Variable NaI Absorption toward rho Leo Biased Neutral Formation in the Diffuse Interstella

合集下载

老年人群中胆汁酸与脑白质高信号体积相关性研究

老年人群中胆汁酸与脑白质高信号体积相关性研究

老年人群中胆汁酸与脑白质高信号体积相关性研究鲁晓瑾1 王艳丽2 时宝林3 王方泽4【摘要】 目的 探究老年人群中各种胆汁酸与脑白质高信号(WMH)体积的关系。

 方法 从阿尔茨海默病神经影像学研究倡议数据库中共收录340名60岁以上老年人的磁共振成像资料。

以WMH体积为因变量,胆汁酸血液实验室数据为自变量进行横断面分析。

自变量筛选是以临床相关性、单因素分析(即Pearson或Spearman相关性分析)为依据,胆汁酸中与WMH体积增大具有相关性(P < 0.05)的自变量纳入多元线性回归。

采用多元线性回归及逐步回归分析WMH体积增大的相关因素。

 结果 在老年人群血清胆汁酸中糖基去氧胆酸(GCDCA)、脱氧胆酸(DCA)、石胆酸(LCA)、乙二醛去氧胆酸(GUDCA)、牛磺胆酸(TLCA)与WMH体积呈正相关(r=0.076、0.156、0.076、0.105、0.099,P < 0.05)。

在多元线性回归中DCA(β=0.270)与WMH体积呈明显正相关(R2=0.238,P < 0.05)。

在逐步多元线性回归中,预测WMH体积最佳模型为收缩压及DCA(β=0.007、0.239,R2=0.245,P < 0.05)。

 结论 在老年人群中血液中DCA含量与WMH体积呈显著相关。

【关键词】脑白质高信号;脑小血管病;脱氧胆酸Correlation of serum bile acid level and volume of white matter hyperintensity in elderly population Lu Xiaojin1, Wang Yanli2, Shi Baolin3, Wang Fangze4. 1Department of Neurology, School of Clinical Medicine, Graduate School of Weifang Medical College, Weifang 261053, China; 2Department of Neurology, Beijing Tiantan Hospital, Capital Medical University,Beijing 100191, China; 3Department of Neurology, 4Department of CardiologyWeifang People's Hospital, Weifang 261041,China Correspondingauthor:ShiBaolin,Email:159****************【Abstract】 Objective To explore the relationship between bile acid and white matter hyperintensity (WMH) volume in the elderly. Methods The magnetic resonance imaging (MRI) data of 340 elderly people,over 60 years old, were collected from the Alzheimer's Disease Neuroimaging Research Initiative database. Cross-sectional analysis was performed with WMH volume as the dependent variable and bile acid blood laboratory data as the independent variable. The independent variable selection was based on clinical correlation and univariate analysis, ie, Pearson or Spearman correlation analysis. The independent variables in bile acid, which were correlated with the increase in WMH volume (P < 0.05), were included in the multiple linear regression. Multiple linear regression and stepwise regression were used to analyze the factors related to the increase of WMH volume. Results Glycodeoxycholic acid (GCDCA), deoxycholic acid (DCA), lithocholic acid (LCA), glyodeoxycholic acid (GUDCA) and taurocholic acid (TLCA) were positively correlated to WMH volume (r=0.076, 0.156, 0.076, 0.105, 0.099; P < 0.05). In multiple linear regression, DCA (β=0.270) was significantly positively correlated with WMH volume (R2=0.238, P < 0.05). In stepwise multiple linear regression, the best models for predicting WMH volume were systolic blood pressure and DCA (β=0.007, 0.239, R2=0.245; P < 0.05). Conclusion The level of DCA in blood was significantly correlated with theWMH volume in the elderly .【Key words】White matter hyperintensity; Cerebral small vessel disease; Deoxycholic acidDOI:10.3969/j.issn.1009-816x.2021.06.009作者单位:261053 潍坊医学院临床医学院神经病学1;100191 首都医科大学附属北京天坛医院神经内科2;261041 山东省潍坊市人民医院神经内科3,心内科4通讯作者:时宝林,Email:159****************脑白质高信号(white matter hyperintensity, WMH)是脑小血管病(cerebral small vessel disease, CSVD)的主要影像学特点,约90%老年人颅脑磁共振成像(magnetic resonance imaging, MRI)存在WMH[1-3]。

常用分析化学专业英语词汇

常用分析化学专业英语词汇

精品文档常用分析化学专业英语词汇absorbance 吸光度absorbent 吸附剂absorption curve 吸收曲线absorption peak 吸收峰absorptivity 吸收系数accident error 偶然误差accuracy 准确度acid-base titration 酸碱滴定acidic effective coefficient 酸效应系数acidic effective curve 酸效应曲线acidity constant 酸度常数activity 活度activity coefficient 活度系数adsorption 吸附adsorption indicator 吸附指示剂affinity 亲和力aging 陈化amorphous precipitate 无定形沉淀amphiprotic solvent 两性溶剂amphoteric substance 两性物质amplification reaction 放大反应analytical balance 分析天平analytical chemistry 分析化学analytical concentration 分析浓度analytical reagent (AR) 分析试剂apparent formation constant 表观形成常数aqueous phase 水相argentimetry 银量法ashing 灰化atomic spectrum 原子光谱autoprotolysis constant 质子自递常数auxochrome group 助色团back extraction 反萃取精品文档band spectrum 带状光谱bandwidth 带宽bathochromic shift 红移blank 空白blocking of indicator 指示剂的封闭bromometry 溴量法buffer capacity 缓冲容量buffer solution 缓冲溶液burette 滴定管calconcarboxylic acid 钙指示剂calibrated curve 校准曲线calibration 校准catalyzed reaction 催化反应cerimetry 铈量法charge balance 电荷平衡chelate 螯合物chelate extraction 螯合物萃取chemical analysis 化学分析chemical factor 化学因素chemically pure 化学纯chromatography 色谱法chromophoric group 发色团coefficient of variation 变异系数color reagent 显色剂color transition point 颜色转变点colorimeter 比色计colorimetry 比色法column chromatography 柱色谱complementary color 互补色complex 络合物complexation 络合反应complexometry complexometric titration 络合滴定法complexone 氨羧络合剂concentration constant 浓度常数conditional extraction constant 条件萃取常数conditional formation精品文档coefficient 条件形成常数conditional potential 条件电位conditional solubility product 条件溶度积confidence interval 置信区间confidence level 置信水平conjugate acid-base pair 共轭酸碱对constant weight 恒量contamination 沾污continuous extraction 连续萃取continuous spectrum 连续光谱coprecipitation 共沉淀correction 校正correlation coefficient 相关系数crucible 坩埚crystalline precipitate 晶形沉淀cumulative constant 累积常数curdy precipitate 凝乳状沉淀degree of freedom 自由度demasking 解蔽derivative spectrum 导数光谱desiccant; drying agent 干燥剂desiccator 保干器determinate error 可测误差deuterium lamp 氘灯deviation 偏差deviation average 平均偏差dibasic acid 二元酸dichloro fluorescein 二氯荧光黄dichromate titration 重铬酸钾法dielectric constant 介电常数differential spectrophotometry 示差光度法differentiating effect 区分效应dispersion 色散dissociation constant 离解常数distillation 蒸馏distribution coefficient 分配系精品文档数distribution diagram 分布图distribution ratio 分配比double beam spectrophotometer 双光束分光光度计dual-pan balance 双盘天平dual-wavelength spectrophotometry 双波长分光光度法electronic balance 电子天平electrophoresis 电泳eluent 淋洗剂end point 终点end point error 终点误差enrichment 富集eosin 曙红equilibrium concentration 平衡浓度equimolar series method 等摩尔系列法Erelenmeyer flask 锥形瓶eriochrome black T (EBT) 铬黑Terror 误差ethylenediamine tetraacetic acid (EDTA) 乙二胺四乙酸evaporation dish 蒸发皿exchange capacity 交换容量extent of crosslinking 交联度extraction constant 萃取常数extraction rate 萃取率extraction spectrphotometric method 萃取光度法Fajans method 法杨斯法ferroin 邻二氮菲亚铁离子filter 漏斗filter 滤光片filter paper 滤纸filtration 过滤fluex 溶剂fluorescein 荧光黄flusion 熔融formation constant 形成常数frequency 频率精品文档frequency density 频率密度frequency distribution 频率分布gas chromatography (GC) 气相色谱grating 光栅gravimetric factor 重量因素gravimetry 重量分析guarantee reagent (GR) 保证试剂high performance liquid chromatography (HPLC) 高效液相色谱histogram 直方图homogeneous precipitation 均相沉淀hydrogen lamp 氢灯hypochromic shift 紫移ignition 灼烧indicator 指示剂induced reaction 诱导反应inert solvent 惰性溶剂instability constant 不稳定常数instrumental analysis 仪器分析intrinsic acidity 固有酸度intrinsic basicity 固有碱度intrinsic solubility 固有溶解度iodimetry 碘滴定法iodine-tungsten lamp 碘钨灯iodometry 滴定碘法ion association extraction 离子缔合物萃取ion chromatography (IC) 离子色谱ion exchange 离子交换ion exchange resin 离子交换树脂ionic strength 离子强度isoabsorptive point 等吸收点Karl Fisher titration 卡尔?费歇尔法Kjeldahl determination 凯氏定氮法Lambert-Beer law 朗泊-比尔精品文档定律leveling effect 拉平效应ligand 配位体light source 光源line spectrum 线状光谱linear regression 线性回归liquid chromatography (LC) 液相色谱macro analysis 常量分析masking 掩蔽masking index 掩蔽指数mass balance 物料平衡matallochromic indicator 金属指示剂maximum absorption 最大吸收mean, average 平均值measured value 测量值measuring cylinder 量筒measuring pipette 吸量管median 中位数mercurimetry 汞量法mercury lamp 汞灯mesh [筛]目methyl orange (MO) 甲基橙methyl red (MR) 甲基红micro analysis 微量分析mixed constant 混合常数mixed crystal 混晶mixed indicator 混合指示剂mobile phase 流动相Mohr method 莫尔法molar absorptivity 摩尔吸收系数mole ratio method 摩尔比法molecular spectrum 分子光谱monoacid 一元酸monochromatic color 单色光monochromator 单色器neutral solvent 中性溶剂neutralization 中和non-aqueous titration 非水滴定normal distribution 正态分布occlusion 包藏organic phase 有机相精品文档ossification of indicator 指示剂的僵化outlier 离群值oven 烘箱paper chromatography(PC) 纸色谱parallel determination 平行测定path lenth 光程permanganate titration 高锰酸钾法phase ratio 相比phenolphthalein (PP) 酚酞photocell 光电池photoelectric colorimeter 光电比色计photometric titration 光度滴定法photomultiplier 光电倍增管phototube 光电管pipette 移液管polar solvent 极性溶剂polyprotic acid 多元酸population 总体postprecipitation 后沉淀precipitant 沉淀剂precipitation form 沉淀形precipitation titration 沉淀滴定法precision 精密度preconcentration 预富集predominance-area diagram 优势区域图primary standard 基准物质prism 棱镜probability 概率proton 质子proton condition 质子条件protonation 质子化protonation constant 质子化常数purity 纯度qualitative analysis 定性分析quantitative analysis 定量分析精品文档quartering 四分法random error 随机误差range 全距(极差)reagent blank 试剂空白Reagent bottle 试剂瓶recording spectrophotometer 自动记录式分光光度计recovery 回收率redox indicator 氧化还原指示剂redox titration 氧化还原滴定referee analysis 仲裁分析reference level 参考水平reference material (RM) 标准物质reference solution 参比溶液relative error 相对误差resolution 分辨力rider 游码routine analysis 常规分析sample 样本,样品sampling 取样self indicator 自身指示剂semimicro analysis 半微量分析separation 分离separation factor 分离因数side reaction coefficient 副反应系数significance test 显著性检验significant figure 有效数字simultaneous determination of multiponents 多组分同时测定single beam spectrophotometer 单光束分光光度计single-pan balance 单盘天平slit 狭缝sodium diphenylamine sulfonate 二苯胺磺酸钠solubility product 溶度积solvent extraction 溶剂萃取species 型体(物种)specific extinction coefficient 比消光系数精品文档spectral analysis 光谱分析spectrophotometer 分光光度计spectrophotometry 分光光度法stability constant 稳定常数standard curve 标准曲线standard deviation 标准偏差standard potential 标准电位standard series method 标准系列法standard solution 标准溶液standardization 标定starch 淀粉stationary phase 固定相steam bath 蒸气浴stepwise stability constant 逐级稳定常数stoichiometric point 化学计量点structure analysis 结构分析supersaturation 过饱和systematic error 系统误差test solution 试液thermodynamic constant 热力学常数thin layer chromatography (TLC) 薄层色谱titrand 被滴物titrant 滴定剂titration 滴定titration constant 滴定常数titration curve 滴定曲线titration error 滴定误差titration index 滴定指数titration jump 滴定突跃titrimetry 滴定分析trace analysis 痕量分析transition interval 变色间隔transmittance 透射比tri acid 三元酸true value 真值tungsten lamp 钨灯ultratrace analysis 超痕量分析UV-VIS spectrophotometry 紫外-可见分光光度法精品文档volatilization 挥发Volhard method 福尔哈德法volumetric flask 容量瓶volumetry 容量分析Wash bottle 洗瓶washings 洗液water bath 水浴weighing bottle 称量瓶weighting form 称量形weights 砝码working curve 工作曲线xylenol orange (XO) 二甲酚橙zero level 零水平异步处理dispatch_async(dispatch_get_ global_queue(0, 0), ^{// 处理耗时操作的代码块... [self test1];//通知主线程刷新dispatch_async(dispatch_get_ main_queue(), ^{//回调或者说是通知主线程刷新,NSLog(............);});。

心理学词汇

心理学词汇

表层结构surface structure表达性语言障碍expressive language disorder表面色surface color表面色surface color表面效度face validity表情emotional expression表情法method of expression表情法method of expression表情言语expressive speech表现艺术expressive art表象image表象训练imagery training表演型人格障碍histrionic personality disorder表征representation冰山剖面图iceberg profile并行分布加工模型parallel distributed processing model 并行加工parallel processing并行搜索parallel search病态人格psychopathic personality病因学etiology波根多夫错觉Poggendorff illusion剥夺deprivation博奕性聚焦focus gambling补偿追踪compensatory tracking补色complementary color补色complementary color补色律law of complementary color补色律law of complementary color不成熟人格immature personality不健康生活方式unhealthy life style不可能图形impossible figure不确定间距interval of uncertainty不确定间距interval of uncertainty不随意想象involuntary imagination不随意运动involuntary movement不随意注意involuntary attention布朗-彼得森范式Brown-Peterson paradigm布鲁纳教学原则Bruner's instructional principle布罗卡区Broca's area布罗卡失语症Broca's aphasia部分报告法partial-report procedure才能talent才智儿童talented child彩色chromatic color彩色chromatic color蔡加尼克效应Zeigarnik effect参赛动机competitive motivation参数parameter参数估计parameter estimation参数统计检验parametric statistical test 参与管理participative management参照点anchor point参照群体reference group残障儿童handicapped child操作测验performance test操作分析operation analysis操作合理化operation rationalization操作技能manipulative skill操作思维operational thinking操作温度operative temperature操作性定义operational definition操作性定义operational definition操作性攻击operant aggression操作性目标operant goal操作性条件作用operant conditioning操作性条件作用operant conditioning操作性行为operant behavior操作主义operationalism操作主义operationalism侧抑制lateral inhibition测谎器lie detector测谎器lie detector测量误差measurement error测验标准化test standardization测验法test method测验分数test score测验焦虑test anxiety测验偏向test bias测验手册test manual测验特征函数test characteristic function 测验项目test item策动心理学hormic psychology层次网络模型hierarchical network model 差别感受性differential sensitivity差别感受性differential sensitivity差别阈限differential threshold差别阈限differential threshold差别阈限法differential limen method差别阈限法differential limen method差异量数measure of difference差异显著性significance of difference差异心理学differential psychology差音difference tone产伤birth trauma产生式系统production system长程心理治疗long-term psychotherapy长度错觉length illusion长时程增强效应long term potentiation长时记忆long-term memory,LTM尝试错误trial and error尝试错误说trial-and-error theory常模norm常模参照测验norm-referenced test场地感sense of field场独立性field independence场论field theory场论心理学field psychology场依存性field dependence超常儿童supernormal child超常性over constancy超复杂细胞hypercomplex cell超感[官]知觉extrasensory perception超个人心理学transpersonal psychology重点研究超越个人中心自我封闭和自我满足的意识状态。

青少年自我伤害行为影响因素与情绪管理对策-社会心理学论文-社会学论文

青少年自我伤害行为影响因素与情绪管理对策-社会心理学论文-社会学论文

青少年自我伤害行为影响因素与情绪管理对策-社会心理学论文-社会学论文——文章均为WORD文档,下载后可直接编辑使用亦可打印——心理学情绪管理论文第五篇:青少年自我伤害行为影响因素与情绪管理对策摘要:自我伤害行为是应对负性情绪的常用策略, 普遍存在于冲动型、情绪管理薄弱的青少年群体中, 严重影响其身心健康和发展, 是重要的疾病负担之一, 应引起广大学者和学校卫生工作者的关注和重视。

作者对自我伤害行为的概念和界定、流行病学和危害、影响因素进行了文献研究和分析, 并提出以培养青少年情绪管理能力为重点的预防和干预策略。

关键词:情绪; 自我伤害行为; 精神卫生; 青少年;Emotional regulation and self-injury behavior among adolescentsTANG JieDepartment of Preventive Medicine, School of Public Health, Guangzhou Medical UniversityAbstract:Self-injury behavior, a common strategy for coping with negative emotions, is widespread among adolescents with impulsive and emotional dysregulation. Self-injury behavior severely impacts an adolescents mental and physical well-being, and has become one of the important disease burdens, which deserves much attention from both scholars and school health care providers. Based on literature review, the definition, epidemiology and influencing factors of self-injury,as well as proposed prevention and intervention strategies for self-injury focusing on emotional regulation, were provided.自我伤害行为(self-harm behavior, SB) 是一个宽泛的概念, 其核心内涵指个体故意伤害自己的身体组织。

浙江海洋大学-2018年-硕士研究生入学考试初试样题(学术学位)805普通生物学B

浙江海洋大学-2018年-硕士研究生入学考试初试样题(学术学位)805普通生物学B

浙江海洋学院 2018 年硕士研究生入学考试初试(B 卷) 报考专业: 海洋科学 考试科目: 805 普通生物学注意事项:本试题的答案必须写在规定的答题纸上,写在试题上不给分。

一、名词解释(每题 4 分,共 40 分) 1. 特征替代(character displacement) 2. 非孟德尔式遗传(non-Mendelian inheritance) 3. 渗透调节 4. RNA 聚合酶(RNA polymerase) 5. 哈迪-温伯格平衡(Hardy-Weinberg equilibrium) 6. 表型(Phenotype) 7.T-淋巴细胞 8. 染色体病(chromosome disorder) 9. 群体思想 10. polymerase chain reaction 二、单项选择(每题有且只有一个正确答案,每空 2 分,共 20 分) 1. 人的呼吸方式是 A.口咽式呼吸 (1) 。

B.正压呼吸 C. 负压呼吸 D. 以上三种都是-1-/42. 三羧酸循环是一个由一系列酶促反应构成的循环反应系统,首先由乙酰 辅酶 A 与草酰乙酸缩合生成含有 3 个羧基的柠檬酸,经过 (2) 次脱氢, 2 次脱羧,生成四分子还原当量和 2 分子 CO2,重新生成草酰乙酸。

A.5 次 B. 4 次 C.3 次 D.2 次 3. 激素是生物体内产生,可以运输的、对生物生长发育起显著作用的 (3) 。

A. 微量有机物 B.大量有机物 C.微量无机物 D.大量无机物4. 补体是存在于血清、组织液和细胞膜表面的的一组不耐热的经活化后具 。

有酶活性的 (4) A. 蛋白质 5. 光呼吸是在 A. 叶绿体 器 (5) B.核酸 内完成的。

B. 过氧化物酶体 C. 线粒体 D.以上三种细胞 C.糖类 D.脂类6. 小肠的上皮细胞属于 (6) 。

A. 扁平上皮B.立方上皮 (7) 。

C.柱状上皮D.假复层上皮7. 鸟类的呼吸器官是 A. 肺B. 肺和气管C. 肺和皮肤 (8)D. 肺和气囊 。

脑缺血耐受模型中海马胰岛素受体的表达变化

脑缺血耐受模型中海马胰岛素受体的表达变化

关 键词 : 缺 血 ; 马 ; 体 , 岛 素 ; 知 脑 海 受 胰 认 中图 分 类 号 : 7 3 3 R 4 . 文献标识码 : A 文 章 编 号 :0 90 2 (0 8 1—9 80 10 —1 62 0 )20 3 3
Th x e s o f i s ln r c p o n b a n ic e i o e a e m o l e e pr s i n o n u i e e t r i r i s h m a t l r nc de
xu e一 i H UANG — n W U — n W  ̄ha , Yini g, Liwe PP i gUn n ”Me ia o lg s tl Ch n s a e f dia ce c s Bejn 0 7 0, h n k” i0 d c lC le e Hopi , iee a Ac d myo Me c lS in e , ii g】 0 3 C ia)
c n r l r u n - n e t n g o p .Re ut C mp r dwi h o to c , x rs in o o to o pa d3 NP ijc i r u ) g o s l o a e t t ec n r l e e p e so f s h mi
表 达 为 (. 8 . 4 O 4 +0 1 )U, 注射 后 1 h为 ( . 8 0 1 O 2 + . )U, 2h为 ( . 6 0 1 - 1 O 2 + . )U。与 未 注 射 组 比较 , 射 后 1h组 和 - 注
注 射 后 1 2h组胰 岛 素 受体 均 显 著 降低 , 异 有 统计 学 意 义 ( 差 P< 0 0 ) .5 。模 型 组 注 射 3N - P后 6h和 相 应 时 间 点 对

非等位基因

非等位基因

非等位基因概述非等位基因是指同一基因座上的不同等位基因。

等位基因是指在某个给定的基因座上,可以存在多种不同的变体。

每个个体继承了一对等位基因,一对等位基因可能会导致不同的表型表达。

非等位基因的存在使得遗传学研究更加复杂,因为不同的等位基因会对个体的表型产生不同的影响。

背景在生物学中,基因座是指染色体上一个特定的位置,该位置上的基因决定了某个特征的表达方式。

每个基因座上可以有多种不同的等位基因。

等位基因是指在某个特定基因座上的不同基因变体。

每个个体都会继承一对等位基因,通过这对等位基因的不同组合,决定了个体的表型。

然而,并非所有基因座上的等位基因都具有相同的表现型。

非等位基因的影响非等位基因的存在导致不同等位基因会对个体表型产生不同的影响。

有些非等位基因会表现出显性效应,也就是说,当个体继承了一个突变的等位基因时,即使同时继承了一个正常的等位基因,但显性效应会使得突变的等位基因的表型表达得到体现。

相反,有些非等位基因会表现出隐性效应,当个体继承了两个突变的等位基因时,才会表现出突变的表型。

除了显性和隐性效应之外,非等位基因还可能发生两种其他类型的表型效应。

一种是共显效应,当个体继承了两个不同的突变等位基因时,在表型表达上会表现出一种新的特征,这个特征并不是单个突变等位基因所能导致的。

另一种是部分显性效应,当个体继承了两个不同的突变等位基因时,表型表达将介于两个单独突变等位基因的表型之间。

重组和非等位基因重组是指两个不同的染色体交换部分基因序列的过程。

在重组的过程中,非等位基因可能会发生改变,导致新的等位基因组合形成。

这一过程使得非等位基因的表型效应更加复杂,因为新的等位基因可能将不同基因座的效应组合起来。

非等位基因的重要性非等位基因对生物的适应性和多样性起着重要作用。

通过对等位基因的各种组合的研究,人们可以更好地理解基因与表型之间的关系,并揭示遗传变异对物种适应环境的重要性。

总结非等位基因是指同一基因座上的不同等位基因。

选择性雌激素受体调节剂抗氧化作用的研究进展_郭里

选择性雌激素受体调节剂抗氧化作用的研究进展_郭里

3 . 1 清除氧自由基和抑制脂质过氧化 如前所述, 自由基的种类繁多, 其中危害最大的是超氧阴离子、 、 羟自由基 脂质过氧化物。脂质过氧化( lipid peroxidation,LPO) 又可广义地定义为“多聚不饱和脂肪 。羟自由基是 LPO 的强引发剂, LPO 酸的氧化变质” , , 发生 后 可 以 以 链 式 反 应 进 行 下 去 导 致 更 多 的 LPO[8]。TAM 的 抗 氧 化 作 用 最 早 由 Custódio 等[9]
Research advances of the antioxidative activities of selective estrogen receptor modulators
GUO Li,ZHOU Jingwei reviewing,YAO Bing checking ( Reproduction Medicine Center,Nanjing School of Clinical Medicine,Southern Medical University / Nanjing General Hospital of Nanjing Military Region,PLA,Nanjing 210002 ,Jiangsu,China)
[ Abstract ] Selective estrogen receptor modulators ( SERMs) is a class of estrogenlike nonsteroid compounds that are able to bind to steroid hormone receptors. They can act as estrogen receptor agonist or antagonist depending on the target tissue and hormonal environment. Additionally,SERMs play an antioxidant role by scavenging oxygen free redicals,inhibiting lipid peroxidation,adjusting the level of NO and NOS,inhibiting mitochondrial permeability transition,improving the metabolism of free fatty acids in the mitochondrial and regulating nongenomic transcription pathway. [ Key words ] Selective estrogen receptor modulators; Antioxidation; Free radical
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a rXiv:as tr o-ph/365v13May23Variable Na I Absorption toward ρLeo :Biased Neutral Formation in the Diffuse Interstellar Medium?uroesch 2and David M.Meyer 2Department of Physics and Astronomy,Northwestern University,Evanston,IL 60208jtl@,davemeyer@ ABSTRACT We present multi-epoch KPNO Coud´e Feed observations of interstellar Na I and Ca II absorption toward the bright star ρparisons of the Na I profiles observed over a period of 8years reveal significant temporal variations in the Na I column in at least one component,implying that there is “structure”at scales of order of the proper motion (∼12AU).Archival HST Goddard High Resolution Spectrograph observations of the C I fine-structure excitation in the variable component suggest that the density is 20cm −3,significantly lower than the densities inferred in past H I 21cm and Na I studies.We suggest that the bulk of the trace neutral species are in the density peaks within an interstellar cloud.The patchy distribution of these species naturally gives rise to the large fluctuations seen on scales of 10–1,000AU in past temporal and binary studies.This picture predicts that the scales over which fluctuations will be observed vary as a function of the ionization rate of a species.Subject headings:ISM:clouds –ISM:structure –stars:individual (HD 91316)1.IntroductionThe sightline toward ρLeo (HD 91316)has long been a favorite of spectroscopists,even before the interstellar origin of the so–called “stationary”lines was established.Harper(1914)first noticed that the Ca II K line towardρLeo showed the characteristic difference in velocity attributable to“stationary”lines,although the line was much wider than was typically observed with hints that there were two blended lines present.Beals(1936)showed that the Ca II lines towardρLeo were indeed complex,making it one of thefirst three sightlines(along withǫandζOri)where multiple components were known.Subsequently, Sanford,Merrill,&Wilson(1938)showed that the Na I lines also have multiple components, while Adams(1943)showed that the“violet”Ca II component of Beals(1936)was itself multiple.The velocities and equivalent widths for the Na I and Ca II lines measured from photographic spectra by Routly&Spitzer(1952)are(to within the errors)the same as those measured today.Optical observations ofρLeo have continued to the present day with a multitude of different instruments,and have shown the complex nature of the Na I,K I, and Ca II profiles(Hobbs1969,1971,1974;Welty,Hobbs,&Kulkarni1994;Welty,Morton, &Hobbs1996;Welty&Hobbs2001).In addition,observations of numerous ultraviolet absorption lines have been made by Copernicus,IUE,and HST/Goddard High Resolution Spectrograph(GHRS).Over the past decade,high spatial resolution optical and radio studies of the diffuse ISM have found strong evidence of pervasive subparsec-scale variations in interstellar absorption lines(Lauroesch2001;Crawford2003),although the precise interpretation of thesefluctu-ations is not yet well understood(Heiles1997;Elmegreen1999;Deshpande2000;Faison &Goss2001;Welty&Fitzpatrick2001;Lauroesch2001;Crawford2003).Initially,these observations were interpreted as ubiquitous concentrations of apparently dense atomic gas (n H 103cm−3)in otherwise diffuse sight-lines.However,recent direct measurements of the densities in a few of the optically selected clouds have suggested that in general the densities are much lower than previously inferred(Lauroesch et al.1998;Lauroesch,Meyer, &Blades2000;Welty&Fitzpatrick2001),although observations in clouds identified by tracers of dense gas(K I)suggest that at least some of these features are associated with denser structures(Pan,Federman,&Welty2001;Crawford2002).Thus,it has been sug-gested that small-scale variations in the physical parameters may be responsible for much (if not all)of the observed variation in optical studies of small-scale structure.Recently,as part of a larger survey to identify very small scale(of order10AU)variations in interstellar lines,evidence for temporal(proper motion induced)variations in the interstellar Na I line towardρLeo have been observed.In this Letter,we will discuss these new observations as well as our analysis of archival Goddard High Resolution Spectrograph(GHRS)echelle observations of this sightline,and then discuss a simple model of neutral formation in the context of these results.2.Observations and Data ReductionRho Leo is a bright(V=3.8)B1Ib runaway star,located at a distance of about870 pc approximately690pc above the galactic plane(Diplas&Savage1994).The proper motion is6.6±0.9mas/yr(Perryman et al.1997),which corresponds to a projected motion of1.56±0.21AU/yr.Since1989,we have obtained multiple observations of the interstellar Na I and Ca II absorption lines towardρLeo using the KPNO Coud´e Feed and spectrograph at resolutions of∼1.4and3km s−1(see Table1).These datasets have been reduced using the NOAO IRAF3data reduction packages in the same fashion as that used by Watson& Meyer(1996)and Lauroesch&Meyer(1999).The extracted continuum–fitted spectra for all observing runs are shown in Figure1–note in particular the variation in the Na I profile at a heliocentric velocity of18km s−1.Table1:ρLeo Observation LogSpecies Date Resolution S/N ratio(km s−1)(per pixel)a Data obtained from the HST archive,obtainedas parts of programs2251and5882(PI Hobbs).b Observations of theλλ1328˚A multiplet.In addition to the ground–based data,we have taken advantage of existing archival GHRS spectra ofρLeo.Observations using multiple settings of the ECH-A and ECH-B gratings taken in March1996and December1992(respectively)are available from HST observing programs5882and2251(PI Hobbs).These datasets were reduced using the stan-0.00.51.0NaI D2200319952003/19950.00.51.0NaI D1200319952003/1995-40-20020400.00.51.0CaII K200219951989Fig.1.—Observations of the Na I D 2(5889˚A ),Na I D 1(5895˚A ),and Ca II K (3933˚A )lines towards ρLeo.The top panel shows our two high resolution (1.4km s −1)observations,note in particular the variation in the Na I profile near 18km s −1,as well as the somewhat more subtle variation near -1km s −1.Also shown at the bottom of the plot is the 2003profile divided by the 1995profile (with an offset of -0.9applied to the relative intensity for plotting purposes).The lower panel shows our three moderate resolution observations of the Ca II K line.dard STSDAS routines(POFFSETS,DOPOFF,and SPECALIGN)for both the WSCAN (ECH-B)and FP-SPLIT(ECH-A)datasets,and then selected transitions were continuum fitted and analyzed(Figure2).The column densities,b–values,and relative velocities of the various components in both the KPNO and GHRS datasets were derived by profilefitting the continuumfitted spectra using the program fits6p(Welty,Hobbs,&York1991).The wavelengths and oscillator strengths were taken from Morton(1991)and Welty et al.(1999),with the hyperfine splitting of the Na I D lines taken into account(Welty,Hobbs,&Kulkarni1994).The Na I component model of Welty,Hobbs,&Kulkarni(1994)was used as a starting point for fitting the neutral species,with additional input from the Ca II component model of Welty, Morton,&Hobbs(1996)used forfitting the ionized species.The column density,b-value, and velocity of the various components were allowed to be free parameters in the initialfits –in thefinalfits the relative velocities of the components werefixed and the variation in the b-value limited for most components.3.The v∼18km s−1CloudAs noted above,the most striking feature when comparing the Na I profiles in Figure1 is the strong temporal variation near18km s−1.Also significant,however,is the lack of a corresponding variation in the observed Ca II profiles,as well as the lack of convincing Na I profile variations at other velocities.We should note here that part of the reason for includingρLeo in our survey was the apparent lack of H I21-cm emission associated with the18km s−1component in the survey of Hobbs(1971),although more recent surveys show some21-cm emission at this velocity in the region aroundρLeo(Hartmann&Burton1997). In addition to showing clear evidence for temporal variability,the v∼18km s−1component is also relatively isolated and so we will concentrate on this component for the rest of the discussion.The column densities for selected species derived for the v∼18km s−1component are given in Table2.Thefirst thing to note is the large Na I differences between the years 1989and2003,corresponding to a decrease of almost one–third in the column.However, there are two important caveats–first,we assumed the same b-value(0.58km s−1)for the component as that found by Welty,Hobbs,&Kulkarni(1994)using their higher resolution data.Second,and perhaps more important,the published Welty,Hobbs,&Kulkarni(1994) profile shows no sign of the weak absorption redward of this component seen in our datasets. We note that this shelf of absorption is seen in the profile published by Hobbs(1971,1974) which has a similar resolution to our datasets.This suggests that these features may have0.000.501.00NaI D2KPNO (2003)0.500.751.00CI 13280.500.751.00CI 1329*0.500.751.00CI 1329**-40-20020400.000.501.00ZnII 2026Fig.2.—The C I 1328multiplet and the Zn II 2026line toward ρLeo,with the 2003Na I observation shown for scale.Note the lack of excited C I ⋆and C I ⋆⋆absorption –the plots are centered on the strongest transitions at 1329.1004˚A and 1329.5775˚A respectively.been over-resolved in the Welty,Hobbs,&Kulkarni(1994)data and“lost”during continuum placement,perhaps altering the derived column density.In any case,as shown in Figure1, there are significant changes in the Na I column even over the past8years,with a decrease of∼20%if we assume the Welty,Hobbs,&Kulkarni(1994)b-value.A period of8years corresponds to a projected proper motion at the distance to the star of∼12AU.One useful comparison that can be made immediately is to compare the N(H)one would estimate from the observed Na I columns,to that which would be derived using the observed N(Zn II).The average of the1989and1995Na I columns is27.5×1010cm−2,from which one would infer an N(H)of∼5.5×1019cm−2(Ferlet,Vidal-Madjar,&Gry1995).Similarly,one would estimate N(H)∼4.6–7.2×1019cm−2from N(Zn II)(assuming a Zn depletion of0.2to0.4dex(Welty et al.1999)).This consistency immediately highlights a potentially important difference between this cloud and the clouds studied previously in the ultraviolet by Lauroesch et al. (1998)and Lauroesch,Meyer,&Blades(2000),namely the observed N(Zn II)(and inferred N(H))is approximately an order of magnitude larger for this cloud,even though the N(Na I) is only a factor of2–3larger.Table2:Selected Column Densities at v=18km s−1towardρLeoSpecies Year Lines/Multiplet N(X)Used(˚A)(cm−2)Na I1989a589530.7×101019955889,589524.3±0.5×1010b20015889,589520.8±1.0×1010b20025889,589520.2±1.0×1010b20035889,589520.9±0.6×1010bAl III19921854,1862 5.9±1.1×1011C I1996132857.7±6.2×1011C I⋆19961328<8.4×1011dC I⋆⋆19961328<8.6×1011dCr II19922056,2062 1.8±0.2×1011Mg I1992202617.6±1.8×1011Zn II19922026,206213.1±1.8×1011n(H) 20cm−3,similar to the densities found in previous studies(Lauroesch et al.1998; Lauroesch,Meyer,&Blades2000).In addition,thefine–structure equilibrium can also be used to estimate the minimum distance between the cloud andρLeo itself,since photon–pumping can significantly alter the observed level populations(Jenkins&Shaya1979; Lauroesch et al.1998).The observed upper limits to N(C I⋆)suggest that this cloud is 10 pc away fromρLeo.The upper limit on the density coupled with our estimates of N(H) above suggest a cloud size of order1pc,much larger than the length scale over which we are seeing Na Ifluctuations(∼12AU)but also smaller than the estimated distance between the cloud andρLeo.The observed ratio of N(Cr II)/N(Zn II)∼1.4would suggest that this cloud has a“warm cloud”depletion pattern(Welty et al.1999).If we now assume a typical “warm cloud”value for the depletion of Al,we would estimate N(Al II+Al III)∼1.1×1013 cm−2from N(Zn II),which would suggest that while Al II is the dominant ionization state in this cloud there is likely to be some degree of photo-ionization.We can also use the measured neutral and Zn II column densities to estimate electron densities of0.04,0.15,and 0.05cm−3from C I,Na I and Mg I respectively assuming T=100K and a‘warm cloud”depletion pattern(P´e quignot&Aldrovandi1986;Lauroesch,Meyer,&Blades2000).If we assume the dominant source of electrons is singly ionized carbon,these values correspond to a density of∼100–400cm−3at T=100K,significantly in excess of the upper limit derived above.4.Biased Neutral Formation in Interstellar Gas?The parameters derived above for the v∼18km s−1component towardρLeo appear fairly typical for a diffuse cloud.The column density of hydrogen is∼6×1019cm−2,and we would estimate a cloud size of∼1pc along the line of sight.The density of hydrogen appears to be of order10cm−3,with the derived electron density and observed Al III suggesting some partial ionization of hydrogen.There is one significant problem that still remains however,namely the origin of the observedfluctuations in the Na I profile over relatively short timescales.Since the photo-ionization and recombination rates for Na I are relatively low(P´e quignot&Aldrovandi1986),one would not expect to see significant variations in the column on timescales shorter than thousands of years in an interstellar cloud.If we were thus to assume the observedfluctuations set the transverse size of the cloud,the earliest observations ofρLeo suggest that significant Na I and Ca II absorption has been detectable at this velocity for at least65years,setting a minimum transverse size of 100AU for this“structure”(at the distance of the star).The result is similar to the models suggested by Heiles(1997),namely a very long,thin sheet orfilament with a thickness of order one thousandth the length.However,there is an alternative explanation for thisobserved variation.Consider an isolated diffuse interstellar cloud–it will have within it densityfluctuations at scales much smaller than a parsec(Elmegreen1999;Cho,Lazarian,&Vishniac2002). Just as the force of gravity biases galaxies to form in the peaks of the cosmic density distribu-tion,the neutral species in interstellar clouds are biased by the recombination rates to form on the peaks of the density distribution within a cloud.It is well known that recombination rates have a strong density dependence(P´e quignot&Aldrovandi1986),indeed this formed the basis for previous suggestions that relatively small densityfluctuations could give rise to the observed small scale structure(Lauroesch&Meyer1999;Lauroesch,Meyer,&Blades 2000).Furthermore,the C I survey of Jenkins&Tripp(2001)has identified a population of high pressure components in the ISM,which could represent these density peaks.We now ask what are some of the observational consequences of such a picture?First we can estimate a minimum apparent length scale for the size offluctuations observable in any trace species.The scale is just set by the distance a neutral can travel before it can be ionized,which in low density gas is of order the velocity of an atom divided by the photo–ionization rate.Assuming v∼0.5km s−1which is a“typical”b-value for the known temporally variable components,we derive an apparent scale of order250AU for Na I structures.Despite our having neglected to correct for collisions,this size is of order that observed in temporalfluctuations to date,and is consistent with the observations of Na I towards binary star systems.Furthermore,note that this scale is dependent upon the photo-ionization rate for a given species,and thus(for example)for Ca II we would obtain a scale about5times larger.This result very simply explains why we do not observe a corresponding variation in the Ca II profile towardsρLeo.In addition,it suggests that species with higher photo-ionization rates such as Ca I and(perhaps)C I should show larger column density variations than species such as Na I or K I.Indeed,Crawford(2002)used observations of Ca I to suggest that the variable component towardsκVelorum arises in very dense material(n H 103cm−3).A further consequence of this picture is that only a fraction of the total gas would reside in these peaks.Thus,adjacent sightlines should show smaller changes in the columns of the dominant ions,since the size of the peaks is only a fraction of the size of a cloud the additional column density for the dominant species would be significantly reduced.Consequently,the neutral fraction within the density peaks would be higher(perhaps much higher)than what one would calculate by taking the integrated columns,suggesting that the electron densities inferred from ionization balances are too low.Furthermore,thefine-structure equilibrium of C II and Si II would also be affected.Just like the neutral species,most of the observed C II⋆and Si II⋆absorption would arise in the density peaks,but the columns of the ground-stateswould reflect the large scale distribution of gas and would include the perhaps dominant contribution by the material outside the peaks.Thus,in this picture,these methods provide only an ill–defined“average”electron density within a cloud,and would explain why there is so much difficulty in deriving self-consistent electron densities in many cases(Welty et al. 1999).Assumptions about partial ionization of hydrogen could then not be made using the (separately)derived electron and total hydrogen densities,since these tracers will likely be probing different portions of a cloud.Afinal question is whether there is a connection between the observed small scale variations in Na I and the high pressure clumps observed by Jenkins&Tripp(2001).In this picture,thefine–structure equilibrium of C I becomes a measure of some sort of“average”density of the peaks along a sightline through a cloud.To date,there have been limited observations of the C Ifine structure equilibrium associated with optically selected small scale structures(Lauroesch et al.1998;Lauroesch,Meyer,&Blades2000;Welty&Fitzpatrick 2001).IncludingρLeo,the observed Na I structures in all of these sightlines appear to arise in relatively low density gas,and not in the high pressure clumps detected by Jenkins &Tripp(2001).However,as Crawford(2003)recently noted for the temporally variable components towards both HD32040and HD219188,these sightlines may be sampling a mixture of low pressure gas with a fraction(perhaps20%)of high pressure,dense material with which the temporal variation may be associated.In the picture developed above,the observed temporal and binary star variations are arising in the neutral“halo”around one or more of these high pressure clumps,implying that these clumps are a fraction of the apparent size we calculated above.Yet another possibility is that we are seeing the remnant neutrals formed in transient high pressure clumps which have already expanded into the ambient cloud.Planned re–observations of both HD32040and HD219188will likely help in beginning to resolve this question.In any case,this suggests that the density of the majority of the gas in a cloud is smaller than that inferred from the C I observations,but that some fraction resides in higher density structures within which arises the bulk of the trace neutral species.The authors thank the referee Ian Crawford for his valuable comments on this manuscript. It is also a pleasure to acknowledge the support of the staffof KPNO,especially Daryl Will-marth,for their assistance in obtaining this data.REFERENCESAdams,W.S.1943,ApJ,97,105Beals,C.S.1936,MNRAS,96,661Cho,J.,Lazarian,A.,Vishniac,E.T.2002,ApJ,566,L49Crawford,I.2002,MNRAS,334,L33Crawford,I.2003,Ap&SS,in pressDesphande,A.A.2000,MNRAS,387,199Diplas,A.and Savage,B.D.1994,ApJS,93,211Elmegreen,B.G.1999,ApJ,527,266Faison,M.D.,&Goss,W.M.2001,AJ,121,2706Ferlet,R.,Vidal-Madjar,A.,&Gry,C.1985,ApJ,298,838Hartmann,D.&Burton,W.B.1997,“Atlas of Galactic Neutral Hydrogen”(Cambridge: Cambridge University Press)Harper,W.E.1914,Publications of the Dominion Observatory Ottawa,1,335Heiles,C.1997,ApJ,481,193Hobbs,L.M.1969,ApJ,157,165Hobbs,L.M.1971,ApJ,116,333Hobbs,L.M.1974,ApJ,191,381Jenkins,E.B.,&Shaya,E.J.1979,ApJ,231,55Jenkins,E.B.,&Tripp,T.M.2001,ApJS,137,297Lauroesch,J.T.,Meyer,D.M.,Watson,J.K.,&Blades,J.C.1998,ApJ,507,L89 Lauroesch,J.T.,&Meyer,D.M.1999,ApJ,519,L181Lauroesch,J.T.,Meyer,D.M.,&Blades,J.C.2000,ApJ,543,L43Lauroesch,J.T.2001,in the17th IAP Astrophysics Colloquim,Gaseous Matter in Galaxies and Intergalactic Space,ed.Roger Ferlet,Matin Lemoine,Jean-Michel Desert,& Brigitte Raban(Paris:Frontier Group),59Morton,D.C.1991,ApJS,77,119Pan,K.,Federman,S.R.,&Welty,D.E.2001,ApJ,558,L105Pequignot,D.,&Aldrovandi,S.M.V.1986,A&A,161,169Perryman,M.A.C.,Lindegren,L.,Kovalevsky,J.,Hoeg,E.,Bastian,U.,Bernacca,P.L., Cr´e z´e,M.,Donati,F.,Grenon,M.,van Leeuwen,F.,van der Marel,H.,Mignard,F., Murray,C.A.,Le Poole,R.S.,Schrijver,H.,Turon,C.,Arenou,F.,Froeschl´e,M., &Petersen,C.S.1994,A&A,323,L49Routly,P.M.,&Spitzer,L.1952,ApJ,115,227Sanford,R.F.,Merrill,P.W.,&Wilson,O.C.1938,PASP,50,58Watson,J.K.,&Meyer,D.M.1996,ApJ,473,L127Welty,D.E.,Hobbs,L.M.,&York,D.G.1991,ApJS,75,425Welty,D.E.,Hobbs,L.M.,&Kulkarni,V.P.1994,ApJ,436,152Welty,D.E.,Morton,D.C.,&Hobbs,L.M.1996,ApJS,106,533Welty,D.E.,Hobbs,L.M.,Lauroesch,J.T.,Morton,D.C.,Spitzer,L.,&York,D.G.1999,ApJS,124,465Welty,D.E.,&Fitzpatrick,E.L.2001,ApJ,551,L175Welty,D.E.,&Hobbs,L.M.2001,ApJS,133,345。

相关文档
最新文档