高考数学一轮复习学案球

合集下载

高三一轮复习 第51课时 球

高三一轮复习  第51课时  球

高三一轮复习第51课时球教学分析设计教材分析:(考纲要求)了解球的概念,掌握球的性质,掌握球的表面积和体积公式,四川省高考近几年都有考察球的题目.学生分析:学生对球体概念和性质的认识在新课的学习后有一定的体验,但球的立体图形比较难想象和构图,球与三棱锥的联系难度较大,学生有些惧怕。

教学目标:回顾教材关于球的概念和性质,明确球的问题的立体构图。

练习基础自测部分习题,体验球的截面圆,表面积、体积的计算,回顾内容的初步运用,熟悉球的概念性质。

探究球的典型例题,灵活运用球与锥体的关系构造立体图形,熟练处理大圆小圆的性质、球面距离的计算方法和养成内切与外接球的简单问题的空间想象能力。

教学媒体:多媒体,几何画板课件设计思想:高三数学大量的复习课的核心问题教学怎么进行,值得思考与实践。

本课在高三大量第一轮的章节复习中的一节课,感受一下核心问题教学的实施。

复习课是唤起学生对旧知识的回忆,把遗忘的知识重现出来,把中断的思维线索重新联系起来;但并不是对新授内容简单的重复,也不是对旧知识的快速的播放。

传统的高中数学复习课一般采用的教学方法是对复习内容进行知识点的罗列整理、例题讲解、变式巩固、归纳小结的课堂模式。

这种模式建立在教师对课程标准和考纲的深刻理解和丰富经验基础之上,优势在于知识系统性强、能突出复习的重点和便于操作,明显存在学生自主复习、主动探究不够的问题。

特别是对于那些数学基础比较薄弱的学生,他们本身就缺乏对数学知识的系统了解,更不可能主动去整理每章节的知识要点和重点,只能依靠教师去总结罗列知识点,形成知识网络,让学生被动的接受数学知识的纵向和横向联系。

这样把学过的知识以“炒冷饭”的方式再现给学生,教师滔滔不绝地讲,学生安安静静地听,整堂课的气氛较为沉闷,这样激不起学生参与的积极性,因而就达不到复习的效果,白白地浪费时间和精力。

所以我在设计备课时,得考虑一种能比较适合众多的复习课的一种复习模式,以便有利于学生高效的复习,并能理解老师的设计意图和教学习惯。

高三一轮复习学案相互作用力与物体平衡

高三一轮复习学案相互作用力与物体平衡

高三一轮复习学案:——相互作用力与物体平衡本章知识点:1、力的概念及合成与分解。

2、重力、弹力、摩擦力。

3、共点力及共点力作用下物体的平衡。

共点力作用下物体的平衡条件:合力为零,即=合F0.一、例题:第一课时考点一重力与万有引力的关系例:一袋密封很好的大米从吉林被运往青海玉树地震灾区,它的质量(填“变化”或“不变”),但重量却(填“变化”或“不变”),原因是在地球表面。

考点二弹力方向的判断例:画出下列物体所受的弹力.二、习题题型一:运用假设法判断弹力的存在1、如图所示有一球放在光滑水平面上,并和光滑斜面AB接触,球静止.分析球所受的弹力.2、如图所示小球A在内壁光滑的车厢内随车厢一起向右运动,试分析车厢后壁对球的弹力情况.题型二:弹力的方向分析及大小的计算1、如图所示用轻质细杆连接的A、B两物体正沿着倾角θ为的斜面匀速下滑,已知斜面的粗糙程度是均匀的,A、B两物体与斜面的接触情况相同.试判断A和B之间的细杆上是否有弹力.若有弹力,求出该弹力的大小;若无弹力,请说明理由.2.如图所示,A、B两物体的重力分别是G A=3 N、G B=4 N,A用悬绳挂在天花板上,B 放在水平地面上,A 、B 间的轻弹簧上的弹力F =2 N ,则绳中( )张力F1和B 对地面的压力F 2的可能值分别为A .7 N 和10 NB .5 N 和2 NC .1 N 和6 ND .2 N 和5 N3、如图所示,光滑半球形容器固定在水平面上,O 为球心.一质量为m 的小滑块,在水平力F 的作用下静止于P 点.设滑块所受支持力为F N .OP 与水平方向的夹角为θ.下列关系正确的是( )A .F =mgtan θB .F =mg tan θC .F N =mgtan θD .F N =mg tan θ4.如图所示,倾角为θ的光滑斜面上放置一重力为G 的小球,小球与固定在天花 板上的绳子相连,小球保持静止状态.绳子与竖直方向的夹角也为θ.若绳子的拉力大小 为F ,斜面对小球的支持力大小为F1,则 A .F 1=F B .F 1=Gcos θ C .F =Gcos θ D .Fcos θ=Gsin θ题型三 弹簧产生的弹力1、 如图9所示,质量为m 的物体A 放在地面上的竖直轻弹簧B 上,且弹簧B 分别与地面和物体A 相连接.现用细绳跨过定滑轮将物体A 与另一轻弹簧C 连接,当弹簧C 处在水平位置且右端位于a 点时它没有发生形变.已知弹簧B 和弹簧C 的劲度系数分别为k 1和k 2,不计定滑轮、细绳的质量和摩擦.将弹簧C 的右端由a 点沿水平方向拉到b 点时,弹簧B 的弹力变为原来的23,求a 、b 两点间的距离.2、如图所示,原长分别为L 1和L 2,劲度系数分别为k 1和k 2的轻质弹簧竖直悬挂在天花板上,两弹簧之间有一质量为m 1的物体,最下端挂着质量为m 2的另一物体,整个装置处于静止状态.求:(1)这时两弹簧的总长.(2)若用一个质量为M 的平板把下面的物体竖直缓慢地向上托起,直到两弹簧的总长度等于两弹簧的原长之和,求这时平板受到下面物体m 2的压力.第2课时 一、 例题考点一 静摩擦力例1.静摩擦力的有无及方向的判断分析下列各种情况下物体A 是否受摩擦力的作用及其方向例2.静摩擦力大小的计算用轻弹簧竖直悬挂质量为m 的物体,静止时弹簧伸长量为x .现用该弹簧沿斜面方向拉住质量为2m 的物体,系统静止时弹簧伸长量也为x .斜面倾角为30°,如图1所示.则物体所受摩擦力( ) A .等于零B .大小为12mg ,方向沿斜面向下C .大小为32mg ,方向沿斜面向上D .大小为mg ,方向沿斜面向上考点二 对滑动摩擦力F f =μF N 的理解例: 如图2所示,一物块置于水平地面上,当用与水平方向成60°角的力F 1拉物块时,物块做匀速直线运动;当改用与水平方向成30°角的力F 2推物块时,物块仍做匀速直线运动.若F 1和F 2的大小相等,则物块与地面之间的动摩擦因数为( )A .3-1B .2- 3C .32-12D .1-32二、习题题型一 应用“假设法”判断静摩擦力的方向1、 如图3所示是主动轮P 通过皮带带动从动轮Q 的示意图,A 与B 、C 与D 分别是皮带上与轮缘上相互接触的点,则下列判断正确的是( BCD )A .B 点相对于A 点运动趋势方向与B 点运动方向相反B .D 点相对于C 点运动趋势方向与C 点运动方向相反 C .D 点所受静摩擦力方向与D 点运动方向相同D .主动轮受到的摩擦力是阻力,从动轮受到的摩擦力是动力2、指明图4中物体A 在以下四种情况下所受的静摩擦力的方向.(1)物体A 静止于斜面上,如图甲所示;(2)物体A 受到水平拉力F 作用而仍静止在水平面上,如图乙所示;(3)物体A 放在车上,在刹车过程中,A 相对于车厢静止,如图丙所示; (4)物体A 在水平转台上,随转台一起匀速转动,如图丁所示题型二 摩擦力的分析与计算1、如图5所示,一质量不计的弹簧原长为10 cm ,一端固定于质量m =2 kg 的物体上,另一端施一水平拉力F .(g =10 m/s 2)(1)若物体与水平面间的动摩擦因数为0.2,当弹簧拉长12 cm 时,物体恰好匀速运动,弹簧的劲度系数多大?(2)若将弹簧拉长11 cm 时,物体所受到的摩擦力大小为多少? (3)若将弹簧拉长13 cm 时,物体所受的摩擦力大小为多少?(设最大静摩擦力与滑动摩擦力相等) 2、在粗糙的水平面上放一物体A ,A 上再放一质量为m 的物体B ,A 、B 间的动摩擦因数为μ,施加一水平力F 于A (如图6所示),计算下列情况下A 对B 的摩擦力. (1)当A 、B 一起做匀速运动时.(2)当A 、B 一起以加速度a 向右匀加速运动时. (3)当力F 足够大而使A 、B 发生相对滑动时.(4)当A 、B 发生相对滑动,且B 物体的15伸到A 的外面时.3、如图9所示,质量为m 的物体,在沿斜面向上的拉力F 作用下,沿放在水平地面上的质量为M 的倾角为θ的粗糙斜面匀速下滑,此过程中斜面保持静止,则地面对斜面( BD )A .无摩擦力B .有水平向左的摩擦力C .支持力为(M +m )gD .支持力小于(M +m )g4、如图所示,放在粗糙水平面上的物体A 上叠放着物体B .A 和B 之间有一个被压缩的弹簧.A 、B 均处于静止状态,下列说法中正确的是A .B 受到向右的摩擦力 B .B 对A 的摩擦力向右C .地面对A 的摩擦力向右D .地面对A 没有摩擦力题型三 滑动摩擦力的分析问题1、 如图7所示,人重600 N ,木块A 重400 N ,人与木块、木块与水平面间的动摩擦因数均为0.2,现人用水平力拉绳,使他与木块一起向右做匀速直线运动,滑轮摩擦不计,求:(1)人对绳的拉力;(2)人脚对A 的摩擦力的大小和方向.2、如图所示,在倾角为θ=30°的粗糙斜面上放一物体,重力为G ,现在用与斜面底边平行的力F =G2推物体,物体恰能做匀速直线运动,则(1)物体与斜面之间的动摩擦因数是多少? (2)物体的运动方向与斜面底边成多大的夹角?第三课时 一、例题考点一 合力的范围及共点力合成的方法 例1.合力范围的确定(1)有两个共点力F 1=8 N ,F 2=15 N ,则 N ≤F 合≤ N 且随二力夹角的增大,F 合逐渐 . (2)有三个共点力:F 1=8 N ,F 2=15 N ,F 3=15 N ,则 N ≤F 合≤ N . 如:F 1=8 N ,F 2=15 N ,F 3=3 N ,则 N ≤F 合≤ N 例2.共点力的合成(1)合成法则:平行四边形定则或 定则 (2)求出以下三种特殊情况中二力的合力:考点二 力的分解的方法 例1.按力的效果分解找出重力G 的两个作用效果,并求它的两个分力.如图3所示 F 1= ,F 2= (用G 和θ表示)例2. 关于一个力的分解,下列说法正确的是( ) A .已知两个分力的方向,有唯一解 B .已知两个分力的大小,有唯一解C .已知一个分力的大小和方向,有唯一解D .已知一个分力的大小和另一个分力方向,有唯一解考点三 正交分解法1.定义:把各个力沿相互垂直的方向分解的方法用途:求多个共点力的合力时,往往用正交分解法.2.步骤:如图5所示,(1)建立直角坐标系;通常选择共点力的作用点为坐标原点,建立x 、y 轴让尽可能多的力落在坐标轴上.(2)把不在坐标轴上的各力向坐标轴进行正交分解. (3)沿着坐标轴的方向求合力F x 、F y .(4)求F x 、F y 的合力,F 与F x 、F y 的关系式为:F =F 2x +F 2y .方向为:tan α=F y /F x 例1.物块静止在固定的斜面上,分别按图示的方向对物块施加大小相等的力F ,A 中F 垂直于斜面向上,B 中F 垂直于斜面向下,C 中F 竖直向上,D 中F 竖直向下,施力后物块仍然静止,则物块所受的静摩擦力增大的是( )二、习题题型一 力的效果分解在实际生活中的应用1、如图6所示,用一根长1 m 的轻质细绳将一幅质量为1 kg 的画框对称悬挂在墙壁上,已知绳能承受的最大张力为10 N ,为使绳不断裂,画框上两个挂钉的间距最大为(g 取10 m/s 2)( )A .32 mB .22 mC .12 mD .33m2、如图7所示,α=30°,装置的重力和摩擦力均不计,若用F =100 N 的水平推力使滑块B 保持静止,则工件上受到的向上的弹力多大?题型二 理解合力与分力间的关系1、互成角度的两个共点力,有关它们的合力与分力关系的下列说法中,正确的是( ) A .合力的大小一定大于小的分力、小于大的分力 B .合力的大小随分力间夹角的增大而增大 C .合力的大小一定大于任意一个分力D .合力的大小可能大于大的分力,也可能小于小的分力2、下列关于合力的叙述中正确的是( )A .合力是原来几个力的等效代替,合力的作用效果与分力的共同作用效果相同B .两个力夹角为θ(0≤θ≤π),它们的合力随θ增大而增大C .合力的大小总不会比分力的代数和大D .不是同时作用在同一物体上的力也能进行力的合成的运算题型三 物体的受力分析1、 如图8所示,运动员用竖直的胶皮乒乓球板去推挡水平飞来的上旋乒乓球.试分析推挡瞬间乒乓球所受的力,标明每一个力的名称和方向.2、 如图9所示,物体A 靠在倾斜的墙面上,在与墙面和B 垂直的力F 作用下,A 、B 保持静止,试分析A 、B 两物体受力的个数.题型四 力的合成与分解综合问题1、 如图10所示是一种研究劈的作用的装置,托盘A 固定在细杆上,细杆放在固定的圆孔中,下端有滚轮,细杆只能在竖直方向上移动,在与托盘连接的滚轮正下面的底座上也固定一个滚轮,轻质劈放在两滚轮之间,劈背的宽度为a ,侧面的长度为l ,劈尖上固定的细线通过滑轮悬挂质量为m 的砝码,调整托盘上所放砝码的质量M ,可以使劈在任何位置时都不发生移动.忽略一切摩擦和劈、托盘、细杆与滚轮的重力,若a =35l ,试求M 是m 的多少倍?2、 风筝(图11甲)借助于均匀的风对其作用力和牵线对其拉力的作用,才得以在空中处于平衡状态.如图11乙所示,风筝平面AB 与地面夹角为30°,风筝质量为300 g ,求风对风筝的作用力的大小.(风对风筝的作用力与风筝平面相垂直,g 取10 m/s 2)3.如图13所示,将足球用网兜挂在光滑的墙壁上,设绳对球的拉力为F 1,墙壁对球的支持力为F 2,当细绳长度变短时( )A .F 1、F 2均不变B .F 1、F 2均增大C .F 1减小,F 2增大D .F 1、F 2均减小4.如图15所示,在倾角为30°的光滑斜面上,一个滑块在弹簧拉力作用下处于静止.弹簧的拉力与斜面平行,大小为7 N ,求滑块的重力与斜面对滑块的支持力.第四课时 一、例题考点一 受力分析的步骤与方法例1.如图1所示,物体A 靠在竖直墙壁上,在力F 作用下,A 、B 保持静止. (1)此时物体B 的受力个数为 个.(2)若物体A 固定在墙上,其他条件不变,则B 物体受力个数可能为 个和 个.(3)若将力F 改为水平向左的力仍作用在物体B 上,其他条件不变,则物体B 受 个力.例2.L 型木板P(上表面光滑)放在固定斜面上,轻质弹簧一端固定在木板上,另一端与置于木板上表面的滑块Q 相连,如图2所示.若P、Q一起沿斜面匀速下滑,不计空气阻力.则木板P的受力个数为()A.3 B.4 C.5 D.6考点二共点力平衡问题的理解与应用例1.在粗糙水平地面上与墙平行放着一个截面为半圆的柱状物体A,A与竖直墙之间放一光滑圆球B,整个装置处于静止状态.现对B加一竖直向下的力F,F的作用线通过球心,设墙对B的作用力为F1,B对A的作用力为F2,地面对A的作用力为F3.若F缓慢增大而整个装置仍保持静止,截面如图3所示,在此过程中A.F1保持不变,F3缓慢增大B.F1缓慢增大,F3保持不变C.F2缓慢增大,F3缓慢增大D.F2缓慢增大,F3保持不变二、习题题型一用图解法求动态变化问题1.如图4所示,一倾角为θ的固定斜面上,有一块可绕其下端转动的挡板P,今在挡板与斜面间夹有一个重为G的光滑球.试求挡板P由图示的竖直位置逆时针转到水平位置的过程中,球对挡板压力的最小值.2. 如图5所示,两根等长的绳子AB和BC吊一重物静止,两根绳子与水平方向夹角均为60°.现保持绳子AB与水平方向的夹角不变,将绳子BC逐渐缓慢地变化到沿水平方向,在这一过程中,绳子BC的拉力变化情况是 ( )A.增大 B.先减小,后增大C.减小 D.先增大,后减小题型二应用整体法和隔离法求解平衡问题1.如图6所示,质量为M的直角三棱柱A放在水平地面上,三棱柱的斜面是光滑的,且斜面倾角为θ.质量为m的光滑球放在三棱柱和光滑竖直墙壁之间,A和B都处于静止状态,求地面对三棱柱的支持力和摩擦力各为多少?2.有一个直角支架AOB,AO水平放置,表面粗糙,OB竖直放置,表面光滑.AO上套有小环P,OB上套有小环Q,两环质量均为m,两环间由一根质量可忽略、不可伸展的细绳相连,并在某一位置平衡(如图7所示).现将P环向左移一小段距离,两环再次达到平衡,那么将移动后的平衡状态和原来的平衡状态比较,AO杆对P环的支持力F N和细绳上的拉力F的变化情况是A.F N不变,F变大B.F N不变,F变小C.F N变大,F变大D.F N变大,F变小题型三平衡中的临界与极值问题1.物体A的质量为2 kg,两根轻细绳b和c的一端连接于竖直墙上,另一端系于物体A上,在物体A上另施加一个方向与水平线成θ角的拉力F,相关几何关系如图8所示,θ=60°.若要使两绳都能伸直,求拉力F的大小范围.(g取10 m/s2)2.两根长度相等的轻绳,下端悬挂一质量为m的物体,上端分别固定在水平天花板上的M、N点,M、N两点间的距离为l,如图12所示,已知两根绳子所能承受的最大拉力均为F T,则每根绳子的长度不得短于多少?实验二探究弹力和弹簧伸长量的关系例题:例1、1)在“探究弹力和弹簧伸长量的关系”实验中,以下说法正确的是()A.弹簧被拉伸时,不能超出它的弹性限度B.用悬挂砝码的方法给弹簧施加拉力,应保证弹簧位于竖直位置且处于平衡状态C.用直尺测得弹簧的长度即为弹簧的伸长量D.用几个不同的弹簧,分别测出几组拉力与伸长量,得出拉力与伸长量之比相等2)某同学做“探究弹力和弹簧伸长量的关系”的实验,他先把弹簧平放在桌面上使其自然伸长,用直尺测出弹簧的原长L0,再把弹簧竖直悬挂起来,挂上钩码后测出弹簧伸长后的长度L,把L-L0作为弹簧的伸长量x,这样操作,由于弹簧自身重力的影响,最后画出的图线可能是下图中的 ( )例2在“探究弹力和弹簧伸长量的关系,并测定弹簧的劲度系数”的实验中,实验装置如图3所示.所用的每个钩码的重力相当于对弹簧提供了向右恒定的拉力.实验时先测出不挂钩码时弹簧的自然长度,再将5个钩码逐个挂在绳子的下端,每次测出相应的弹簧总长度.(1)有一个同学通过以上实验测量后把6组数据描点在坐标图4中,请作出F-L图线.(2)由此图线可得出该弹簧的原长L0=________ cm,劲度系数k=________ N/m.(3)试根据以上该同学的实验情况,请你帮助他设计一个记录实验数据的表格(不必填写其实验测得的具体数据)(4)该同学实验时,把弹簧水平放置与弹簧悬挂放置相比较.优点在于:___________________________________ .缺点在于:________ _________________________ .习题:1.一个实验小组在“探究弹力和弹簧伸长量的关系”的实验中,使用两条不同的轻质弹簧a和b,得到弹力与弹簧长度的图象如图5所示.下列表述正确的是A.a的原长比b的长B.a的劲度系数比b的大C.a的劲度系数比b的小D.测得的弹力与弹簧的长度成正比2.(2008·北京理综)某同学和你一起探究弹力和弹簧伸长量的关系,并测弹簧的劲度系数k,做法是先将待测弹簧的一端固定在铁架台上,然后将最小刻度是毫米的刻度尺竖直放在弹簧一侧.并使弹簧另一端的指针恰好落在刻度尺上.当弹簧自然下垂时,指针指示的刻度数值记作L0;弹簧下端挂一个50 g的砝码时,指针指示的刻度数值记作L1;弹簧下端挂两个50 g的砝码时,指针指示的刻度数值记作L2;……;挂七个50 g的砝码时,指针指示的刻度数值记作L7.(1)下表记录的是该同学已测出的6个值,其中有两个数值在记录时有误,它们的代表符号分别是______和________.测量记录表:(2)37(3)为充分利用测量数据,该同学将所测得的数值按如下方法逐一求差,分别计算出了三个差值:d1=L4-L0=6.90 cm,d2=L5-L1=6.90 cm,d3=L6-L2=7.00 cm.请你给出第四个差值:d4=________=________ cm.(4)根据以上差值,可以求出每增加50 g砝码的弹簧平均伸长量ΔL,ΔL用d1、d2、d3、d4表示的式子为:ΔL=______.代入数据解得ΔL=____________ cm.(5)计算弹簧的劲度系数k=______ N/m.(g取9.8 m/s2)实验三验证力的平行四边形定则例题例1:如图所示,某同学在家中尝试验证平行四边形定则,他找到三条相同的橡皮筋(遵循胡克定律)和若干小重物,以及刻度尺、三角、板、铅笔、细绳、白纸、钉子,设计了如下实验:将两条橡皮筋的一端分别挂在墙上的两个钉子A、B上,另一端与第三条橡皮筋连接,结点为O,将第三条橡皮筋的另一端通过细绳挂一重物.(1)为完成该实验,下述操作中必需的是________.a.测量细绳的长度b.测量橡皮筋的原长c.测量悬挂重物后橡皮筋的长度d.记录悬挂重物后结点O的位置(2)钉子位置固定,欲利用现有器材,改变条件再次验证,可采用的方法是____________.例2:李明同学在做“互成角度的两个力的合成”实验时,利用坐标纸记下了橡皮筋的结点位置O点以及两只弹簧秤拉力的大小如图3所示.(1)试在图3中作出无实验误差情况下F1和F2的合力图示,并用F表示此力.(2)有关此实验,下列叙述正确的是________.A.两弹簧秤的拉力可以同时比橡皮筋的拉力大B.橡皮筋的拉力是合力,两弹簧秤的拉力是分力C.两次拉橡皮筋时,需将橡皮筋结点拉到同一位置O.这样做的目的是保证两次弹簧秤拉力的效果相同D.若只增大某一只弹簧秤的拉力大小而要保证橡皮筋结点位置不变,只需调整另一只弹簧秤拉力的大小即可(3)如图4所示是张华和李明两位同学在做以上实验时得到的结果,其中哪一个实验比较符合实验事实?(力F′是用一只弹簧秤拉时的图示)答: __________________.(4)在以上比较符合实验事实的一位同学中,造成误差的主要原因是什么?(至少写出两种情况)答:__________________ .习题:1.如图5所示,在共点力合成的实验中橡皮筋一端固定于P点,另一端连接两个弹簧秤,并使该端拉至O点,两个F2(α+β<90°),现使F1大小不变地沿顺时针转过某一角度,要使结弹簧秤的拉力分别为F点仍在O处,相应地使F2的大小及图中β角发生变化.则相应的变化可能是A.F2一定增大B.F2可能减少C.β角一定减小D. β角可能增大2.在探究求合力的方法时,先将橡皮条的一端固定在水平木板上,另一端系上带有绳套的两根细绳.实验时,需要两次拉伸橡皮条,一次是通过两细绳用两个弹簧秤互成角度地拉橡皮条,另一次是用一个弹簧秤通过细绳拉橡皮条.(1)实验对两次拉伸橡皮条的要求中,下列哪些说法是正确的________(填字母代号).A.将橡皮条拉伸相同长度即可B.将橡皮条沿相同方向拉到相同长度C.将弹簧秤都拉伸到相同刻度D.将橡皮条和绳的结点拉到相同位置(2)同学们在操作过程中有如下议论,其中对减小实验误差有益的说法是________(填字母代号)A.两细绳必须等长B.弹簧秤、细绳、橡皮条都应与木板平行C.用两弹簧秤同时拉细绳时两弹簧秤示数之差应尽可能大D.拉橡皮条的细绳要长些,标记同一细绳方向的两点要远些。

难点突破:立体图形的外接球与内切球问题

难点突破:立体图形的外接球与内切球问题

2018届高三数学第一轮复习教学案18:难点突破:立体图形的外接球与内切球问题一、基础知识与概念:1.球的截面:用一个平面去截球,截面是圆面;用一个平面去截球面,截面是圆.大圆:截面过球心,半径等于球半径(截面圆中最大);小圆:截面不过球心.2.球心和截面圆心的连线垂直于截面.3.球心到截面的距离d与球半径R及截面圆半径r的关系:222R d r=+.4.几何体的外接球:几何体的顶点都在球面上;几何体的内切球:球与几何体的各个面都相切.二、多面体的外接球(球包体)模型1:球包直柱(直锥):有垂直于底面的侧棱(有垂底侧边棱)球包直柱球径公式:222hR r⎛⎫=+⎪⎝⎭,(r为底面外接圆半径)球包正方体球包长方体球包四棱柱球包三棱柱球包直锥三棱锥四棱锥r速算模型2:“顶点连心”锥:锥体的顶点及球心在底面的投影都是底面多边形外接圆的圆心(两心一顶连成线)实例:正棱锥球径计算方程:()222h R r R -+=2222202h r h hR r R h+⇒-+=⇒=,(h 为棱锥的高,r 为底面外接圆半径) 特别地,(1)边长为a 正四面体的外接球半径:R =______________.(2)底面边长为a ,高为h 的正三棱锥的外接球半径:R =__________. (3)底面边长为a ,高为h 的正四棱锥的外接球半径:R =__________.例:1.(2017年全国卷III 第8题)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为A .πB .34πC .2π D .4π 【解析】模式辨识:“球包体”中的“垂底侧边棱(母线)”类型,1h =,1R =,底面半径为r ,则由222h R r⎛⎫=+ ⎪⎝⎭得:222213124r r ⎛⎫=+⇒= ⎪⎝⎭,234V r h ππ==.2.(2010年全国新课标卷第10题)设三棱柱的侧棱垂直于底面,所有棱的长都为a ,顶点都在一个球面上,则该球的表面积为A .2a πB .273a πC .2113a πD .25a π【解析】“球包体”中的“垂底侧边棱”类型,h a =,3r =,222222724312h a a a R r ⎛⎫=+=+= ⎪⎝⎭, 所以该球的表面积2227744123a a S R ππ==⨯=.答案B . 3.(2014年全国大纲卷第8题)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为A .814πB .16πC .9πD .274π【解析】模式辨识:“球包体”中的“顶点连心锥”,4h =,222r ==221629284h r R h ++===, 所以2818144164S R πππ==⨯=,答案:A . 4.(2013年全国卷I 第6题)如图,有一个水平放置的透明无盖的正方体容器,容器高8cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm ,如果不计容器的厚度,则球的体积为A .35003cm πB .38663cm πC .313723cm πD .320483cm π【解析】设水面与球的接触点(切点)为P ,球心为O ,则PO 垂直于正方体的上表面,依题意P 到正方体上表面的距离为2h =,球与正方体上表面相交圆的半径4r =,有:()2222R r R -+=,2454r R +⇒==,所以球的体积3450033V R ππ==. 三、定心大法:球心在过截面圆的圆心且垂直于截面圆所在平面的直线上.两圆定心法:如下图,过两个截面圆的圆心分别作相应截面圆的垂线,由两垂线的交点确定圆心.例2:1.已知边长为23的棱形ABCD 中,60∠=︒,现沿对角线BD 折起,使得二面角A BD C --为120︒,此时点A ,B ,C ,D 在同一个球面上,则该球的表面积为( )A .20πB .24πC .28πD .32π2.在矩形ABCD 中,4AB =,3BC =,沿AC 将矩形折成一个直二面角B AC D --,则四面体ABCD 的外接球的体积为___________.3.在边长为1的菱形ABCD 中,60BAD ∠=︒,沿对角线将菱形折成直二面角A BD C --,则三棱锥A BCD -的外接球的表面积为_____________. 四、正多面体的内切球(体中球)锥体的内切球:R =____________.圆锥的内切球:R =边长为a 的正方体: 2aR =等边圆柱(母线a ):R =2a . 边长a 的正八面体:R =五、正多面体的“切边球”(与所有的棱都相切的球)正四面体边长为a ,球半径R =正方体边长为a ,球半径R =正四面体边长为a ,球半径R =例3:1.一个球的外切正方体的全面积为6,则球的体积为_________.2.某圆锥的截面为边长为2的正三角形,则该圆锥的内切球的表面积为_______.3.(2016年全国卷III 第10题)在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球,若AB BC ⊥,6AB =,8BC =,13AA =,则V 的最大值是A .4πB .92πC .6πD .323π【解析】考查直三棱柱中截面的内切圆为球的大圆的情景,有()13681068222AA R R ++=⨯⇒=>=,故当球半径为32时球的体积最大为344273382V R πππ9==⨯=.答案B . 练习:1.(2015年全国卷II 第9题)已知A ,B 是球O 的球面上两点,90AOB ∠=︒,C 为该球面上的动点,若三棱锥O ABC -体积的最大值为36,则球O 的表面积为A .36πB .64πC .144πD .256π2.(2016年福建漳州市5月质检)三棱锥S ABC -中,SB ⊥平面ABC ,5SB =ABC ∆3的正三角形,则三棱锥S ABC -的外接球的表面积为()A .3πB .5πC .9πD .12π3.(2014年湖南卷)一块石材表示的几何体的三视图如图所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于( )A .1B .2C .3D .44.(2013年辽宁卷理10)已知三棱柱111ABC A B C -的6个顶点都在球O 的球面上,若3AB =,4AC =,AB AC ⊥,112AA =,则球O 的半径为()A 317B .10C .132D .3105.(2012年全国新课标卷第11题)已知三棱锥S ABC -的所有顶点都在球O 的球面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2SC =,则此棱锥的体积为A .26B .36C .23D .226.在正三棱锥P ABC -中,3PA PB PC ===,侧棱PA 与底面ABC 所成的角为60︒,则该三棱锥外接球的体积为( )A .πB .3πC .4πD .43π 7.已知底面边长为12的正四棱柱的各顶点均在同一个球面上,则该球的体积为( )A .323πB .4πC .2πD .43π 8.(2017年福建省质检).空间四边形ABCD 的四个顶点都在同一球面上,E 、F 分别是AB 、CD 的中点,且,EF AB EF CD ⊥⊥,若8,4AB CD EF ===,则该球的半径等于A .65216B .28C .652D 659.若三棱锥P ABC -的最长的棱2PA =,且各面均为直角三角形,则此三棱锥的外接球的体积是__________. 10.(2008年高考浙江卷理14)已知球O 的面上四点A 、B 、C 、D ,DA ⊥平面ABC ,AB BC ⊥,3DA AB BC ===,则球O 的体积为____________.11.(2016年东北三省三校联考)三棱柱111ABC A B C -各顶点都在一个球面上,侧棱与底面垂直,120ACB ∠=︒,23CA CB ==14AA =,则这个球的表面积为____________.12.在三棱柱111ABC A B C -中,侧棱1AA 垂直底面,90ACB ∠=︒,30BAC ∠=︒,1BC =,且三棱柱111ABC A B C -的体积为3,则三棱柱111ABC A B C -的外接球表面积为_________.13.在正三棱锥S ABC -中,M ,N 分别是棱SC 、BC 的中点,且AM MN ⊥,若侧棱23SA =,则正三棱锥S ABC -外接球的表面积是____________.14.在三棱锥A BCD -中,2AB CD ==,5AD BC ==7AC BD ==,则三棱锥A BCD -外接球的表面积为__________.15.(2017年天津卷)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为______.16.(2017年江苏卷)如图,在圆柱12O O 内有一个球,该球与圆柱的上、下底面及母线均相切,记圆柱12O O 的体积为1V ,球O 的体积为2V ,则12V V 的值是_____________.。

高考数学一轮复习 等差数列求和方法学案(含解析)苏教

高考数学一轮复习 等差数列求和方法学案(含解析)苏教

等差数列求和方法【考点1】等差数列的前n 项和公式 (1)等差数列的前n 项和公式:2)(1n n a a n S +=,或d n n na S n 2)1(1-+=,此式还可变形为n da n d S n )2(212-+=.(2)倒序相加法:将一个数列倒过来排列,当它与原数列相加时,若有规律可循,并且容易求和,则这样的数列求和时可用倒序相加法(等差数列前n 项公式的推导所用方法).例1在等差数列{a n }中,(1)已知S 12=84,S 20=460,求S 28; (2)已知a 6=10,S 5=5,求a 8和S 8.【点拨】利用等差数列前n 项和公式的变形形式n da n d S n )2(212-+=待定系数法求解. 【解析】(1)不妨设S n =An 2+Bn ,∴⎩⎨⎧-==⇒⎪⎩⎪⎨⎧=+=+172460202084121222B A B A B A ∴S n =2n 2-17n∴S 28=2×282-17×28=1092.(2)∵S 6=S 5+a 6=5+10=15,又S 6=2)10(62)(6161+=+a a a ∴15=2)10(61+a 即a 1=-5而d =31616=--a a ∴a 8=a 6+2 d =16S 8=442)(881=+a a .【答案】(1)1092;(2)44.【小结】本题考查等差数列前n 项和公式.例2设等差数列{}n a 的第10项为23,第25项为22-,求:(1)数列{}n a 的通项公式; (2)数列{}n a 前50项的绝对值之和.【点拨】通过通项公式找到数列{}n a 中的正.负分界项,利用等差数列前n 项和公式求解. 【解析】(1)由已知可知22,232510-==a a ,d a a 151025=-d 152322=--∴,解得3-=d .509101=-=d a a 533+-=∴n a n .(2)此数列的前17项均为正数,从第18项开始均为负数.前50项的绝对值之和()()()20591175442225017175017501918173211321=--⨯=-=--=+++-++++=+++++=-S S S S S a a a a a a a a a a a a S n n ΛΛΛ.【答案】(1)353n a n =-+;(2)2059. 【小结】本题考查等差数列前n 项和公式练习1:已知数列{}n a 的通项公式112+-=n a n ,如果)(N n a b n n ∈=,求数列{}n b 的前n 项和. 【解题过程】【解析】112,5211,6n n n n b a n n -≤⎧==⎨-≥⎩,当5n ≤时,2(9112)102n n S n n n =+-=-当6n ≥时,255525(1211)10502n n n S S S n n n --=+=++-=-+ ∴⎪⎩⎪⎨⎧≥+-≤+-=)6(,5010)5(,1022n n n n n n S n .【考点2】等差数列前n 项和的最值 (1)在等差数列{a n }中当a 1>0,d <0时,S n 有最________值,使S n 取到最值的n 可由不等式组__________确定; 当a 1<0,d >0时,S n 有最________值,使S n 取到最值的n 可由不等式组__________确定. (2)因为S n =d2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n ,若d ≠0,则从二次函数的角度看:当d >0时,S n 有最______值;当d <0时,S n 有最______值;且n 取最接近对称轴的自然数时,S n 取到最值. 一个有用的结论:若S n =an 2+bn ,则数列{a n }是等差数列.反之亦然.例3设等差数列{a n }的前n 项和为S n ,已知a 3=12,且S 12>0,S 13<0.(1)求公差d 的范围;(2)问前几项的和最大,并说明理由.【点拨】找到数列{}n a 中的正.负分界项是解题关键.【解析】(1)根据题意,有:⎩⎪⎨⎪⎧12a 1+12×112d >0,13a 1+13×122d <0,a 1+2d =12,整理得:⎩⎪⎨⎪⎧2a 1+11d >0,a 1+6d <0,a 1+2d =12.解之得:-247<d <-3.(2)∵d <0,∴a 1>a 2>a 3>…>a 12>a 13>…,而S 13=13a 1+a 132=13a 7<0,∴a 7<0.又S 12=12a 1+a 122=6(a 1+a 12)=6(a 6+a 7)>0,∴a 6>0.∴数列{a n }的前6项和S 6最大.【答案】(1)-247<d <-3;(2)数列{a n }的前6项和S 6最大.【小结】本题考查等差数列的最值.练习1:设{a n }是等差数列,S n 是其前n 项和,且S 5<S 6,S 6=S 7>S 8,则下列结论正确的是________(只填序号).①d <0;②a 7=0;③S 9>S 5;④S 6与S 7均为S n 的最大值 【解题过程】【解析】由S 5<S 6,得a 6=S 6-S 5>0.又S 6=S 7⇒a 7=0,所以d <0.故①②正确.由S 7>S 8⇒a 8<0,因此,S 9-S 5=a 6+a 7+a 8+a 9=2(a 7+a 8)<0即S 9<S 5故③错误,④正确.【考点3】等差数列前n 项和的性质(1)数列{}{}{}212n n n a a ka b -+,,仍为等差数列,232n n n n n S S S S S --,,……仍为等差数列;(2)若n 为偶数,则2nS S d -=偶 奇;若n 为奇数,则S S a -=偶 奇中(中间项);例4一个等差数列的前10项之和为100,前100项之和为10,则前110项之和是________.【点拨】利用232n n n n n S S S S S --,,……成等差数列求解.【解析】数列S 10,S 20-S 10,S 30-S 20,…,S 100-S 90,S 110-S 100 成等差数列,设其公差为D .前10项的和10S 10+10×92·D =S 100=10,解得D =-22,∴S 110-S 100=S 10+(11-1)D=100+10×(-22)=-120.∴S 110=-120+S 100=-110. 【答案】-110.【小结】本题考查等差数列前n 项和的性质.练习1:等差数列{}n a 的前n 项和为n S ,若363,7,S S ==则9S 等于 . 【解答过程】【解析】由{}n a 是等差数列知36396,,S S S S S --成等差数列,即()92437S ⨯=+-,解得912S =.例5已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为________. 【点拨】根据S 偶-S 奇=n2d 求解.【解析】当项数n 为偶数时,由S 偶-S 奇=n2d 知30-15=5d ,∴d =3.【答案】3【小结】本题考查等差数列的前n 项和公式.当项数n 为偶数时,由S 偶-S 奇=n2d ;含21n +项的等差数列,其奇数项的和与偶数项的和之比为1=S n S n+奇偶,之差为1=n S S a +-奇偶. 练习1:等差数列}{n a 共有21n +项,其中奇数项之和为319,偶数项之和为290,则其中间项为_________. 【解题过程】【解析】设数列公差为d ,首项为1a ,奇数项共1n +项:令其和为1319n S +=;偶数项共n 项:令其和为290n T =.有()()()12121432212131929029n n n n n n S T a a a a a a a a nd ++-+-=--+-++-=-=-=⎡⎤⎣⎦L ,有211129n n a nd a nd a ++-=+==.基础练习1.(2014·福建卷) 等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于___________. 2.已知数列{a n }中,a 1=-60,a n +1=a n +3,则|a 1|+|a 2|+|a 3|+…+|a 30|等于____________.3.在等差数列{}n a 中,10120S =,则29a a +=____________.4.等差数列{}n a 中,39a a =,公差0d <,则使前n 项和n S 取得最大值的自然数n 是____. 5.若数列{}n a 是等差数列,首项10a >,200320040a a +>,200320040a a ⋅<,则使前n 项和0n S >成立的最大自然数n 是________.6.(2014·北京卷) 若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大.7.若{a n }为等差数列,S n 为其前n 项和,若a 1>0,d<0,S 4=S 8,则S n >0成立的最大自然数n 为________.8.设n S 是等差数列{}n a 的前n 项和,若361,3S S =,则612SS 等于____________. 9.已知等差数列}{n a 的前n 项和是n S ,若1>m ,且0211=-++-m m m a a a ,3812=-m S ,则=m ___.10.一个等差数列的前12项和为354,前12项中偶数项与奇数项和之比为32∶27,则这个等差数列的公差是____________.11.已知公差大于零的等差数列{}n a 的前n 项和为n S ,且满足:34117a a ⋅=,2522a a += (1)求数列{}n a 的通项公式n a ; (2)若数列{}n b 是等差数列,且nn S b n c=+,求非零常数c . 12.(2014·全国卷) 等差数列{a n }的前n 项和为S n .已知a 1=10,a 2为整数,且S n ≤S 4. (1)求{a n }的通项公式; (2)设b n =1a n a n +1,求数列{b n }的前n 项和T n .13.设数列{}n a 的前n 项和为n S ,且11a =,2(1)n n S na n n =--. (1)求2a ,3a ,4a ,并求出数列{}n a 的通项公式;(2)设数列11{}n n a a +⋅的前n 项和为n T ,求证:41<n T .参考答案1.【解析】 设等差数列{a n }的公差为d ,由等差数列的前n 项和公式,得S 3=3×2+3×22d=12,解得d =2,则a 6=a 1+(6-1)d =2+5×2=12.2.【解析】∵a n +1=a n +3,∴a n +1-a n =3为常数,故{a n }为等差数列. ∴a n =-60+(n -1)×3,即a n =3n -63 ∴a n =0时,n =21;a n >0时,n>21;a n <0时,n<21 ∴S 30′=|a 1|+|a 2|+…+|a 30|=-a 1-a 2-a 3-…-a 21+a 22+a 23+…+a 30 =-2(a 1+a 2+…+a 21)+S 30 =-2S 21+S 30 =765.3.【解析】本题考查等差数列的前n 项和公式及等差数列的质.()11010102a a S +=.()295120a a =+=2924.a a ∴+=4.【解析】本题考查等差数列的性质.39,a a =-由题意可知即390a a +=所以63920a a a =+=,又因为公差0d <,所以70a <,n S 取得最大值的自然数n 是5或6.【答案】5或65.【解析】本题考查等差数列的性质及前n 项和公式.由200320040a a +>,200320040a a ⋅<得200320040,0a a ><()1400620032004400640064600()=022a a a a S ++=>140072004200440074007()4007()022a a a a S ++==<,所以前n 项和0n S >成立的最大自然数n 是4006. 【答案】40066.【解析】∵a 7+a 8+a 9=3a 8>0,a 7+a 10=a 8+a 9<0,∴a 8>0,a 9<0,∴n=8时,数列{a n }的前n 项和最大.7.【解析】S 4=S 8⇒a 5+a 6+a 7+a 8=0⇒a 6+a 7=0, 又a 1>0,d<0,S 12=a 1+a 12·122=0,故n<12时,S n >0.即S n >0成立的最大自然数n 为11.8.【解析】本题考查等差数列的性质232,,,n n n n n S S S S S --L 成等差数列. 由36396129,,,S S S S S S S ---成等差数列得设36,3S x S x ==,则9636S S x x =+=, 129410S S x x =+=,612310S S =. 9.【解析】10. 10.【解析】 S 偶=a 2+a 4+a 6+a 8+a 10+a 12;S 奇=a 1+a 3+a 5+a 7+a 9+a 11.则⎩⎪⎨⎪⎧ S 奇+S 偶=354S 偶÷S 奇=32∶27,∴S 奇=162,S 偶=192,∴S 偶-S 奇=6d =30,d =5.11.【解析】本题考查等差数列的概念及其性质. 由公差大于零的等差数列{}n a ,m n p q m n p q a a a a +=++=+,解得34,a a 的值,从而求得通项公式;{}n b 是等差数列, 只需计算前三项的的值就可以求得c 的值.【答案】(1)设等差数列{}n a 的公差为d ,且0d >.342522a a a a +=+=Q ,又34117a a ⋅=,34,a a ∴是方程2221170x x -+=的两个根. 又公差0d >,34a a ∴<,349,13a a ∴==.1129313a d a d +=⎧⎨+=⎩,114a d =⎧∴⎨=⎩, 43n a n ∴=-.()2由()1知,()211422n n n S n n n -=⨯+⨯=-, 22n n S n n b n c n c -∴==++ 1231615,,123b b b c c c∴===+++ {}n b Q 是等差数列,2132b b b ∴=+,2120,2c c c ∴+=∴=-(0c =舍去).12.【解析】(1)由a 1=10,a 2为整数知,等差数列{a n }的公差d 为整数. 又S n ≤S 4,故a 4≥0,a 5≤0,于是10+3d ≥0,10+4d ≤0,解得-103≤d ≤-52, 因此d =-3.故数列{a n }的通项公式为a n =13-3n .(2)b n =1(13-3n )(10-3n )=13⎝ ⎛⎭⎪⎫110-3n -113-3n .于是T n =b 1+b 2+…+b n =13⎝ ⎛⎭⎪⎫17-110+⎝ ⎛⎭⎪⎫14-17+…+⎝ ⎛⎭⎪⎫110-3n -113-3n =13⎝ ⎛⎭⎪⎫110-3n -110=n 10(10-3n ). 13.【解析】(Ⅰ)由)1(2--=n n na S n n 得n na a n S S a n n n n n 4)1(111--+=-=+++ .41=-∴+n n a a 所以,数列}{n a 是以1为首项,4为公差的等差数列34-=∴n a n ,13,9,5432===a a a (Ⅱ))14)(34(1139195151111113221+-++⨯+⨯+⨯=+++=+n n a a a a a a T n n n ΛΛΘ 41)1411(41]141341131919151511[41<+-=+-+++-+-+-=n n n Λ。

高三数学一轮复习学案

高三数学一轮复习学案

高三数学一轮复习学案第三缉 数列3.5数列通项的求法高考要求:掌握求数列的通项方法。

考点回顾:(一)求数列的通项方法1、由等差,等比定义,写出通项公式2、利用迭加a n -a n -1=f (n )、迭乘a n /a n -1=f (n )、迭代3、一阶递推q pa a n n +=+1,我们通常将其化为()()A a p A a n n -=-+1看成{b n }的等比数列4、利用换元思想5、先猜后证:根据递推式求前几项,猜出通项,用归纳法证明6、对含a n 与S n 的题,进行熟练转化为同一种解题 (二)主要方法:1、用观察法(不完全归纳法)求数列的通项。

2、运用等差(等比)数列的通项公式。

3、已知数列}{n a 前n 项和n S ,则⎩⎨⎧≥-==-2111n S S n S a n n n (注意:不能忘记讨论1=n ) 4、已知数列}{n a 前n 项之积T n ,一般可求T n -1,则a n =1-n nT T (注意:不能忘记讨论1=n )。

5、已知)2)((1≥=--n n f a a n n ,且{f (n )}成等差(比)数列,则求n a 可用累加法。

6、已知)2)((1≥=-n n f a a n n,求n a 用累乘法。

7、已知数列}{n a 的递推关系,研究a n 与a n -1的关系式的特点,可以通过变形构造,得出新数列)}({n a f 为等差或等比数列。

8、已知n a 与n S 的关系式,利用)2(1≥-=-n S S a n n n ,将关系式转化为只含有n a 或n S 的递推关系,再利用上述方法求出n a 。

考点训练EG1.设{a n }的首项为1的正项数列,且()(),.....3,2,1011221==+-+++n a a na a n n n n n 求它的通项公式。

B1-1.已知数列{a n },a 1=2,a n +1=a n +3n +2,求a n 。

2019—2020年兴义地区重点中学高考一轮复习教学案——多面体和球

2019—2020年兴义地区重点中学高考一轮复习教学案——多面体和球

2019—2020年兴义地区重点中学高考一轮复习教学案——多面体和球一、明确复习目标1.明白得棱柱、棱锥的有关概念,把握棱柱、棱锥的性质和体积运算;2.会画棱柱、棱锥的直观图,能运用前面所学知识分析论证多面体内的线面关系,并能进行有关角和距离的运算.3.了解球、球面的概念, 把握球的性质及球的表面积、体积公式, 明白得球面上两点间距离的概念, 了解与球内接、外切几何咨询题的解法.二.建构知识网络一、棱柱(1) 棱柱的定义:有两个面互相平行,其余各面差不多上四边形,同时每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱.(2) 棱柱的性质:——侧棱、侧面、横截面、纵截面的性质 ①侧棱都相等,侧面差不多上平行四边形;②两个底面与平行于底面的截面是全等的多边形; ③过不相邻的两条侧棱的截面是平行四边形. (3)棱柱的分类:①按底面多边形的边数分类:三棱柱,四棱柱,…,n 棱柱. ②按侧棱与底面的位置关系分类:⎪⎩⎪⎨⎧⎩⎨⎧斜棱柱其他直棱柱正棱柱直棱柱棱柱 (4)专门的四棱柱:四棱柱→ 平行六面体→ 直平行六面体→长方体→ 正四棱柱 → 正方体.请在〝→〞上方添上相应的条件. (5)长方体对角线定理:长方体的一条对角线的平方等于一个顶点上三条棱的长的平方和. (6)棱柱的体积公式:Sh V =柱,S 是棱柱的底面积,h 是棱柱的高.二、棱锥1.定义:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫棱锥.假如一个棱锥的底面是正多边形,同时顶点在底面的射影是底面中心,如此的棱锥叫做正棱锥.2.正棱锥的性质——侧棱、侧面的性质和一些Rt Δ(1)各侧棱相等,各侧面差不多上全等的等腰三角形.(2)棱锥的高、斜高和斜高在底面上的射影组成一个直角三角形;棱锥的高、侧棱和侧棱在底面上的射影也组成一个直角三角形.3.一样棱锥的性质——定理:假如棱锥被平行于棱锥底面的平面所截,那么截面和底面相似,同时它们面积的比等于截得的棱锥的高和棱锥高的平方比.4.棱锥的体积: V=31Sh ,其S 是棱锥的底面积,h 是高.三、球1.定义:半圆以它的直径为旋转轴,旋转所成的曲面叫做球面。

(人教A版)高考数学一轮复习精品学案:排列、组合、二项式定理

(人教A版)高考数学一轮复习精品学案:排列、组合、二项式定理

2019年高考数学一轮复习精品学案(人教版A 版)排列、组合、二项式定理一.【课标要求】1.分类加法计数原理、分步乘法计数原理通过实例,总结出分类加法计数原理、分步乘法计数原理;能根据具体问题的特征,选择分类加法计数原理或分步乘法计数原理解决一些简单的实际问题;2.排列与组合通过实例,理解排列、组合的概念;能利用计数原理推导排列数公式、组合数公式,并能解决简单的实际问题;3.二项式定理能用计数原理证明二项式定理; 会用二项式定理解决与二项展开式有关的简单问题. 二.【命题走向】本部分内容主要包括分类计数原理、分步计数原理、排列与组合、二项式定理三部分;考查内容:(1)两个原理;(2)排列、组合的概念,排列数和组合数公式,排列和组合的应用;(3)二项式定理,二项展开式的通项公式,二项式系数及二项式系数和。

排列、组合不仅是高中数学的重点内容,而且在实际中有广泛的应用,因此新高考会有题目涉及;二项式定理是高中数学的重点内容,也是高考每年必考内容,新高考会继续考察。

考察形式:单独的考题会以选择题、填空题的形式出现,属于中低难度的题目,排列组合有时与概率结合出现在解答题中难度较小,属于高考题中的中低档题目;预测2007年高考本部分内容一定会有题目涉及,出现选择填空的可能性较大,与概率相结合的解答题出现的可能性较大. 三.【要点精讲】1.排列、组合、二项式知识相互关系表2.两个基本原理(1)分类计数原理中的分类; (2)分步计数原理中的分步;正确地分类与分步是学好这一章的关键。

3.排列(1)排列定义,排列数(2)排列数公式:系mn A =)!(!m n n -=n·(n-1)…(n-m+1);(3)全排列列:nn A =n!;(4)记住下列几个阶乘数:1!=1,2!=2,3!=6,4!=24,5!=120,6!=720; 4.组合(1)组合的定义,排列与组合的区别; (2)组合数公式:C n m=)!(!!m n m n -=12)1(1)m -(n 1)-n (⨯⨯⨯-⨯+ m m n ;(3)组合数的性质 ①C n m=C nn-m;②rn r n r n C C C 11+-=+;③rC n r=n·C n-1r-1;④C n 0+C n 1+…+C n n =2n;⑤C n 0-C n 1+…+(-1)nC n n=0,即 C n 0+C n 2+C n 4+…=C n 1+C n 3+…=2n-1;5.二项式定理(1)二项式展开公式:(a+b)n =C n 0a n +C n 1a n-1b+…+C n k a n-k b k +…+C n n b n;(2)通项公式:二项式展开式中第k+1项的通项公式是:T k+1=C n k a n-k b k; 6.二项式的应用(1)求某些多项式系数的和; (2)证明一些简单的组合恒等式;(3)证明整除性。

高三数学高考一本通立体几何第一轮复习教案 正多面体、欧拉公式和球

高三数学高考一本通立体几何第一轮复习教案 正多面体、欧拉公式和球

正多面体、欧拉公式和球[考点诠释]了解正多面体的概念,了解多面体的欧拉公式。

了解球的概念,掌握球的性质,掌握球的表面积、体积公式。

1、 高考对简单多面体,球的考查要求不高,以考查基础知识为主,简单多面体的性质,球面距离与球有关的组合体是主要考查对象。

2、 球的体积和表面积是高考中年年出现的题型,但不是单一知识,往往是与其他多面体综合的试题,如正方体的外接球、内切球、球内接正三棱锥、正四面体、正三棱柱、长方体等等,形成了组合体的问题,估计高考试题中还会出现。

[知识整合]1、 多面体若干个平面多边形围成的几何体叫做多面体。

它的基本元素有:面、棱、顶点。

特别地,把多面体的任何一个面伸展为平面,如果所有其它各面都在这个平面的同侧,这样的多面体叫做凸多面体;而表面能经过连续变形为球面的多面体,叫做简单多面体。

棱柱、棱锥、正多面体及凸多面体,叫做简单多面体。

棱柱、正多面体及凸多面体都是简单多面体。

2、正多面体每个面都是相同边数的正多边形,且以每个顶点为其一端都有相同数目的棱的凸多面体,叫做正多面体。

正多面体只有五种:正四面体、正六面体、正八面体、正十二面体和正二十面体,其中正四面体、正八面体、正二十面体的面是正三角形;正六面体的面是正方形,正十二面体的面是正五边形。

3、欧拉公式如果简单多面体的顶点数为V ,面数为F ,棱数为E ,那么V+F-E=2,这个公式叫做欧拉公式。

注:(1)欧拉公式的适用范围为简单多面体。

(3)对于简单多面体来说最少的顶点数,最少的面数,最少的棱数分别是:4,4,64、球的概念与定点的距离等于或小于定长的点的集合,叫做球体,简称为球,这里应注意球面与球体是两个不同的概念。

其中,定点叫球的球心,定长称为球的半径。

5、球的截面性质(1)球的截面是圆面,球面被经过球心的平面截得的圆叫做大圆,不经过球心的截面截得的圆叫小圆。

(2)球心和截面圆心的连线垂直于截面。

(3)球心到截面的距离d 与球半径R 及截面圆半径r 的关系是22d R r -=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

球一. 知识回顾:球:⑴球的截面是一个圆面.①球的表面积公式:24R S π=.②球的体积公式:334R V π=. ⑵纬度、经度:①纬度:地球上一点P 的纬度是指经过P 点的球半径与赤道面所成的角的度数.②经度:地球上B A ,两点的经度差,是指分别经过这两点的经线与地轴所确定的二个半平面的二面角的度数,特别地,当经过点A 的经线是本初子午线时,这个二面角的度数就是B 点的经度.附:①圆柱体积:h r V 2π=(r 为半径,h 为高)②圆锥体积:h r V 231π=(r 为半径,h 为高) ③锥形体积:Sh V 31=(S 为底面积,h 为高) (3). ①内切球:当四面体为正四面体时,设边长为a ,a h 36=,243a S =底,243a S =侧 得a a a R R a R a a a 46342334/424331433643222=⋅==⇒⋅⋅+⋅=⋅. 注:球内切于四面体:h S R S 313R S 31V 底底侧AC D B ⋅=⋅+⋅⋅⋅=- ②外接球:球外接于正四面体,可如图建立关系式. 二. 基础训练:1、(2002年北京高考题)64个直径都为4a的球,记它们的体积之和为甲V ,表面积之和为甲S ;一个直径为a 的球,记其体积为乙V ,表面积为乙S ,则( C ) (A )乙甲乙甲且S S V V >> (B )乙甲乙甲且S S V V << (C )乙甲乙甲且S S V V >= (D )乙甲乙甲且S S V V ==2、一个圆锥的底面直径和高都同一个球的直径相等,那么圆锥与球的体积之比是( C )(A )31 (B )32 (C )21 (D )923、(1998年全国高考题)球面上有3个点,其中任意两点的球面距离都等于大圆周长的61,经过这三个点的小圆的周长为4π,那么这个球的半径为( B )(A )34 (B ) 32 (C )2 (D )3 4、长方体的过一个顶点的三条棱长分别为3,4,5,且它的八个顶点都在同一个球面上,则这个球的表面积为( D )OrOR(A )π22 (B )π225 (C )π50 (D )π2005、在北纬045圈上有甲、已两地,甲地位于东径0120,乙地位于西径0150,则地球(半径为R )表面上甲、乙两地的最短距离为( D ) (A )R π (B )R 2π(C )R 23π (D )R 3π三.例题讲解:例1.已知三棱锥P ABC -内接于球, 三条侧棱两两垂直且长都为1, 求球的表面积与体积.例2.在北纬60圈上有甲、乙两地,它们的纬度圆上的弧长等于2R π(R 为地球半径),求甲,乙两地间的球面距离。

例3.如图,球心到截面的距离为半径的一半,BC 是截面圆的直径,D 是圆周上一点,CA 是球O 的直径, (1) 求证:平面ABD ⊥平面ADC ;(2) 如果球半径是13,D 分BC 为两部分, 且:1:2BD DC =,求AC 与BD 所成的角;(3) 如果:2BC DC =,求二面角B AC D --的大小。

例4.球面上三点,,A B C 组成这个球的一个截面的内接三角形,18,24,30AB BC AC ===, 且球心到该截面的距离为球的半径的一半, (1) 求球的体积; (2) 求,A C 两点的球面距离。

例5、从北京(北纬400,东经1200)飞往南非首都约翰内斯堡(南纬300,东径300)有两条航线供其选择:甲航天线从北京沿纬度弧向西飞到希拉首都雅典(北纬400,东径300),然后向南飞到目的地。

乙航线:从北京向南飞到澳大利亚的珀斯(南纬300,东径1200),然后向西飞到目的地。

间:哪一条航线较短?四、作业 同步练习 球1、(2002年北京高考题)64个直径都为4a的球,记它们的体积之和为甲V ,表面积之和为甲S ;一个直径为a 的球,记其体积为乙V ,表面积为乙S ,则( ) (A )乙甲乙甲且S S V V >> (B )乙甲乙甲且S S V V << (C )乙甲乙甲且S S V V >= (D )乙甲乙甲且S S V V ==2、(1998年全国高考题)球面上有3个点,其中任意两点的球面距离都等于大圆周长的61,经过这三个点的小圆的周长为4π,那么这个球的半径为( )(A )34 (B ) 32 (C )2 (D )3 3、球的面积膨胀为原来的两倍,膨胀后的球的体积变为原来的( )倍。

(A )2 (B )2 (C )22 (D )4 4、两球的表面积之差为π48,它们的大圆周长之和为π12,则这两球的直径之差为( ) (A )1 (B )2 (C )3 (D )4 5、自球面上一点P 作球的两两垂直的三条弦PA 、PB 、PC ,球的半径为R ,则=++222PC PB PA ( )(A )24R (B )3R 2(C )2R 2(D )22R6、A 、B 为球面上相异的两点,则通过A 、B 可作的大圆( )(A )只有一个 (B )一个或无数个 (C )一定是无数个 (D )不存在7、在地球北纬300圈上有A 、B 两点,它们的经度差为1800,则A 、B 两点沿纬度圈的弧与A 、B 两点的球面距离分别为(R 是地球的半径)( ) (A )R R ππ3223和 (B )R R ππ3123和 (C )R R ππ322和 (D )R R ππ312和8、球面上有三个点,其中任意两点球面距离都等于大圆周长的61,经过这3个点的小圆周长为π4,那么这个球的半径为 。

9、设地球半径为R ,在北纬300圈上有A 、B 两地,它们的经度相差1200,那么这两地的纬度圈上的弧长等于 。

10、(05天津卷)如图,在斜三棱柱111C B A ABC -中,a B A A A AC AB AC A AB A ===∠=∠1111,,,侧面11BCC B 与底面ABC 所成的二面角为120,E 、F 分别是棱A A C B 111、的中点(Ⅰ)求A A 1与底面ABC 所成的角 (Ⅱ)证明E A 1∥平面FC B 1(Ⅲ)求经过C B A A 、、、1四点的球的体积。

11、如图,AB 是球O 的直径,C 、D 是球面上两点,且点D 在以BC 为直径的小圆上,设小圆所在的平面为α 。

(1)求证:平面ABC α⊥ ;(2)设D 为BC 弧的中点,AD 与平面α 所成角为θ ,过球的半径OD 且垂直于截面BC 弦于点E ,求⊿OED 与过OD 的截面圆的面积之比。

BC12、已知三棱锥P ABC -内接于球, 三条侧棱两两垂直且长都为1, 求球的表面积与体积.参考答案CBCDABA 8、32 9、R 33π10、本小题主要考查棱柱、球、二面角、线面关系等基础知识,考查空间想象能力和推理论证能力.满分12分.(Ⅰ)解:过A 1作A 1H ⊥平面ABC ,垂足为H. 连结AH ,并延长交BC 于G ,连结EG ,于是∠A 1AH 为A 1A 与底面ABC 所成的角.∵∠A 1AB=∠A 1AC , ∴AG 为∠BAC 的平分线.又∵AB=AC , ∴AG ⊥BC ,且G 为BC 的中点 因此,由三垂线定理,A 1A ⊥BC.∵A 1A//B 1B ,且EG//B 1B , EG ⊥BC 于是 ∠AGE 为二面角A —BC —E 的平面角,即 ∠AGE=120°由于四边形A 1AGE 为平行四边形,得∠A 1AG=60°, 所以,A 1A 与底面ABC 所成的角为60°,(Ⅱ)证明:设EG 与B 1C 的交点为P ,则点P 为EG 的中点,连结PF.在平行四边形AGEA 1中,因F 为A 1A 的中点,故A 1E//FP. 而FP ⊂平面B 1FC ,A 1E//平面B 1FC ,所以A 1E//平面B 1FC.(Ⅲ)解:连结A 1C ,在△A 1AC 和△A 1AB 中,由于AC=AB ,∠A 1AC=∠A 1AB ,A 1A=A 1A ,则△A 1AC ≌△A 1AB ,故A 1C=A 1B ,由已知得 A 1A=A 1B=A 1C=a . 又∵A 1H ⊥平面ABC , ∴H 为△ABC 的外心.设所求球的球心为O ,则O ∈A 1H ,且球心O 与A 1A 中点的连线OF ⊥A 1A.在Rt △A 1FO 中, .3330cos 21cos 111a a H AA F A O A =︒-== 故所求球的半径a R 33=,球的体积 3332734)33(3434a a R V πππ===.11、解:(1)取BC 的中点O 1,连OO 1,因为O 1是以BC 为直径的圆的圆心,则OO 1⊥BC ,D 为圆周上的一点。

又因为底面即即,,,,1111111BCD OO OO DO D OO B DO B DO D OO ⊥⊥∴∠=∠∆≅∆ α⊥⊥⊂ABC BCD ABC ABC OO 即面面所以面面,1(2)因为⊿BOC ,⊿ABC 都是等腰三角形,取BC 的中点M ,连OM ,AM ,过O 作OH ⊥AM ,可证得OH ⊥面ABC 即OH 是O 到截面ABC 的距离。

.721,27,23=⋅=∴==∴AM OC AO OH AM OM (另:利用等体积法也可求得)本试卷由21世纪教育网/供稿,下载更多教学资源,请登录21世纪教育网。

相关文档
最新文档