最值问题----将军饮马(一)
初二数学:最值问题最常考的一种:将军饮马

初二数学:最值问题最常考的一种:将军饮马!一、知识点回顾最值问题其实考察的知识点还是比较简单的:①两点之间直线最短②点到直线的距离垂线段最短③圆外一点到圆上最短距离与最长距离④几何转化为解析式求最大最小值今天我们要讲的是两点之间直线最短类型中最常考的一种:将军饮马!二、模型讲解首先我们来了解一下到底什么是将军饮马模型?传说有一个将军牵着一匹马在A点,他们目标是要去B地,但由于马渴了,要先去L这条河喝一下水,问在哪个点喝水能使得马和将军走的路最少?这个点我们应该怎么找?为什么这么确定的P点到A点和到B点的距离之和是最短?因为点A与A’关于L对称,也就是说L垂直平分AA’。
那在L上任意一点到A与到A’的距离都是相等的,那么A到直线一点的距离转换为A’到直线上的距离,又由两点之间线段最短,可以得到A’B即为最小值。
刚刚我们给的是一条边,两个点,求两点之间的最短距离;现在把条件换一下,换成一个点两条边我们应该怎么办?如图:现题目变成这样,在OA、OB上分别取两点M、N,连接MN,MC,NC,要求这三条线段之和最小。
如何定确定 M、N这两点?总结将军饮马最主要用到的就是中垂线定理,也就是垂直平分线的一点到两端点的距离相等。
下面我们一起来看一看具体的题目。
三、真题演练四、整体总结将军饮马模型是最值问题中出现频率较高的一种,而且在平时的考试中也经常会出现,因此掌握好将军饮马模型对我们解决最值问题还是有很大的帮助。
将军饮马的本质是中垂线上的一点到两端点的距离相等。
微信热文精选:早安心语:一路感恩,且行且珍惜英语口语:抠门英文怎么说善解人意,是因为这些星座喜欢你24种碱性食物越吃越年轻!爆笑,熊孩子到底有多可怕呢?(有视频)。
专题09 最值模型-将军饮马(解析版)

专题09 最值模型---将军饮马最值问题在中考数学常以压轴题的形式考查,将军饮马问题是由轴对称衍生而来,同时还需掌握平移型将军饮马,主要考查转化与化归等的数学思想。
在各类考试中都以中高档题为主,中考说明中曾多处涉及。
本专题就最值模型中的将军饮马问题进行梳理及对应试题分析,方便掌握。
在解决几何最值问题主要依据是:①两点之间,线段最短;②垂线段最短,涉及的基本方法还有:利用轴对称变换化归到“三角形两边之和大于第三边”、“三角形两边之差小于第三边”等。
模型1.求两条线段和的最小值(将军饮马模型)【模型解读】在一条直线m上,求一点P,使PA+PB最小;(1)点A、B在直线m两侧:(2)点A、B在直线同侧:【最值原理】两点之间线段最短。
上图中A’是A关于直线m的对称点。
例1.(2022·湖南娄底·中考真题)菱形ABCD的边长为2,45ABC∠=︒,点P、Q分别是BC、BD上的动点,CQ PQ+的最小值为______.2【分析】过点C作CE⊥AB于E,交BD于G,根据轴对称确定最短路线问题以及垂线段最短可知CE为FG+CG的最小值,当P与点F重合,Q与G重合时,PQ+QC最小,在直角三角形BEC中,勾股定理即可求解.mABPmAB mABPmAB【详解】解:如图,过点C 作CE ⊥AB 于E ,交BD 于G ,根据轴对称确定最短路线问题以及垂线段最短可知CE 为FG +CG 的最小值,当P 与点F 重合,Q 与G 重合时,PQ +QC 最小,菱形ABCD 的边长为2,45ABC ∠=︒,Rt BEC ∴中,22EC =∴PQ +QC 22【点睛】本题考查了菱形的性质,勾股定理,轴对称的性质,掌握轴对称的性质求线段和的最小值是解题的关键.例2.(2022·四川眉山·中考真题)如图,点P 为矩形ABCD 的对角线AC 上一动点,点E 为BC 的中点,连接PE ,PB ,若4AB =,3BC =PE PB +的最小值为________.【答案】6【分析】作点B 关于AC 的对称点B ',交AC 于点F ,连接B E '交AC 于点P ,则PE PB +的最小值为B E '的长度;然后求出B B '和BE 的长度,再利用勾股定理即可求出答案.【详解】解:如图,作点B 关于AC 的对称点B ',交AC 于点F ,连接B E '交AC 于点P ,则PE PB +的最小值为B E '的长度;⊥AC 是矩形的对角线,⊥AB =CD =4,⊥ABC =90°,在直角⊥ABC 中,4AB =,43BC =⊥3tan 43AB ACB BC ∠==,⊥30ACB ∠=︒, 由对称的性质,得2B B BF '=,B B AC '⊥,⊥1232BF BC ==⊥243B B BF '== ⊥23BE EF ==60CBF ∠=︒,⊥⊥BEF 是等边三角形,⊥BE BF B F '==,⊥BEB '∆是直角三角形, ⊥2222(43)(23)6B E BB BE ''=-=-,⊥PE PB +的最小值为6;故答案为:6.【点睛】本题考查了矩形的性质,勾股定理,等边三角形的判定和性质,直角三角形的性质,特殊角的三角函数值,解题的关键是熟练掌握所学的知识,正确的找到点P 使得PE PB +有最小值.例3.(2022·贵州铜仁·中考真题)如图,在边长为2的正方形ABCD 中,点E 为AD 的中点,将△CDE 沿CE 翻折得△CME ,点M 落在四边形ABCE 内.点N 为线段CE 上的动点,过点N 作NP //EM 交MC 于点P ,则MN +NP 的最小值为________.【答案】8 5【分析】过点M作MF⊥CD于F,推出MN+NP的最小值为MF的长,证明四边形DEMG为菱形,利用相似三角形的判定和性质求解即可.【详解】解:作点P关于CE的对称点P′,由折叠的性质知CE是⊥DCM的平分线,⊥点P′在CD上,过点M作MF⊥CD于F,交CE于点G,⊥MN+NP=MN+NP′≤MF,⊥MN+NP的最小值为MF的长,连接DG,DM,由折叠的性质知CE为线段DM的垂直平分线,⊥AD=CD=2,DE=1,⊥CE22125⊥12CE×DO=12CD×DE,⊥DO25⊥EO5⊥MF⊥CD,⊥EDC=90°,⊥DE⊥MF,⊥⊥EDO=⊥GMO,⊥CE为线段DM的垂直平分线,⊥DO=OM,⊥DOE=⊥MOG=90°,⊥⊥DOE⊥⊥MOG,⊥DE=GM,⊥四边形DEMG为平行四边形,⊥⊥MOG=90°,⊥四边形DEMG为菱形,⊥EG=2OE25GM= DE=1,⊥CG35,⊥DE⊥MF,即DE⊥GF,⊥⊥CFG⊥⊥CDE,⊥FG CG DE CE =,即35515FG = ⊥FG =35,⊥MF =1+35=85, ⊥MN +NP 的最小值为85.故答案为:85. 【点睛】此题主要考查轴对称在解决线段和最小的问题,熟悉对称点的运用和画法,知道何时线段和最小,会运用勾股定理和相似三角形的判定和性质求线段长度是解题的关键.例4.(2022·江苏南京·模拟预测)【模型介绍】古希腊有一个著名的“将军饮马问题”,大致内容如下:古希腊一位将军,每天都要巡查河岸同侧的两个军营,A B .他总是先去A 营,再到河边饮马,之后,再巡查B 营.如图①,他时常想,怎么走才能使每天走的路程之和最短呢?大数学家海伦曾用轴对称的方法巧妙地解决了这个问题.如图②,作点B 关于直线l 的对称点B ',连结AB '与直线l 交于点P ,连接PB ,则AP BP +的和最小.请你在下列的阅读、理解、应用的过程中,完成解答.理由:如图③,在直线l 上另取任一点P ',连结'AP ,BP ',B P '',⊥直线l 是点B ,B '的对称轴,点P ,P '在l 上,(1)⊥PB =__________,P B '=_________,⊥AP PB AP PB '+=+=____________.在AP B ''∆中,⊥AB AP P B ''''<+,⊥AP PB AP P B '''+<+,即AP BP +最小.【归纳总结】在解决上述问题的过程中,我们利用轴对称变换,把点,A B 在直线同侧的问题转化为在直线的两侧,从而可利用“两点之间线段最短”,即转化为“三角形两边之和大于第三边”的问题加以解决(其中点P 为AB '与l 的交点,即A ,P ,B '三点共线).由此,可拓展为“求定直线上一动点与直线同侧两定点的距离和的最小值”问题的数学模型.【模型应用】(2)如图④,正方形ABCD 的边长为4,E 为AB 的中点,F 是AC 上一动点.求EF FB +的最小值.解析:解决这个问题,可借助上面的模型,由正方形对称性可知,点B 与D 关于直线AC 对称,连结DE 交AC 于点F ,则EF FB +的最小值就是线段ED 的长度,则EF FB +的最小值是__________.(3)如图⑤,圆柱形玻璃杯,高为14cm ,底面周长为16cm ,在杯内离杯底3cm 的点C 处有一滴蜂蜜,此时一只蚂蚁正好在外壁,离杯上沿4cm 与蜂蜜相对的点A 处,则蚂蚁到达蜂的最短路程为_____cm . (4)如图⑥,在边长为2的菱形ABCD 中,60ABC ∠=︒,将ABD ∆沿射线BD 的方向平移,得到A B D '''∆,分别连接A C ',A D ',B C ',则A C B C ''+的最小值为____________. 【答案】(1)PB ',P B '',AB ';(2)25;(3)17;(4)23【分析】(1)根据对称性即可求解;(2)根据正方形的对称性知B 关于AC 的对称点是D ,连接ED ,则ED 是EF FB +的最小值;(3)先将玻璃杯展开,再根据勾股定理求解即可;(4)分析知:当''A B 与'B C 垂直时,A C B C ''+值最小,再根据特殊角计算长度即可;【详解】解:(1)根据对称性知:'''''',,PB PB P B P B AP PB AP PB AB ==+=+=,故答案为:PB ',P B '',AB ';(2)根据正方形的对称性知B 关于AC 的对称点是D ,连接ED ⊥ED 是EF FB +的最小值又⊥正方形的边长为4,E 是AB 中点⊥222425ED =+= ⊥EF FB +的最小值是25;(3)由图可知:蚂蚁到达蜂的最短路程为'AC的长度: ⊥'43,8,11AE A E cm BF cm BC cm EB cm =====, ⊥'15A B cm =⊥''222215817AC AB BC cm =+=+=(4)⊥在边长为2的菱形ABCD 中,60ABC ∠=︒,将ABD ∆沿射线BD 的方向平移,得到A B D '''∆ ⊥'''2,30A B AB A BD ==∠=︒ 当''A B 与'B C 垂直时,A C B C ''+值最小⊥''''////,AB A B CD AB A B CD == ⊥四边形''A B CD 是矩形,''30B AC ∠=︒⊥''2343,33B C AC == ⊥''23AC B C += 【点睛】本题考查“将军饮马”知识迁移,掌握“将军饮马”所遵循的数学原理,判断出最小是解题关键.模型2.平移型将军饮马(将军过桥模型)【模型解读】已知,如图1将军在图中点A 处,现要过河去往B 点的军营,桥必须垂直于河岸建造,问:桥建在何处能使路程最短?考虑MN 长度恒定,只要求AM +NB 最小值即可.问题在于AM 、NB 彼此分离,所以首先通过平移,使AM 与NB 连在一起,将AM 向下平移使得M 、N 重合,此时A 点落在A ’位置(图2 ).问题化为求A ’N +NB 最小值,显然,当共线时,值最小,并得出桥应建的位置(图3).图1 图2 图3【最值原理】两点之间线段最短。
将军饮马题型

“将军饮马”类型题一.求线段和最值(一)两定一动型例1:如图,AM⊥EF,BN⊥EF,垂足为M、N,MN=12m,AM=5m,BN=4m,P是EF上任意一点,则PA+PB的最小值是______m.分析:这是最基本的将军饮马问题,A,B是定点,P是动点,属于两定一动将军饮马型,根据常见的“定点定线作对称”,可作点A关于EF的对称点A’,根据两点之间,线段最短,连接A’B,此时A’P+PB即为A’B 最短.而要求A’B,则需要构造直角三角形,利用勾股定理解决.解答:作点A关于EF的对称点A’,过点A’作A’C⊥BN的延长线于C.易知A’M=AM=NC=5m,BC=9m,A’C=MN=12m,在Rt△A’BC中,A’B=15m,即PA+PB的最小值是15m.变式:如图,在边长为2的正三角形ABC中,E,F,G为各边中点,P为线段EF上一动点,则△BPG周长的最小值为_________.分析:考虑到BG为定值是1,则△BPG的周长最小转化为求BP+PG的最小值,又是两定一动的将军饮马型,考虑作点G关于EF的对称点,这里有些同学可能看不出来到底是哪个点,我们不妨连接AG,则AG⊥BC,再连接EG,根据“直角三角形斜边中线等于斜边的一半”,可得AE=EG,则点A就是点G关于EF的对称点.最后计算周长时,别忘了加上BG的长度.解答:连接AG,易知PG=PA,BP+PG=BP+PA,当B,P,A三点共线时,BP+PG=BA,此时最短,BA=2,BG=1,即△BPG周长最短为3.(二)一定两动型例2:如图,在△ABC中,AB=AC=5,D为BC中点,AD=4,P 为AD上任意一点,E为AC上任意一点,求PC+PE的最小值.分析:这里的点C是定点,P,E是动点,属于一定两动的将军饮马模型,由于△ABC是等腰三角形,AD是BC中线,则AD垂直平分BC,点C 关于AD的对称点是点B,PC+PE=PB+PE,显然当B,P,E三点共线时,BE更短.但此时还不是最短,根据“垂线段最短” 只有当BE⊥AC时,BE最短.求BE时,用面积法即可.解答:作BE⊥AC交于点E,交AD于点P,易知AD⊥BC,BD=3,BC=6,则AD·BC=BE·AC,4×6=BE·5,BE=4.8变式:如图,BD平分∠ABC,E,F分别为线段BC,BD上的动点,AB=8,△ABC的面积为20,求EF+CF的最小值________.分析:这里的点C是定点,F,E是动点,属于一定两动的将军饮马模型,我们习惯于“定点定线作对称”,但这题这样做,会出现问题.因为点C 的对称点C’必然在AB上,但由于BC长度未知,BC’长度也未知,则C’相对的也是不确定点,因此我们这里可以尝试作动点E关于BD的对称点.解答:如图,作点E关于BD的对称点E’,连接E’F,则EF+CF=E’F+CF,当E’,F,C三点共线时,E’F+CF=E’C,此时较短.过点C作CE’’⊥AB 于E’’,当点E’ 与点E’’重合时,E’’C最短,E’’C为AB边上的高,E’’C =5.(三)两定两动型例3:如图,∠AOB=30°,OC=5,OD=12,点E,F分别是射线OA,OB上的动点,求CF+EF+DE的最小值.分析:这里的点C,点D是定点,F,E是动点,属于两定两动的将军饮马模型,依旧可以用“定点定线作对称”来考虑.作点C关于OB的对称点,点D关于OA的对称点.解答:作点C关于OB的对称点C’,点D关于OA的对称点D’,连接C’D’.CF +EF+DE=C’F+EF+D’E,当C’,F,E,D’四点共线时,CF +EF+DE=C’D’最短.易知∠D’OC’=90°,OD’=12,OC’=5,C’D’=13,CF+EF+DE最小值为13.变式:如图,斯诺克比赛桌面AB宽1.78m,白球E距AD边0.22m,距CD 边1.4m,有一颗红球F紧贴BC边,且距离CD边0.1m,若要使白球E经过边AD,DC,两次反弹击中红球F,求白球E运动路线的总长度.分析:本题中,点E和点F是定点,两次反弹的点虽然未知,但我们可以根据前几题的经验作出,即分别作点E关于AD边的对称点E’,作点F 关于CD边的对称点F’,即可画出白球E的运动路线,化归为两定两动将军饮马型.解答:作点E关于AD边的对称点E’,作点F关于CD边的对称点F’,连接E’F’,交AD于点G,交CD于点H,则运动路线长为EG+GH+HF 长度之和,即E’F’长,延长E’E交BC于N,交AD于M,易知E’M =EM=0.22m,E’N=1.78+0.22=2m,NF’=NC+CF’=1.4+0.1=1.5m,则Rt△E’NF’中,E’F’=2.5m,即白球运动路线的总长度为2.5m.小结:以上求线段和最值问题,几乎都可以归结为“两定一动”“一定两动”“两定两动”类的将军饮马型问题,基本方法还是“定点定线作对称”,利用“两点之间线段最短”“垂线段最短”的2条重要性质,将线段和转化为直角三角形的斜边,或者一边上的高,借助勾股定理,或者面积法来求解.当然,有时候,我们也需学会灵活变通,定点对称行不通时,尝试作动点对称.(二)求角度例1:P为∠AOB内一定点,M,N分别为射线OA,OB上一点,当△PMN 周长最小时,∠MPN=80°.(1)∠AOB=_____°(2)求证:OP平分∠MPN分析:这又是一定两动型将军饮马问题,我们应该先将M,N的位置找到,再来思考∠AOB的度数,显然作点P关于OA的对称点P’,关于OB的对称点P’’,连接P’P’’,其与OA交点即为M,OB交点即为N,如下图,易知∠DPC与∠AOB互补,则求出∠DPC的度数即可.解答:(1)法1:如图,∠1+∠2=100°,∠1=∠P’+∠3=2∠3,∠2=∠P’’+∠4=2∠4,则∠3+∠4=50°,∠DPC=130°,∠AOB=50°.再分析:考虑到第二小问要证明OP平分∠MPN,我们就连接OP,则要证∠5=∠6,显然很困难,这时候,考虑到对称性,我们再连接OP’,OP’’,则∠5=∠7,∠6=∠8,问题迎刃而解.解答:(1)法2:易知OP’=OP’’,∠7+∠8=∠5+∠6=80°,∠P’OP’’=100°,由对称性知,∠9=∠11,∠10=∠12,∠AOB=∠9+∠10=50°(2)由OP’=OP’’,∠P’OP’’=100°知,∠7=∠8=40°,∠5=∠6=40°,OP平分∠MPN.变式:如图,在五边形ABCDE中,∠BAE=136°,∠B=∠E=90°,在BC、DE上分别找一点M、N,使得△AMN的周长最小时,则∠AMN+∠ANM 的度数为________.分析:这又是典型的一定两动型将军饮马问题,必然是作A点关于BC、DE 的对称点A′、A″,连接A′A″,与BC、DE的交点即为△AMN周长最小时M、N的位置.解答:如图,∵∠BAE=136°,∴∠MA′A+∠NA″A=44°由对称性知,∠MAA′=∠MA′A,∠NAA″=∠NA″A,∠AMN+∠ANM=2∠MA′A+2∠NA″A=88°思考题:1.如图所示,正方形ABCD的边长为6,△ABE是等边三角形,点E 在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为_______.2.如图,在矩形ABCD中,AB=6,AD=4.P为矩形ABCD内一点,若矩形ABCD面积为△PAB面积的4倍,则点P到A,B两点距离之和PA+PB的最小值为________.。
专题64 将军饮马模型与最值问题(解析版)

专题64 将军饮马模型与最值问题【模型引入】 什么是将军饮马?“白日登山望烽火,黄昏饮马傍交河”,这是唐代诗人李颀《古从军行》里的一句诗。
而由此却引申出一系列非常有趣的数学问题,通常称为“将军饮马”。
【模型描述】如图,将军在图中点A 处,现在他要带马去河边喝水,之后返回军营,问:将军怎么走能使得路程最短?【模型抽象】如图,在直线上找一点P 使得P A +PB 最小?这个问题的难点在于P A +PB 是一段折线段,通过观察图形很难得出结果,关于最小值,我们知道“两点之间,线段最短”、“点到直线的连线中,垂线段最短”等,所以此处,需转化问题,将折线段变为直线段. 【模型解析】作点A 关于直线的对称点A ’,连接P A ’,则P A ’=P A ,所以P A +PB =P A ’+PB当A ’、P 、B 三点共线的时候,P A ’+PB =A ’B ,此时为最小值(两点之间线段最短)AB 将军军营河【模型展示】【模型】一、两定一动之点点在OA 、OB 上分别取点M 、N ,使得△PMN 周长最小.此处M 、N 均为折点,分别作点P 关于OA (折点M 所在直线)、OB (折点N 所在直线)的对称点,化折线段PM +MN +NP 为P ’M +MN +NP ’’,当P ’、M 、N 、P ’’共线时,△PMN 周长最小.【精典例题】如图,点P 是∠AOB 内任意一点,∠AOB =30°,OP =8,点M 和点N 分别是射线OA 和射线OB 上的动点,则△PMN 周长的最小值为___________.【分析】△PMN 周长即PM +PN +MN 的最小值,此处M 、N 均为折点,分别作点P 关于OB 、OA 对称点P ’、P ’’,化PM +PN +MN 为P ’N +MN +P ’’M .当P ’、N 、M 、P ’’共线时,得△PMN 周长的最小值,即线段P ’P ’’长,连接OP ’、OP ’’,可得△OP ’P ’’为等边三角形,所以P ’P ’’=OP ’=OP =8.BBP OBAMNP''A【模型】二、两定两动之点点在OA 、OB 上分别取点M 、N 使得四边形PMNQ 的周长最小。
(word完整版)九年级数学复习专题-------将军饮马专题1

专题一利用轴对称解决两条线短之和最小值问题一:问题的背景古希腊一位将军要从A地出发到河边(如下图MN)去饮马,然后再回到驻地B。
问怎样选择饮马地点,才能使路程最短?分析:在河边饮马的地点有许多处,把这些地点与A、B连接起来的两条线段的长度之和,就是从A地到饮马地点(P),再回到B地的路程之和。
现在的问题是怎样找出使两条线段长度之和为最短的那个点来。
具体操作:在图上过A点作河边MN的垂线,垂足为C,延长AC 到A ',A '是A地对于河边MN的对称点;连结A B交河边MN于P, 那么P点就是题目所求的饮马地点。
原因:为什么饮马的地点选择在P点能使路程最短呢?因为AC= A C, AP 与BP的长度之和就是A P与B P的长度之和,即是AB的长度;而选择河边的任何其他点,如E,路程AE+EB二A 'E+BE>AB, 故P点就是符合要求的点。
(等腰三角形)(菱形)二:基本模型(K型)基础训练1、如图,正方形边长为8, M在CD上,且DM=2 N是AC上一动点,贝U ND+NM 的最小值为多少?2、如图,菱形ABCD中, / BAD=60 ,M是AB的中点,P是对角线AC上的一个动点,若AB长是3,则PM+PB勺最小值为多少?3、如图,已知点P是边长为2的正三角形ABC的中线AD上的动点,E是AC边的中点,则PC+PE勺最小值是多少?4、如图,在等腰直角三角形ABC中,AC=BC=2 / ACB=90 , D是BC中点,E是AB边上一动点,则EC+ED勺最小值是多少?5、如图,正三角形ABC的边长为2, M为BC中点,P为AC上一动点,贝U PB+PM 的最小值为多少?6等腰直角三角形ABC的直角边长为2,E是斜边AB的中点,P是AC边上的一动点,则PB+PM最小值为________________ 。
7、在三角形ABC中,点D,E分别为AB,AC边上的中点,BC=6 BC边上的高为4,若点P为BC边上一个动点,则三角形PDE周长的最小值是多少?8、如图,在矩形ABCD中, AD=3 / CAB=30、点P是线段AC上的动点,点Q是线段CD上的动点,贝U AQ+PQ勺最小值是多少?提咼训练1、如图,在直角三角形ABC中、/ ACB=90 , AC=6,BC=8 AD为/BAC的平分线。
2初中数学最值系列之将军饮马学案

第2讲最值系列之——将军饮马一、什么是将军饮马?【问题引入】“白日登山望烽火,黄昏饮马傍交河”,这是唐代诗人李颀《古从军行》里的一句诗。
而由此却引申出一系列非常有趣的数学问题,通常称为“将军饮马”。
【问题描述】【例题1】如图,将军在图中点A处,现在他要带马去河边喝水,之后返回军营,问:将军怎么走能使得路程最短?【问题简化】如图,在直线上找一点P使得PA+PB最小?【问题分析】这个问题的难点在于PA+PB是一段折线段,通过观察图形很难得出结果,关于最小值,我们知道“两点之间,线段最短”、“点到直线的连线中,垂线段最短”等,所以此处,需转化问题,将折线段变为直线段.【问题解决】作点A关于直线的对称点A’,连接PA’,则PA’=PA,所以PA+PB=PA’+PB当A’、P、B三点共线的时候,PA’+PB=A’B,此时为最小值(两点之间线段最短)【思路概述】作端点(点A或点B)关于折点(上图P点)所在直线的对称,化折线段为直线段.【练习2】如图,正方形ABCD的边长为8,点M在边DC上,且DM=2,点N是对角线AC上一动点,则线段DN+MN的最小值为________.【练习3】如图,已知△ABC为等腰直角三角形,AC=BC=4,∠BCD=15°,P为射线CD上的动点,则|PA-PB|的最大值为________.【练习4】如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE最小,则这个最小值为_________.【练习5】如图,已知菱形ABCD的两条对角线分别为6和8,M、N分别是BC、CD的中点,P是对角线BD上一点,则PM+PN的最小值=_______.【练习6】如图,在Rt△ABC中,∠C=90°,∠B=60°,点D是BC边上的点,CD=√(3),将△ABC 沿直线AD翻折,使点C落在AB边上的点E处,若点P是直线AD上的动点,则△PEB的周长的最小值是______.【练习7】⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,则PA+PC的最小值是_________;【练习8】如图,在等边△ABC中,AB=6,点E是AB的中点,AD是高,在AD上找一点P,使PB +PE的值最小,最小值为_________.【练习9】如图,在Rt△ABC中,∠ACB=90°,AC=6.AB=12,AD平分∠CAB,点F是AC的中点,点E()是AD上的动点,则CE+EF的最小值为A.3B.4C.33D.3【练习10】如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,()则PC+PD的最小值为A.4B.5C.6D.7【练习11】如图,矩形ABCD中,AB=10,BC=5,点E、F、G、H分别在矩形ABCD各边上,且AE=CG,BF=DH,则四边形EFGH周长的最小值为()A.55B.5C.103D.153【练习12】(2019西藏)如图,在矩形ABCD中,AB=6,AD=3,动点P满足13PAB ABCDS S∆=矩形,则点P到A、B两点距离之和PA+PB的最小值为()A.13B.10C.35D41二、将军饮马模型系列(一)【一定两动之点点】在OA、OB上分别取点M、N,使得△PMN周长最小.此处M、N均为折点,分别作点P关于OA(折点M所在直线)、OB(折点N所在直线)的对称点,化折线段PM+MN+NP为P’M+MN+NP’’,当P’、M、N、P’’共线时,△PMN周长最小.【例题13】如图,点P是∠AOB内任意一点,∠AOB=30°,OP=8,点M和点N分别是射线OA和射线OB 上的动点,则△PMN周长的最小值为___________.【分析】△PMN周长即PM+PN+MN的最小值,此处M、N均为折点,分别作点P关于OB、OA对称点P’、P’’,化PM+PN+MN为P’N+MN+P’’M.当P’、N、M、P’’共线时,得△PMN周长的最小值,即线段P’P’’长,连接OP’、OP’’,可得△OP’P’’为等边三角形,所以P’P’’=OP’=OP=8.【练习14】(2018滨州)如图,∠AOB=60°,点P是∠AOB内的定点且OP=3,若点M、N分别是射线OA、OB上异于点O的动点,则△PMN周长的最小值是()A.362B.332C.6D.3【练习15】(2018·辽宁营口)如图,在锐角三角形ABC中,BC=4,∠ABC=60°,BD平分∠ABC,交AC()于点D,M、N分别是BD,BC上的动点,则CM+MN的最小值是A.3B.2C.23D.4【练习16】(2018广西贵港)如图,在菱形ABCD中,AC=62,BD=6,E是BC的中点,P、M分别是AC、AB上的动点,连接PE、PM,则PE+PM的最小值是()A.6B.33C.6D.4.5【两定两动之点点】【例题17】在OA、OB上分别取点M、N使得四边形PMNQ的周长最小。
将军饮马系列---最值问题

1.两点之间,线段最短.2.点到直线的距离,垂线段最短.3.三角形两边之和大于第三边,两边之差小鱼第三边.4.A B 、分别为同一圆心O 半径不等的两个圆上的一点,R r AB R r -≤≤+ 当且仅当A B O 、、三点共线时能取等号.古希腊亚里山大里亚城有一位久负盛名的学者,名叫海伦.有一天,有位将军不远千里专程前来向海伦求教一个百思不得其解的问题:如图,将军从A 出发到河边饮马,然后再到B 地军营视察,显然有许多走法.问怎样走路线最短呢?精通数理的海伦稍加思索,便作了完善的回答.这个问题后来被人们称作“将军饮马”问题.下面我们来看看数学家是怎样解决的.海伦发现这是一个求折线和最短的数学问题. 根据公理:连接两点的所有线中,线段最短.若A B 、在河流的异侧,直接连接AB ,AB 与l 的交点即为所求. 若A B 、在河流的同侧,根据两点间线段最短,那么显然要把折线变成直线再解.“将军饮马”系列最值问题知识回顾知识讲解海伦解决本问题时,是利用作对称点把折线问题转化成直线现在人们把凡是用对称点来实现解题的思想方法叫对称原理,即轴对称思想轴对称及其性质:把一个图形沿某一条直线折叠,如果直线两旁的部分能够互相重合,那么这个图形就叫做轴对称图形.这条直线就是它的对称轴.这时我们就说这个图形关于这条直线(或轴)对称.如等腰ABC ∆是轴对称图形.把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就是说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.如下图,ABC ∆与'''A B C ∆关于直线l 对称,l 叫做对称轴.A 和'A ,B 和'B ,C 和'C 是对称点.轴对称的两个图形有如下性质:①关于某条直线对称的两个图形是全等形; ②对称轴是任何一对对应点所连线的垂直平分线;③两个图形关于某条直线对称,如果他们的对应线段或延长线相交,那么交点在对称轴上.线段垂直平分线:垂直平分线上点到线段两个端点的距离相等; 到线段两个端点距离相等的点在线段的垂直平分线上.当已知条件出现了等腰三角形、角平分线、高,或者求几条折线段的最小值等情况,通常考虑作轴对称变换,以“补齐”图形,集中条件。
最值系列之将军饮马

最值系列之——将军饮马一、什么是将军饮马?【问题引入】“白日登山望烽火,黄昏饮马傍交河”,这是唐代诗人李颀《古从军行》里的一句诗。
而由此却引申出一系列非常有趣的数学问题,通常称为“将军饮马”。
【问题描述】如图,将军在图中点A处,现在他要带马去河边喝水,之后返回军营,问:将军怎么走能使得路程最短?【问题简化】如图,在直线上找一点P使得PA+PB最小?【问题分析】这个问题的难点在于PA+PB是一段折线段,通过观察图形很难得出结果,关于最小值,我们知道“两点之间,线段最短”、“点到直线的连线中,垂线段最短”等,所以此处,需转化问题,将折线段变为直线段.【问题解决】作点A关于直线的对称点A’,连接PA’,则PA’=PA,所以PA+PB=PA’+PB当A’、P、B三点共线的时候,PA’+PB=A’B,此时为最小值(两点之间线段最短)【思路概述】作端点(点A或点B)关于折点(上图P点)所在直线的对称,化折线段为直线段.二、将军饮马模型系列【一定两动之点点】在OA、OB上分别取点M、N,使得△PMN周长最小.此处M、N均为折点,分别作点P关于OA(折点M所在直线)、OB(折点N所在直线)的对称点,化折线段PM+MN+NP为P’M+MN+NP’’,当P’、M、N、P’’共线时,△PMN周长最小.【例题】如图,点P是∠AOB内任意一点,∠AOB=30°,OP=8,点M和点N分别是射线OA和射线OB上的动点,则△PMN周长的最小值为___________.【分析】△PMN周长即PM+PN+MN的最小值,此处M、N均为折点,分别作点P关于OB、OA对称点P’、P’’,化PM+PN+MN为P’N+MN+P’’M.当P’、N、M、P’’共线时,得△PMN周长的最小值,即线段P’P’’长,连接OP’、OP’’,可得△OP’P’’为等边三角形,所以P’P’’=OP’=OP=8.【两定两动之点点】在OA、OB上分别取点M、N使得四边形PMNQ的周长最小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本节课你的收获是什么?
【问题解析】 △PMN周长即PM+PN+MN的最小值,此处 M、N均为折点,分别作点P关于OB、OA对称点P'、P'', 化PM+PN+MN为P'N+MN+P''M.当P'、N、M、P''共线时, 得△PMN周长的最小值,即线段P'P''长,连接OP'、OP'', 可得△OP'P''为等边三角形,所以P'P''=OP'=OP=8.
【问题解析】:此处点P为折点,可以作点D关于折点P 所在直线OA的对称: 也可以作点C的对称:
05 正方形中的将军饮马。
【问题描述】:如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,
DC=1,点P是AB上的动点,则PC+PD的最小值为( )
A.4
B.5
C.6
D.7
【问题解析】:作点C关于P点 所在直线AB的对称点C',当C'、 P、D共线时,PC+PD最小, 最小值为5,故选B.
05 正方形中的将军饮马。
【问题描述】:如图,正方形ABCD的边长是4,M在DC上,且DM=1, N是AC边上 的一动点,则△DMN周长的最小值是________。
【问题解析】:考虑DM为定值, 故求△DMN周长最小值即求 DN+MN最小值.点N为折点, 作点D关于AC的对称点,即点B, 连接BN交AC于点N,此时 △DMN周长最小.
04 将军饮马模型系列“一定两动”之点到线。
【问题描述】:在OA、OB上分别取点M、N,使得PM+MN最小。
【问题解析】:此处M点为折点, 作点P关于OA对称的点P',将折线 段PM+MN转化为P'M+MN,即过 点P'作OB垂线分别交OA、OB于点 M、N,得PM+MN最小值(点到直 线的连线中,垂线段最短)
【问题解决】作点A关于直线的 对称点A',连接PA',则PA'=PA, 所以PA+PB=PA'+PB.
当A'、P、B三点共线的时 候,PA'+PB=A'B,此时为最小 值(两点之间线段最短)
02 将军饮马模型系列“一定两动”之点到点。
【问题描述】:在OA、OB上分别取点M、N,使得△PMN周长最小。
【问题解析】:此处M、N均为折点, 分别作点P关于OA(折点M所在直 线)、OB(折点N所在直线)的对 称点,化折线段PM+MN+NP为 P'M+MN+NP'',当P'、M、N、P'' 共线时,△PMN周长最小。
【例题】 :如图,点P是∠AOB内任意一点,∠AOB=30°,OP=8,点M和点N分别是 射线OA和射线OB上的动点,则△PMN周长的最小值为________.
最值问题
----之将军饮马(一)
01 什么是将军饮马?
【问题描述】: 如图,将军在图中点A处,现在他要带马去河 边喝水,之后返回军营,问:将军怎么走能使得路程最短?
【问题简化】: 如图,在直线上找一点P使得PA+PB最小?
【问题分析】:这个问题的难点在于PA+PB是一段折线段,通过观察图形很难得出结 果,关于最小值,我们知道“两点之间,线段最短”、“点到直线的连线中,垂线段 最短”等,所以此处,需转化问题,将折线段变为直线段.
05 正方形中的将军饮马。
【问题描述】:如图,在Rt△ABO中,∠OBA=90°,A(4,4),点C在边AB上,且
AC:CB=1:3,点D为OB的中点,点P为边OA上的动点,当点P在OA上移动时,使四边形
PDBC2,5/2) C.(8/3,8/3) D.(3,3)
03 将军饮马模型系列“两定两动”之点到点。
【问题描述】:在OA、OB上分别取点M、N使得四边形PMNQ的周长最小。
【问题解析】:考虑PQ是条定线段, 故只需考虑PM+MN+NQ最小值即 可,分别作点P、Q关于OA、OB对 称,化折线段PM+MN+NQ为 P'M+MN+NQ',当P'、M、N、Q' 共线时,四边形PMNQ的周长最小。