出现的.我们先算出102个珠子可以这样排列成多少组,还余多少.我们可以根据排列周期判断出最后一个珠子的颜色,还可以求出有多少个这样的珠子.因为102425÷=…2,所以最后一个珠子是第26个周期中的第二个,即为黑色.在每一个周期中只有1个黑珠子,所以黑色珠子在这串珠子中共有25126+=(个)【例 2】小倩有一串彩色珠子,按红、黄、蓝、绿、白五种颜色排列.⑴第73颗是什么颜色的?⑵第10颗黄珠子是从头起第几颗?⑶第8颗红珠子与第11颗红珠子之间(不包括这两颗红珠子)共有几颗珠子?【解析】⑴这些珠子是按红、黄、蓝、绿、白的顺序排列,每一组有5颗.73514÷=(组)……3(颗),第73颗是第15组的第3颗,所以是蓝色的.⑵第10颗黄珠子前面有完整的9组,一共有5945⨯=(颗)珠子.第10颗黄珠子是第l0组的第2颗,所以它是从头数的第47颗.列式:592⨯+452=(颗)=+47⑶第8颗红珠子与第11颗红珠子之间一共有14颗珠子.第8颗红珠子与第11颗红珠子之间有完整的两组(第9、10组),共l0颗珠子,第8颗红珠子后面还有4颗珠子,所以是14颗.列式:⨯+10414=+=(颗).524【巩固】奥运会就要到了,京京特意做了一些“北京欢迎你”的条幅,这些条幅连起来就成了:“北京欢迎你北京欢迎你北京欢迎你……”依次排列,第28个字是什么字?【解析】这道题是按“北京欢迎你”的规律重复排列,即5个字为一个周期.因为2855÷=…3,所以28个字里含有5个周期还多3个字,即第28个字就是所列一个周期中的第3个字,所以第28个字是“欢”字.【巩固】节日的校园内挂起了一盏盏小电灯,小明看出每两个白灯之间有红、黄、绿各一盏彩灯.也就是说,从第一盏白灯起,每一盏白灯后面都紧接着有3盏彩灯.那么第73盏灯是什么颜色的灯?【解析】从第一盏白灯开始,每隔三盏彩灯就又出现一盏白灯,不难看出白灯的编号依次是:1,5,9,13,……,这些编号被4除所得的余数都是1.734181=⨯+,即73被4除的余数是1,因此第73盏灯是白灯.【例 3】节日的夜景真漂亮,街上的彩灯按照5盏红灯、再接4盏蓝灯、再接1盏黄灯,然后又是5盏红灯、4盏蓝灯、1盏黄灯、……这样排下去.问:⑴第150盏灯是什么颜色?⑵前200盏彩灯中有多少盏蓝灯?【解析】⑴街上的彩灯按照5盏红灯、再接4盏蓝灯、再接1盏黄灯,这样一个周期变化的,实际上一个周期就是54110÷++=,150盏灯刚好15个周期,所以第150盏应++=(盏)灯.150(541)15该是这个周期的最后一盏,是黄色的灯.⑵如果是200盏灯,就是200(541)20÷++=的周期.每个周期都有4盏蓝灯,20480⨯=(盏)前200盏彩灯中有80盏蓝灯.【巩固】在一根绳子上依次穿2个红珠、2个白珠、5个黑珠,并按此方式反复,如果从头开始数,直到第50颗,那么其中白珠有多少颗?【解析】50(225) 5÷++=…5.52212⨯+=(个).【巩固】小莉把平时积存下来的200枚硬币按3个1分,2个2分,1个5分的顺序排列起来.⑴最后1枚是几分硬币⑵这200枚硬币一共价值多少钱?【解析】⑴每个周期有3216++=枚硬币,要求最后一枚,用这个数除以6,根据余数来判断÷=……2,所以最后一枚是1分硬币200633⑵每个周期中6枚硬币共价值13221512⨯+⨯+⨯=(分),用这个数乘以周期次数再加上余下的,就可以得到一共价值多少了12332398⨯+=(分),所以,这200枚硬币一共价值398分.【巩固】桌子上摆了很多硬币,按一个一角,两个五角,三个一元的次序排列,一共19枚硬币.问:最后一个是多少钱的?第十四个是多少钱的?【解析】1963÷=…1,1462÷=…2,所以,第19枚硬币是一角的,第14枚硬币是五角的.【巩固】有249朵花,按5朵红花,9朵黄花,13朵绿花的顺序轮流排列,最后一朵是什么颜色的花?这249朵花中,什么花最多,什么花最少?最少的花比最多的花少几朵?【解析】这些花按5红、9黄、13绿的顺序轮流排列,它的一个周期内有591327++=(朵)花.因为249279÷=……6,所以,这249朵花中含有9个周期还余下6朵花.按花的排列规律,这6朵花中前5朵应是红花,最后一朵应是黄花.在这一个周期里,绿花最多,红花最少,所以在249朵花中,自然也是绿花最多,红花最少.少几朵呢?有两种解法:(方法1)249(5913)9÷++= (6)红花有:59550-=(朵)⨯=(朵)红花比绿花少:1175067⨯+=(朵)绿花有:139117(方法2)249(5913)9÷++=……6,一个周期少的:1358⨯=(朵),余下的6-=(朵),9872朵中还有5朵红花,所以72567-=(朵).【例 4】如图所示,每列上、下两个字(字母)组成一组,例如,第一组是“我,A”,第二组是“们,B我们爱科学我们爱科学我……A B C D E F G A B C D……⑵如果“爱,C”代表1991年,那么“科,D”代表1992年……问2008年对应怎样的组?【解析】(1)要求第62组是什么数,我们要分别求出上、下两行是什么字(字母),上面一行是以“我们爱科学”五个字为一个周期,下面一行则是以“ABCDEFG”七个字母为一个周期÷=……6,所以第62组是“们,F”62512÷=……2 ,6278⑵2008是1991之后的第17组,现在上面一行按“科学我们爱”五个字为一个周期,下面一行则按“DEFGABC”七个字母为一个周期:2008199117-=(组),1753÷= (2)÷=……3,所以2008年对应的组为“学,F”.1772【巩固】在图所示的表中,将每列上、下两个字组成一组,例如第一组为(新奥),第二组为(北林),那么第50组是什么?新北京新奥运新北京新奥运新北京新奥运……奥林匹克运动会奥林匹克运动会奥林匹克运动会……【解析】要知道第50组是哪两个数,我们首先要弄清楚第一行和第二行的第50个字分别应该是什么.第一行“新北京新奥运”是6个字一个周期,5068÷=…2,第50个字就是北.再看第二行“奥林匹克运动会”是7个字一个周期,5077÷=…1,第50个字就是奥.把第一行和第二行合在一起,第50组就是“北奥”.【例 5】如右图,是一片刚刚收割过的稻田,每个小正方形的边长是1米,A、B、C三点周围的阴影部分是圆形的水洼。

一只小鸟飞来飞去,四处觅食,它最初停留在0号位,过了一会儿,它跃过水洼,飞到关于A点对称的1号位;不久,它又飞到关于B点对称的2号位;接着,它飞到关于C点对称的3号位,再飞到关于A点对称的4号位,……,如此继续,一直对称地飞下去。

由此推断,2004号位和0号位之间的距离是多少米?【解析】0米。

根据题上给出的条件,动手画出,就可以了!四次再次回到0号位置!2004是4的倍数,所以第2004号位和0号位之间的距离是0米。

板块二、数列中的周期问题【例 6】小和尚在地上写了一列数:7,0,2,5,3,7,0,2,5,3…你知道他写的第81个数是多少吗?你能求出这81个数相加的和是多少吗?【解析】⑴从排列上可以看出这组数按7,0,2,5,3依次重复排列,那么每个周期就有5个数.81个数则是16个周期还多1个,第1个数是7,所以第81个数是7,81516÷= (1)⑵每个周期各个数之和是:7025317++++=.再用每个周期各数之和乘以周期次数再加上余下的各数,即可得到答案.17167279⨯+=,所以,这81个数相加的和是279.【巩固】根据下面一组数列的规律求出51是第几个数?1、2、3、4、6、7、8、9、11、12、13、14、16、17……【解析】观察题目可知数列个位数字每九个数一组,十位数字依次增加,0~4共五个数,则可列式为:5×9+1=46,即51为第46个数。

【例 7】⑴44⨯⨯ (4)⨯(25个4),积的个位数是几?⑵24个2相乘,积末位数字是几?【解析】⑴按照乘数的个数,积的末位数字的规律是:4,6,4,6,4,6,……,奇数个4相乘得数的末位数字是4,偶数个4相乘得数的末位数是6,所以25212÷=…1,25个4相乘,积的末位数字是4.⑵按照乘数的个数,末位数字的规律是2,4,8,6,2,4,8,6,……,4个一组2446÷=,所以24个2相乘,积末位数字是6.【巩固】紧接着1989后面写一串数字,写下的每一个数字都是它前面两个数字的乘积的个位数.例如,8972⨯=,在9后面写2,9218⨯=,在2后面写8……得到一串数字:…,问:这串数字从1开始,往右数,第l999个数字是几?这1999个数字的和是多少?【解析】⑴根据题意,写出这列数的前面部分数字:19892868842868842……“286884”这6个数字重复出现,周期是6.⑵第1999个数字是:因为(19994)63323-÷=⋅⋅⋅,所以,第l999个数字是6.⑶这1999个数字的和是:(1989)(286884)332(286)+++++++++⨯+++271195216=++11995=【例 8】12个同学围成一圈做传手绢的游戏,如图.⑴从1号同学开始,顺时针传l00次,手绢应在谁手中?⑵从1号同学开始,逆时针传l00次,手绢又在谁手中?⑶从1号同学开始,先顺时针传l56次,然后从那个同学开始逆时针传143次,再顺时针传107次,最后手绢在谁手中?121110987654 3 21【解析】⑴因为一圈有l2个同学,所以传一圈还回到原来同学手中,现在,从1号开始,顺时针传l00次,我们先用除法求传了几圈、还余几次.100128÷=(圈)……4(次)从1号同学顺时针传4次正好传到5号同学手中.⑵与第一小题的道理一样,先做除法.100128÷=(圈)……4(次)这4次是逆时针传,正好传到9号同学手中(如图).⑶先顺时针传156次,然后逆时针传l43次,相当于顺时针传15614313-=(次);再顺时针传l07次,与13次合并,相当于顺时针传13107120+=(次),1201210÷=(圈),手绢又回到l号同学手中.121110987654 3 21【巩固】8个队员围成一圈做传球游戏,从⑴号开始,按顺时针方向向下一个人传球.在传球的同时,按顺序报数.当报到72时,球在几号队员手上?876543 21【解析】将8名队员看作一组,每组报8个数,72个数可以分成几组:7289÷=组,没有余数,球正好在一组的最后一位队员手中,因此球应该在8号队员手上.【巩固】如图,电子跳蚤每跳一步,可从一个圆圈跳到相邻的圆圈.现在,一只红跳蚤从标有数字.的圆圈按顺时针方向跳了1991步,落在一个圆圈里.一只黑跳蚤也从标有数字.的圆圈起跳,但它是沿着逆时针方向跳了1949步,落在另一个圆圈里.问:这两个圆圈里数字的乘积是多少?1110987654 3 21【解析】解答此类问题时,只要能发现旋转周期现象,并充分加以利用,就能较快找到解题的关键.本题中,不难看出这是一个与周期性有关的问题,电子跳蚤每跳12步就回到了原来的位置,如此循环,周期为12.⑴因为199********÷=L L,所以,红跳蚤跳了1991步后落到了标有数字11的圆圈.⑵因为1949121625÷=L L,所以,黑跳蚤跳了1949步后落到了标有数字7的圆圈.⑶所求的乘积是11777⨯=.【巩固】如右图,把1~8八个号码摆成一个圆圈,现有一个小球,第一天从1号开始按顺时针方向前进329个位置,第二天接着按逆时针方向前进485个位置,第三天又顺时针前进329个位置,第四天再逆时针前进485个位置……如此继续下去,问至少经过几天,小球又回到原来的1号位置?【解析】根据题意,小球按顺时针、逆时针、顺时针、逆时针……两天一个周期循环变换方向.每一个周期中,小球实际上是按逆时针方向前进485-329=156(个)位置. 156÷8=19……4,就是说,每个周期(2天)中,小球是逆旋转了19周后再逆时针前进4个位置. 要使小球回到原来的1号位,至少应逆时针前进8个位置. 8÷4=2(个)周期,2×2=4(天),所以至少要用4天,小球才又回到原来“1”号位置.【巩固】 如右图,有16把椅子摆成一个圆圈,依次编上从1到16的号码.现在有一人从第1号椅子顺时针前进328个,再逆时针前进485个,又顺时针前进328个,再逆时针前进485个,又顺时针前进136个,这时他到了第几号椅子?【解析】 这个人顺时针前进了328+328+136=792个位置,由于792÷16=49…8,所以他走到9号位置.又这个人逆时针共退回485+485=970个位置,由于970÷16=60…10,因此这个人到了第15(=9+16-10)号椅子.【例 9】 甲、乙两人对一根3米长的木棍涂色。

相关文档
最新文档