2020中考数学专题8——最值问题之将军饮马 -含答案

合集下载

中考数学常见几何模型专题09 最值模型-将军饮马(原卷版)

中考数学常见几何模型专题09 最值模型-将军饮马(原卷版)

专题09 最值模型---将军饮马最值问题在中考数学常以压轴题的形式考查,将军饮马问题是由轴对称衍生而来,同时还需掌握平移型将军饮马,主要考查转化与化归等的数学思想。

在各类考试中都以中高档题为主,中考说明中曾多处涉及。

本专题就最值模型中的将军饮马问题进行梳理及对应试题分析,方便掌握。

在解决几何最值问题主要依据是:①两点之间,线段最短;②垂线段最短,涉及的基本方法还有:利用轴对称变换化归到“三角形两边之和大于第三边”、“三角形两边之差小于第三边”等。

模型1.求两条线段和的最小值(将军饮马模型)【模型解读】在一条直线m 上,求一点P ,使PA +PB 最小;(1)点A 、B 在直线m 两侧: (2)点A 、B 在直线同侧:【最值原理】两点之间线段最短。

上图中A’是A关于直线m的对称点。

例1.(2022·湖南娄底·中考真题)菱形ABCD 的边长为2,45ABC ∠=︒,点P 、Q 分别是BC 、BD 上的动点,CQ PQ +的最小值为______.例2.(2022·四川眉山·中考真题)如图,点P 为矩形ABCD 的对角线AC 上一动点,点E 为BC 的中点,连接PE ,PB ,若4AB =,BC =PE PB +的最小值为________.例3.(2022·贵州铜仁·中考真题)如图,在边长为2的正方形ABCD 中,点E 为AD 的中点,将△CDE 沿CE 翻折得△CME ,点M 落在四边形ABCE 内.点N 为线段CE 上的动点,过点N 作NP //EM 交MC 于点P ,m ABmmABm则MN +NP 的最小值为________.例4.(2022·江苏南京·模拟预测)【模型介绍】古希腊有一个著名的“将军饮马问题”,大致内容如下:古希腊一位将军,每天都要巡查河岸同侧的两个军营,A B .他总是先去A 营,再到河边饮马,之后,再巡查B 营.如图①,他时常想,怎么走才能使每天走的路程之和最短呢?大数学家海伦曾用轴对称的方法巧妙地解决了这个问题.如图②,作点B 关于直线l 的对称点B ',连结AB '与直线l 交于点P ,连接PB ,则AP BP +的和最小.请你在下列的阅读、理解、应用的过程中,完成解答.理由:如图③,在直线l 上另取任一点P ',连结'AP ,BP ',B P '',∵直线l 是点B ,B '的对称轴,点P ,P '在l 上,(1)∵PB =__________,P B '=_________,∵AP PB AP PB '+=+=____________.在AP B ''∆中,∵AB AP P B ''''<+,∵AP PB AP P B '''+<+,即AP BP +最小.【归纳总结】在解决上述问题的过程中,我们利用轴对称变换,把点,A B 在直线同侧的问题转化为在直线的两侧,从而可利用“两点之间线段最短”,即转化为“三角形两边之和大于第三边”的问题加以解决(其中点P 为AB '与l 的交点,即A ,P ,B '三点共线).由此,可拓展为“求定直线上一动点与直线同侧两定点的距离和的最小值”问题的数学模型.【模型应用】(2)如图④,正方形ABCD 的边长为4,E 为AB 的中点,F 是AC 上一动点.求EF FB +的最小值.解析:解决这个问题,可借助上面的模型,由正方形对称性可知,点B 与D 关于直线AC 对称,连结DE 交AC 于点F ,则EF FB +的最小值就是线段ED 的长度,则EF FB +的最小值是__________.(3)如图⑤,圆柱形玻璃杯,高为14cm ,底面周长为16cm ,在杯内离杯底3cm 的点C 处有一滴蜂蜜,此时一只蚂蚁正好在外壁,离杯上沿4cm 与蜂蜜相对的点A 处,则蚂蚁到达蜂的最短路程为_____cm . (4)如图⑥,在边长为2的菱形ABCD 中,60ABC ∠=︒,将ABD ∆沿射线BD 的方向平移,得到A B D '''∆,分别连接A C ',A D ',B C ',则A C B C ''+的最小值为____________.模型2.平移型将军饮马(将军过桥模型)【模型解读】已知,如图1将军在图中点A 处,现要过河去往B 点的军营,桥必须垂直于河岸建造,问:桥建在何处能使路程最短?考虑MN 长度恒定,只要求AM +NB 最小值即可.问题在于AM 、NB 彼此分离,所以首先通过平移,使AM 与NB 连在一起,将AM 向下平移使得M 、N 重合,此时A 点落在A ’位置(图2 ). 问题化为求A ’N +NB 最小值,显然,当共线时,值最小,并得出桥应建的位置(图3).图1 图2 图3 【最值原理】两点之间线段最短。

初中数学知识点各个击破专项练习:一次函数综合最值问题“将军饮马、胡不归”(解析版)

初中数学知识点各个击破专项练习:一次函数综合最值问题“将军饮马、胡不归”(解析版)

一次函数综合最值问题“将军饮马、胡不归”一、解答题1已知一次函数y =4kx +5k +132k ≠0 .(1)无论k 为何值,函数图象必过定点,求该定点的坐标;(2)如图1,当k =-12时,一次函数y =4kx +5k +132的图象交x 轴,y 轴于A 、B 两点,点Q 是直线l 2:y =x +1上一点,若S △ABQ =6,求Q 点的坐标;(3)如图2,在(2)的条件下,直线l 2:y =x +1交AB 于点P ,C 点在x 轴负半轴上,且S △ABC =203,动点M 的坐标为a ,a ,求CM +MP 的最小值.【答案】(1)-54,132(2)3,4 或-1,0(3)1093【分析】(1)整理得y =4x +5 k +132k ≠0 ,根据题意,得当4x +5=0,求解得函数图象必过定点-54,132 ;(2)确定解析式y =4kx +5k +132为y =-2x +4,点A 坐标为2,0 ,点B 坐标为0,4 ;设点Q 坐标为m ,m +1 ,分情况讨论:①当点Q 位于AB 右侧时,根据题意得S △AOQ +S △BOQ =S △AOB +S △ABQ ,列方程解得m =3,点Q 坐标为3,4 ;②当点Q 位于AB 左侧时,过点Q 作QN ∥x 轴,交AB 于点N ,点N 的纵坐标为(m +1),QN =-32(m -1),于是S △ABQ =S △AQN +S △BQN =12×-32(m -1) ×4=6,解得m =-1,m +1=0,Q 坐标为-1,0 ;(3)联立得y =-2x +4y =x +1,得P 1,2 ,设C c ,0 ,由S △ABC =203,求得C 的坐标为-43,0 ,点M 在直线y =x 上,点C 关于直线y =x 对称的点F 的坐标为0,-43,连接MF ,PF ,则MF =MC ,CM +MP =FM +MP ≥PF ,作PG ⊥y 轴,垂足为G ,在Rt △PGF 中,PF =1093,所以CM +MD 的最小值为1093.【详解】(1)解:整理得y =4x +5 k +132k ≠0 ∵不论k 取何值时,上式都成立∴当4x +5=0,即x =-54时,y =132∴无论k 为何值,函数图象必过定点-54,132;(2)当k =-12时,一次函数y =4kx +5k +132为y =-2x +4,当x =0时,y =4;当y =0时,-2x +4=0,x =2;∴点A 坐标为2,0 ;点B 坐标为0,4 ;∵点Q 在直线l 2:y =x +1上,∴设点Q 坐标为m ,m +1 ;①如图,当点Q 位于AB 右侧时,根据题意得S △AOQ +S △BOQ =S △AOB +S △ABQ .∴12×2m +1 +12×4m =12×2×4+6.解得m =3.点Q 坐标为3,4 ;②如图,当点Q 位于AB 左侧时,此时S △ABQ =6,过点Q 作QN ∥x 轴,交AB 于点N ,则点N 的纵坐标为(m +1),由y =-2x +4,得m +1=-2x +4,x =-12(m -3),∴QN =-12(m -3)-m =-32(m -1).∴S △ABQ =12QN ∙y B -y A =12×-32(m -1) ×4=6,解得m =-1,m +1=0,∴Q 恰好位于x 轴上,此时Q 坐标为-1,0 ;综上所述:若S △ABQ =6,Q 点的坐标为3,4 或-1,0 ;(3)由(2)可得直线AB :y =-2x +4,联立得y =-2x +4y =x +1 ,解得x =1y =2 .∴P 1,2 ∵点C 在x 轴的负半轴,设C c ,0则AC =2-c ,∵OB =4,S △ABC =203∴122-c ×4=203解得c =-43∴点C 的坐标为-43,0∵动点M 的坐标为a ,a .∴点M 在直线y =x 上.∴点C 关于直线y =x 对称的点F 的坐标为0,-43 ,连接MF ,PF ,则MF =MC ,CM +MP =FM +MP ≥PF则PF 为CM +MP 的最小值;作PG ⊥y 轴,垂足为G ,在Rt △PGF 中,PF =PG 2+FG 2=12+2+43 2=1093∴CM +MD 的最小值为1093.【点睛】本题考查一次函数,图象交点求解,轴对称;结合题设条件,作线段的等量转移,构造直角三角形求解线段是解题的关键.2已知一次函数y =4kx +5k +132(k ≠0).(1)无论k 为何值,函数图象必过定点,则该定点的坐标;(2)如图1,当k =-12时,该直线交x 轴,y 轴于A ,B 两点,直线l 2:y =x +1交AB 于点P ,点T 是l 2上一点,若S △ABT =9,求T 点的坐标;(3)如图2,在第2问的条件下,已知D 点在该直线上,横坐标为1,C 点在x 轴负半轴,∠ABC =45°,点M 是x 轴上一动点,连接BM ,并将线段BM 绕点M 顺时针旋转90°得到MQ ,①求点C 的坐标;②CQ +QD 的最小值为.【答案】(1)-54,132(2)T 点的坐标为4,5 或-2,-1 ;(3)-43,0 ,5653【分析】(1)将一次函数变形4kx -y =-5k -132,根据图像过定点,得到与k 值无关,求出k ,进而求出定点坐标;(2)求出直线解析式,设点T 坐标为m ,m +1 ;分点T 在AB 两侧分类讨论即可;(3)先根据题意,求出点D 坐标,根据将线段BM 绕点M 顺时针旋转90°得到MQ ,得到点Q 所在直线解析式,求出点C 对称点C ,连接C D ,求出C D 的长即可.【详解】(1)解:一次函数y =4kx +5k +132=k 4x +5 +132,∴4x +5=0时,y =132,解得:x =-54,y =132∴无论k 为何值,函数y =4kx +5k +132k ≠0 图像必过定点-54,132 ;(2)当k =-12时,一次函数y =4kx +5k +132为y =-2x +4,当x =0时,y =4;当y =0,时,-2x +4=0,x =2;∴点A 坐标为2,0;点B 坐标为0,4 ;∵点T 在直线l 2:y =x +1上,∴设点T 坐标为m ,m +1 ;①如图,当点T 位于AB 右侧时,连接OT ,根据题意得S △AOT +S △BOT =S △AOB +S △ABT∴12×2×m +1 +12×4m =12×2×4+9解得m =4,∴点T 坐标为4,5 ;②如图,当点T 位于AB 左侧时,根据题意得S △AOT +S △BOT +S △AOB =S △ABT∴12×2×-m -1 +12×4×-m +12×2×4=9解得m =-2,∴点T 坐标为-2,-1 ;综上所述:若S △ABT =9,T 点的坐标为4,5 或-2,-1 ;(3)如图,将△OAB 沿直线AB 翻折,得到△NAB ,将△OCB 沿直线BC 翻折,得到△HCB ,延长HC 、NA 交于点E ,则四边形BHEN 为正方形,∴BN =BH =HE =NE =OB =4,NA =OA =2,AE =NE -AN =2,设OC =n ,则HC =n ,CE =4-n ,在Rt △ACE 中,22+4-n 2=2+n 2,解得n =43,所以点C 坐标为-43,0 ,②解:∵D 点在直线上y =-2x +4上,横坐标为1,∴y =-2×1+4=2,所以点D 坐标为(1,2);设动点M 的坐标为a ,0 ,如图所示,过点Q 作QH ⊥x 轴,∵将线段BM 绕点M 顺时针旋转90°得到MQ ,∴BM =QM ,∠BMQ =90°,∴∠OMB +∠QMH =90°又∠BOM =∠MHQ =90°,∴∠OMB +∠MBO =90°,∴∠QMH =∠MBO ,∴△QMH ≌△∠MBO ,∴QH =OM ,MH =OB =4∴Q a +4,a∴点Q 在直线y =x -4上运动,如图所示,设直线y =x -4与x 轴交于点K ,与y 轴交与点G ,则K 4,0,∴CK=43+4=163,作C K⊥x轴,且C K=CK=16 3,则△CC K是等腰直角三角形,KG⊥CC ,∴则C ,C关于y=x-4的对称,则C Q+QD=CQ+QD≥C D,此时如图所示,则C 4,16 3∵D1,2∴C D=4-12+163+22=5653故答案为:565 3.【点睛】本题考查了一次函数与面积问题,求一次函数点的坐标,根据点的特点确定函数解析式,将军饮马问题,半角模型等知识,综合性强,难度较大.解题的关键是要深刻理解函数的意义,能从复杂的图形中确定相应的解题模型.3如图,一次函数y=12x+2的图象分别与x轴、y轴交于点A、B,以线段AB为边在第二象限内作等腰Rt△ABC,∠BAC=90°.(可能用到的公式:若A(x1,y1),B(x2,y2),①AB中点坐标为x1+x2 2,y1+y22;②AB=x1-x22+y1-y22(1)求线段AB的长;(2)过B、C两点的直线对应的函数表达式.(3)点D是BC中点,在直线AB上是否存在一点P,使得PC+PD有最小值?若存在,则求出此最小值;若不存在,则说明理由.【答案】(1)AB=25(2)y=-13x+2(3)存在,最小值是52【分析】(1)求出点A、B的坐标,再根据勾股定理求解即可;(2)先证明△ACF≌△BAO,得出点C坐标,再根据待定系数法求解即可;(3)作点C关于AB的对称点M,连接MD交直线AB于点P,则此时PC+PD有最小值,即为MD的长,根据中点坐标公式分别求出点D、M的坐标,再根据两点距离公式求解.【详解】(1)对于y=12x+2,令x=0,则y=2,令y=0,则12x+2=0,解得x=-4,∴A-4,0,B0,2,∴AB=22+42=25;(2)作CF⊥x轴于点F,如图,则∠CFA=∠AOB=90°,∵等腰Rt △ABC ,∠BAC =90°,∴AC =AB ,∠ACF =90°-∠CAF =∠BAO ,∴△ACF ≌△BAO ,∴CF =OA =4,AF =BO =2,∴C -6,4 ,设直线BC 的解析式为y =mx +n ,则-6m +n =4n =2 ,解得m =-13n =2 ,∴直线BC 的解析式为y =-13x +2;(3)∵D 是BC 中点,∴点D 的坐标是-3,3 ,作点C 关于AB 的对称点M ,连接MD 交直线AB 于点P ,则此时PC +PD有最小值,且PC +PD =PD +PM =MD ,即PC +PD 的最小值是MD 的长,∵∠CAB =90°,∴C 、A 、M 三点共线,且A 是CM 中点,设M p ,q ,则-6+p 2=-4,4+q 2=0,解得p =-2,q =-4,∴M -2,-4 ,∴MD =-2+3 2+-4-3 2=52,故PC +PD 存在最小值,是52.【点睛】本题考查了待定系数法求一次函数的解析式、全等三角形的判定和性质、利用轴对称的性质求线段和的最小值以及两点间的距离公式等知识,具有一定的综合性,熟练掌握相关知识、明确求解的方法是解题关键.4已知一次函数y =kx +b (k ≠0)与x 轴交于点A (3,0),且过点7,8 ,回答下列问题.(1)求该一次函数解析式;(2)一次函数的解析式也称作该直线的斜截式方程,如解析式y =kx +b 我们只需要将y 向右移项就可以得到kx -y +b =0,将x 前的系数k 替代为未知数A ,将y 前的系数1替代为未知数B ,将常数项b 替代为未知数C ,即可得到方程Ax +By +C =0,该二元一次方程也称为直线的一般方程(其中A 一般为非负整数,且A 、B 不能同时为0).一般地,在平面直角坐标系中,我们求点到直线间的距离,可用下面的公式求解:点P x 0,y 0 到直线Ax +By +C =0的距离d 公式是:d =Ax 0+By 0+CA 2+B 2如:求:点P 1,1 到直线y =-13x +32的距离.解:先将该解析式整理为一般方程:(I )移项-13x -y +32=0 (II )将A 化为非负整数即得一般式方程:2x +6y -9=0由点到直线的距离公式,得d =2×1+6×1-9 22+62=140=1020①根据平行线的性质,我们利用点到直线的距离公式,也可以求两平行线间的距离.已知(1)中的解析式代表的直线与直线2x-y+9=0平行,试求这两条直线间距离;②已知一动点P t2,t(t为未知实数),记h为点P到直线3x-4y+7=0的距离(点P不在该直线上),求h的最小值.【答案】(1)y=2x-6;(2)①35;②1715.【分析】(1)利用待定系数法即可求出该一次函数解析式;(2)根据平行线间距离处处相等可知,点A到直线2x-y+9=0的距离即为两条平行线间距离,再利用点到直线的距离公式,即可求出这两条直线间距离;(3)利用点到直线的距离公式,得到h=3t2-4t+75,令m=3t2-4t+7,利用二次函数的性质,求得最小值,进而即可求出h的最小值.【详解】(1)解:∵一次函数y=kx+b(k≠0)与x轴交于点A(3,0),且过点7,8,则3k+b=07k+b=8,解得:k=2b=-6,∴该一次函数解析式为y=2x-6;(2)解:①∵一次函数解析式为y=2x-6,整理得:2x-y-6=0,∵点A(3,0)在直线y=2x-6,∴点A到直线2x-y+9=0的距离即为两条平行线间距离,将点A代入距离公式,得:d=2×3-0+922+-12=155=35,∴这两条直线间距离为35;②将点P t2,t代入距离公式,得:h=3t2-4t+732+-42=3t2-4t+75,令m=3t2-4t+7=3t-2 32+173,∴当t=23时,m有最小值为173>0,∴h的最小值为1735=1715.【点睛】本题考查了待定系数法求一次函数解析式,二次函数的性质等知识,读懂题意,掌握点到直线的距离公式是解题关键.5如图,一次函数y=kx+b的图象交x轴于点A,OA=4,与正比例函数y=3x的图象交于点B,B 点的横坐标为1.(1)求一次函数y =kx +b 的解析式;(2)若点C 在y 轴上,且满足S △BOC =12S △AOB ,求点C 的坐标;(3)若点D 4,-2 ,点P 是y 轴上的一个动点,连接BD ,PB ,PD ,是否存在点P ,使得△PBD 的周长有最小值?若存在,请直接写出△PBD 周长的最小值.【答案】(1)y =-x +4(2)C 0,6 或C 0,-6(3)存在,52+34【分析】(1)根据待定系数法求出一次函数解析式即可;(2)设点C 的坐标为0,t ,则OC =t ,再根据点B 的坐标,得出x B =1,y B =3,再根据三角形的面积公式,得出S △BOC =t ×12=t 2,S △AOB =4×32=6,再根据题意,列出方程,解出即可得出答案;(3)根据两点间的距离公式,得出BD =34,再根据三角形的周长,得出要使△PBD 周长的最小值,只需求PB +PD 的最小值,作点B 关于y 轴的对称点M ,则M 的坐标为-1,3 ,连接DM ,根据线段最短,得出DM 为PB +PD 的最小值,再根据两点间的距离公式,计算得出DM =52,再根据三角形的周长公式,计算即可.【详解】(1)解:∵点B 是y =3x 的图象上的点,横坐标为1,∴点B 坐标为1,3 .∵OA =4,∴点A 坐标为4,0 .将A ,B 两点坐标分别代入y =kx +b ,得0=4k +b 3=k +b ,解得k =-1b =4 ,∴一次函数的解析式为y =-x +4;(2)解:设点C 的坐标为0,t ,则OC =t ,∵B 1,3 ,∴x B =1,y B =3,∵OA =4,∴S △BOC =t ×12=t 2,S △AOB =4×32=6,∵S △BOC =12S △AOB ,∴t 2=12×6,∴t =6,∴t =6或t =-6,∴C 0,6 或C 0,-6 ;(3)解:存在点P ,使得△PBD 的周长有最小值,理由如下:∵B 1,3 ,D 4,-2 ,∴BD =1-4 2+3+2 2=34,∵△PBD 的周长=PB +PD +BD ,∴要求△PBD 周长的最小值,只需求PB +PD 的最小值.如图,作点B关于y轴的对称点M,则M的坐标为-1,3,连接DM,则PB+PD≥DM,即DM为PB+PD的最小值.∴DM=-1-42+3+22=50=52,∴△PBD周长的最小值为:PB+PD+BD=52+34.【点睛】本题考查了求一次函数解析式、坐标与图形、两点间的距离、点关于坐标轴的轴对称点、线段最短,解本题的关键在熟练掌握两点之间的距离公式.6在平面直角坐标系xoy中,一次函数y=34x+3的图像分别与x轴、y轴交于A、B两点,点C为x轴正半轴上的一个动点,设点C的横坐标为t.(1)求A、B两点的坐标;(2)点D为平面直角坐标系xoy中一点,且与点A、B、C构成平行四边形ABCD.①若平行四边形ABCD是矩形,求t的值;②在点C运动的过程中,点D的纵坐标是否发生变化,若不变,求出点D的纵坐标;若变化,说明理由;③当t为何值时,BC+BD的值最小,请直接写出此时t的值及BC+BD的最小值.【答案】(1)A(-4,0),B(0,3)(2)①94;②点D的纵坐标不变,是-3;③t=2时,BC+BD最小值为9【分析】(1)根据坐标轴上点的特点直接代值求解即可;(2)①矩形可知90°,证明相似三角形后直接通过边的关系列方程求解即可;②根据平行四边形的平移规律直接写出D点纵坐标即可;③求最短路径的题,与造桥选址类似,平移后三点共线即为最小值.【详解】(1)y=34x+3中,令x=0,则y=3令y=0,则x=-4∴A(-4,0),B(0,3)(2)①若平行四边形ABCD是矩形则BC⊥AB∵AO⊥BO∴△ABO∽△BCO∴OB OA =OC OB∵A(-4,0),B(0,3)∴OA=4,OB=3∴OC=t=94;②点D的纵坐标不变,∵A、B、C构成平行四边形ABCD.A(-4,0),B(0,3),C(t,0)∴A向上平移3个单位长度得到B,则C向下平移3个单位长度得到D∴D点纵坐标为-3.③将△BCD平移至△C BA∴C (-t,6),D(t-4,-3)∴(BC+BD)min=DC =(-t-t+4)2+(6+3)2=(2t-4)2+81,当t=2时,(BC+BD)min=81=9【点睛】此题考查一次函数与相似三角形的综合题型,解题关键是找到相似的三角形,得到边长之间的数量关系,难点是判断此题为造桥选址的同类型题.7已知,一次函数y=(2-t)x+4与y=-(t+1)x-2的图像相交于点P,分别与y轴相交于点A、B.其中t为常数,t≠2且t≠-1.(1)求线段AB的长;(2)试探索△ABP的面积是否是一个定值?若是,求出△ABP的面积;若不是,请说明理由;(3)当t为何值时,△ABP的周长最小,并求出△ABP周长的最小值.【答案】(1)6(2)是,6(3)t =12,△ABP 周长最小值为213+6【分析】(1)分别令x =0,求出y 值,得到A 和B 的坐标,从而可得AB 的长;(2)求出点P 坐标,利用三角形面积公式求出△ABP 的面积即可;(3)画出图形,分析得出要△ABP 的周长最小,则要AP +BP 最小,作点A 关于直线x =-2对称的点A-4,4 ,连接A B ,找到此时点P 的位置,求出直线AB 的表达式,可得点P 坐标,可得t 值,再根据点的坐标求出周长的最小值.【详解】(1)解:在y =(2-t )x +4中,令x =0,则y =4,在y =-(t +1)x -2中,令x =0,则y =-2,∴A 0,4 ,B 0,-2 ,∴AB =4--2 =6;(2)∵图像相交于点P ,∴令(2-t )x +4=-(t +1)x -2,解得:x =-2,代入y =(2-t )x +4中,y =-22-t +4=2t ,∴P -2,2t ,∴S △ABP =12×x P ×AB =12×-2 ×6=6;(3)如图,∵P -2,2t ,∴点P 在直线x =-2上,若要△ABP 的周长最小,而AB =6,∴当AP +BP 最小即可,作点A 关于直线x =-2对称的点A -4,4 ,连接A B ,与直线x =-2交于点P ,此时AP +BP ,设直线A B 的表达式为y =kx +b ,则4=-4k +b -2=b ,解得:k =-32b =-2,∴直线A B 的表达式为y =-32x -2,令x =-2,则y =1,即P -2,1 ,则2t =1,解得:t =12,此时AP =22+32=13,BP =22+32=13,∴△ABP 的周长最小值为PA +PB +AB =213+6.【点睛】本题考查了一次函数综合,最短路径问题,勾股定理,解题的关键是注意(3)中分析出要△ABP 的周长最小,则要AP +BP 最小.8如图1,已知一次函数y =x +3与x 轴,y 轴分别交于B 点,A 点,x 正半轴上有一点C ,∠ACO =60°,以A ,B ,C 为顶点作平行四边形ABCD .(1)求C点坐标.(2)如图2,将直线AB沿y轴翻折,翻折后的直线交CD于E点,在y轴上有一个动点P,x轴上有一动点Q,当DP+PQ+QE取得最小值时,求此时(DP+PQ+QE)2的值.(3)如图3,将△AOC向左平移使得点C与坐标原点O重合,A的对应点为A ,O的对应点为O ,将△A O O绕点O顺时针旋转,旋转角为α0°≤α≤180°,在旋转过程中,直线AB与直线A O 、A O交于M,G两点,在旋转过程中,△A MG能否成为等腰三角形,若能,求出所满足条件的α,若不能,请说明理由.【答案】(1)3,0(2)48+93(3)当α为15°或60°或105°或150°时,△A MG为等腰三角形【分析】(1)先求得A0,3则OA=3,然后利用特殊锐角三角函数值可求得OC的长,则可得到点C的坐标;(2)由关于y轴对称点的坐标特点可得到AE的解析式,然后依据相互平行的直线的一次项系数相同以及点C的坐标可求得CD的解析式,然后再求得点E的坐标,作点E关于x轴的对称点E′,D点关于y轴的对称点D′,连接E′D′分别交y轴和x轴与点P、Q,则D′E′的长为DP+PQ+QE的最小值,最后利用两点间的距离公式求解即可;(3)先根据题意画出图形(见答图:图2、图3、图4、图5),然后依据等腰三角形的性质性质,三角形的外角和的性质、依据旋转角的定义求解即可.【详解】(1)解:把x=0代入直线AB的解析式得:y=3,∴A0,3,∴OA=3,∵在Rt△AOC中,∠ACO=60°,∴∠CAO=90°-60°=30°,∴AC=2OC,∵AC2-OC2=OA2,∴2OC2-OC2=32,解得:OC=3或-3(舍去),∴点C的坐标为:3,0.(2)解:∵直线AE与直线AB关于y轴对称,∴AE的解析式为y=-x+3,设直线CD的解析式为y=kx+b k≠0,∵AB∥CD,∴k=1,∴直线CD的解析式为y=x+b,将点C的坐标代入得:3+b=0,解得:b=-3,∴直线CD的解析式为y=x-3,联立y=-x+3y=x-3 ,解得:x=3+32 y=3-32,∴点E的坐标为:3+32,3-32,作点E关于x轴的对称点E ,D点关于y轴的对称点D ,连接E D 分别交y轴和x轴与点P、Q,如图1所示:则D E 的长为DP+PQ+QE的最小值,∵E3+32,3-32,点E与点E 关于x轴对称,∴E 3+32,-3+32,把y=0代入y=x+3得:x=-3,∴点B的坐标为-3,0,∴BC=3+3,∵AD =AD=BC=3+3,∴D -3-3,3,∴DP+PQ+QE2=D E 2=3+32+3+32+3+3-322=48+93.(3)解:如图2所示:当GM=GA 时,∵GM=GA ,∴∠A MG=∠MA G=30°,∴∠BGO=60°,∵OB=OA,∠AOB=90°,∴∠ABO=45°,∴∠BOG=180°-45°-60°=75°,∴∠BOO =75°-60°=15°,即α=15°;如图3所示:当A M=A G时,∵A M=A G,∴∠A MG=∠A GM又∵∠A MG+∠A GM=∠BA O=30°,∴∠MGA =15°,∴∠BOG=180°-∠OBG-∠BGO=120°,∵∠O OA =60°,∴∠BOO =60°,即α=60°;如图4所示:当MG=MA 时,∵MG=MA ,∴∠MGA =∠MA G=30°,∵∠MBO=45°,∴∠BOG=15°,∴∠BOA =165°,∴∠BOO =165°-60°=105°,即α=105°.如图5所示:当A G=A M时,∵A G=A M,∠GA M=30°,∴∠MGA =75°,∵∠GBO+∠BOG=∠MGA ,∴∠BOG=75°-45°=30°,∴∠A Ox=30°,∴∠O Ox=30°,∴∠BOO =150°,即α=150°;综上所述,当α为15°或60°或105°或150°时,△A MG为等腰三角形.【点睛】本题主要考查的是一次函数的综合应用,解答本题主要应用了勾股定理,轴对称图形的性质、关于坐标轴对称点的坐标特点、等腰三角形的性质,找出DP+PQ+QE取得最小值的条件是解答问题(2)的关键,根据题意画出符合题意的图形是解答问题(3)的关键.9(1)问题解决:如图1,在平面直角坐标系xOy中,一次函数y=14x+1与x轴交于点A,与y轴交于点B,以AB为腰在第二象限作等腰直角△ABC,∠BAC=90°,点A、B、C的坐标分别为、、.(2)综合运用:①如图2,在平面直角坐标系xOy中,点A坐标(0,-6),点B坐标(8,0),过点B作x轴垂线l,点P是l上一动点,点D是在一次函数y=-2x+2图像上一动点,若△APD是以点D为直角顶点的等腰直角三角形,请求出点D的坐标.②如图2,在⑵的条件中,若M为x轴上一动点,连接AM,把AM绕M点逆时针旋转90°至线段NM,ON+AN的最小值是.【答案】(1)A(-4,0),B(0,1),C(-5,4)(2)①D(0,2)或163,-263;②65【分析】(1)利用坐标轴上点的特点可得出A、B的坐标,过点C作CD⊥x轴于D,构造出△ADC≌△BOA,求出AD,CD,即可得出结论;(2)①过点D作DF⊥y轴于F,延长FD交BP于G,设点D(m,-2m+2),求出AF,证明△AFD≌△DGP,根据DF+DG=DF+AF=8列式计算即可;②设M(t,0)过点N作NH⊥x轴交x轴于H,易证△AOM≌△MHN,可得ON+AN=t+62+t2+ t+62+t-62=S,故S可以看作点(t,t)到(-6,0)和(-6,6)两点距离之和,(t,t)在y=x上,如图,F(-6,0),E(-6,6),作F关于y=x的对称点为P,可知当E、D、P三点共线时,S取得最小值为EP,求出EP即可.【详解】(1)解:对于一次函数y=14x+1,令x=0,y=1,∴B (0,1),令y =0,则14x +1=0,∴x =-4,∴A (-4,0),∴OA =4,OB =1,即A (-4,0),B (0,1),过点C 作CD ⊥x 轴于D ,∴∠ADC =∠BOA =90°,∴∠CAD +∠ACD =90°,∵∠BAC =90°,∴∠CAD +∠BAO =90°,∴∠ACD =∠BAO ,∵△ABC 是等腰直角三角形,∴AC =AB ,在△ADC 和△BOA 中,∠ADC =∠BOA∠ACD =∠BAO AC =BA,∴△ADC ≌△BOA (AAS ),∴CD =OA =4,AD =OB =1,∴OD =OA +AD =5,∴C (-5,4);故答案为:(-4,0),(0,1),(-5,4);(2)解:①如图,过点D 作DF ⊥y 轴于F ,延长FD 交BP 于G ,∵点A 坐标(0,-6),点B 坐标(8,0),∴DF +DG =OB =8,∵点D 在直线y =-2x +2上,∴设点D (m ,-2m +2),∴F (0,-2m +2),OF =|2m -2|,AF =|2m -2-6|=|2m -8|,∵BP ⊥x 轴,B (8,0),∴G (8,-2m +2),同(1)的方法得,△AFD ≌△DGP (AAS ),∴AF =DG ,DF =PG ,∵DF +DG =DF +AF =8,∴m +|2m -8|=8,∴m =163或m =0,∴D (0,2)或163,-263;(3)设M (t ,0),过点N 作NH ⊥x 轴交x 轴于H ,根据旋转的性质易证△AOM ≌△MHN ,∴OM =HN ,OA =HM ,∴N (t +6,t ),∴ON +AN =t +62+t 2+t +6 2+t -6 2=S ,故S 可以看作点(t ,t )到(-6,0)和(-6,6)两点距离之和,(t ,t )在y =x 上,如图,∵D (t ,t )是y =x 上的动点,F (-6,0),E (-6,6),∴S =DE +DF ,∵F 关于y =x 的对称点为P (0,-6),DF =DP ,∴当E 、D 、P 三点共线时,S 取得最小值为EP =-6-0 2+6--6 2=180=65,即ON +AN 的最小值是65.故答案为:65.【点睛】本题是一次函数综合题,主要考查了一次函数的图像和性质,全等三角形的判定和性质,坐标与图形的性质,方程的思想,勾股定理等,构造全等三角形是解本题的关键.10已知一次函数y =kx +32的图象与x 轴交于点A ,与y 轴交于点B ,点M 的坐标为0,m ,其中0<m <32.(1)若点A (-32,0),过点O 作OP ⊥AM ,连接BP 并延长与x 轴交于点C ,①求k 的值;②求证:BP PC =OM OC;(2)若点A -2,0 ,求2AM +BM 的最小值.【答案】(1)①1;②见解析(2)32+2【分析】(1)①将点A 的坐标代入y =kx +32可得出答案;②过点B 作BD ∥OP 交x 轴交于点D ,延长AM 交BD 于点N ,证明△OAM ≌△OBD (ASA ),得出OM =OD;证明BPPC =DOOC,则可得出结论;(2)取点E32,0,连接BE,过点A作AH⊥BE于H,过点M作PM⊥BE于P,2AM+BM= 2AM+PM≥2AH,求出AH的长,则可得出答案.【详解】(1)①∵A-32,0在y=kx+32的图象上,∴(-32)k+32=0,∴k=1;②过点B作BD∥OP交x轴交于点D,延长AM交BD于点N,∵BD∥OP,OP⊥AM,∴AN⊥BD,∵∠AOB=∠BOD=90°,∴∠OAM+∠ADN=90°,∠OBD+∠ODB=90°,∴∠OAM=∠OBD,由题意,可知OA=OB=32,∠AOB=∠BOD=90°,∴△OAM≅△OBD ASA,∴OM=OD;∵BD∥OP,∴BP PC =DOOC,即BPPC=OMOC;(2)如图,取点E32,0,连接BE,过点A作AH⊥BE于H,过点M作PM⊥BE于P,在Rt△BOE中,OB=OE=32,∴∠OBE=45°,∴BE=2OB=6,在Rt△MPB中,∠MPB=90°,PM=BM sin∠PBM=BM sin45°=22BM,∴2AM+BM=2AM+22BM=2(AM+PM)≥2AH,(当且仅当A,M,P三点共线时取等号,此时,点P、H重合),∵S△ABE=12AE⋅OB=12BE⋅AH,∴AH=AE⋅OBBE =(32+2)⋅326=3+2,∴2AM+BM的最小值=2(3+2)=32+2.【点睛】本题是一次函数综合题,考查了一次函数图象上点的坐标特征,等腰直角三角形的性质,全等三角形的判定和性质,三角形的面积,平行线分线段成比例定理,熟练掌握直角三角形的性质是解题的关键.11如图1,一次函数y=43x+4的图象与x轴、y轴分别交于点A、B.(1)则点A的坐标为,点B的坐标为;(2)如图2,点P为y轴上的动点,以点P为圆心,PB长为半径画弧,与BA的延长线交于点E,连接PE,已知PB=PE,求证:∠BPE=2∠OAB;(3)在(2)的条件下,如图3,连接PA,以PA为腰作等腰三角形PAQ,其中PA=PQ,∠APQ=2∠OAB.连接OQ.①则图中(不添加其他辅助线)与∠EPA相等的角有;(都写出来)②试求线段OQ长的最小值.【答案】(1)(-3,0);(0,4)(2)证明见解析(3)①∠QPO,∠BAQ;②线段OQ长的最小值为125【分析】(1)根据题意令x=0,y=0求一次函数与坐标轴的交点;(2)由题意可知与∠EPA相等的角有∠QPO,∠BAQ.利用三角形内角和定理解决问题;(3)根据题意可知如图3中,连接BQ交x轴于T.证明△APE≌△QPB(SAS),推出∠AEP=∠QBP,再证明OA=OT,推出直线BT的解析式为为:y=43x+4,推出点Q在直线y=-43x+4上运动,再根据垂线段最短,即可解决问题.【详解】(1)解:在y=43x+4中,令y=0,得0=43x+4,解得x=-3,∴A(-3,0),在y=43x+4中,令x=0,得y=4,∴B(0,4);故答案为:(-3,0),(0,4).(2)证明:如图2中,设∠ABO=α,则∠OAB=90°-α,∵PB=PE,∴∠PBE=∠PEB=α,∴∠BPE=180°-∠PBE-∠PEB=180°-2α=2(90°-α),∴∠BPE=2∠OAB.(3)解:①结论:∠QPO,∠BAQ理由:如图3中,∵∠APQ=∠BPE=2∠OAB,∵∠BPE=2∠OAB,∴∠APQ=∠BPE.∴∠APQ-∠APB=∠BPE-∠APB.∴∠QPO=∠EPA.又∵PE =PB ,AP =PQ∴∠PEB =∠PBE =∠PAQ =∠AQP .∴∠BAQ =180°-∠EAQ =180°-∠APQ =∠EPA .∴与∠EPA 相等的角有∠QPO ,∠BAQ .故答案为:∠QPO ,∠BAQ .②如图3中,连接BQ 交x 轴于T .∵AP =PQ ,PE =PB ,∠APQ =∠BPE ,∴∠APE =∠QPB ,在△APE 和△QPB 中,PA =PQ∠APE =∠QPB PE =PB,∴△APE ≌△QPB (SAS ),∴∠AEP =∠QBP ,∵∠AEP =∠EBP ,∴∠ABO =∠QBP ,∵∠ABO +∠BAO =90°,∠OBT +∠OTB =90°,∴∠BAO =∠BTO ,∴BA =BT ,∵BO ⊥AT ,∴OA =OT ,∴直线BT 的解析式为为:y =43x +4,∴点Q 在直线y =-43x +4上运动,∵B (0,4),T (3,0).∴BT =5.当OQ ⊥BT 时,OQ 最小.∵S △BOT =12×3×4=12×5×OQ .∴OQ =125.∴线段OQ 长的最小值为125.【点睛】本题属于一次函数综合题,考查一次函数图象与坐标轴的交点问题、全等三角形的判定和性质、等腰三角形的性质、锐角三角函数及最短距离等知识,正确寻找全等三角形是解题的关键.12如图一次函数y 1=k1x +3的图象与坐标轴相交于点A -2,0 和点B ,与反比例函数y 2=k 2x (x >0)的图象相交于点C 2,m .(1)求出一次函数与反比例函数的解析式;(2)若点P 是反比例函数图象上的一点,连接CP 并延长,交x 轴正半轴于点D ,若PD :CP =1:2时,求△COP 的面积;(3)在(2)的条件下,在y 轴上是否存在点Q ,使PQ +CQ 的值最小,若存在请直接写出PQ +CQ 的最小值,若不存在请说明理由.【答案】(1)y 2=12x(x >0);(2)S △OPC =16;(3)45.【分析】(1)根据一次函数y 1=k 1x +3的图象过点A -2,0 ,代入解析式得0=-2k 1+3,解方程求出k 1=32,根据点C 在直线AB 上,m =32×2+3=6,可得点C (2,6),利用待定系数法求分别列函数解析式即可;(2)过点C 作CE ⊥x 轴于E ,PF ⊥x 轴于F ,先证△CED ∽△PFD ,得出CP =2PD ,求出PF =2,求出点P (6,2),利用待定系数法CP 解析式为:y 3=-x +8,当y 3=0时,x =8,求出点D (8,0),利用面积差求解即可;(3)作点C 关于y 轴对称点C ′(-2,6),连结C ′P ,可得CQ =C ′Q ,根据两点距离公式PQ +CQ =PQ +C Q ≥PC ,当C ′P 交y 轴于Q ,利用勾股定理求出最小值即可.【详解】解:(1)∵一次函数y 1=k 1x +3的图象过点A -2,0 ,代入解析式得:0=-2k 1+3解得:k 1=32,∴一次函数解析式为:y 1=32x +3,点C 在直线AB 上,m =32×2+3=6,∴点C (2,6),∵点C 在反比例函数y 2=k 2x(x >0)图像上,∴k 2=xy =2×6=12,∴y 2=12x(x >0);(2)过点C 作CE ⊥x 轴于E ,PF ⊥x 轴于F ,∴CE ∥PF ,∴∠ECD =∠FPD ,∠AED =∠PFD ,∴△CED ∽△PFD ,∴CE PF =CD PD,∵PD :CP =1:2,∴CP =2PD ,∴CD =CP +PD =2PD +PD =3PD ,∵EC =6,∴6PF =3PD PD=3,∴PF =2,∵点P 在y 2=12x (x >0)上,∴2=12x,解得x =6,∴点P (6,2),设CP 解析式为:y 3=mx +n ,过C 、P 两点,代入坐标得:6m +n =22m +n =6 ,解得m =-1n =8 ,∴CP 解析式为:y 3=-x +8,当y 3=0时,x =8,∴点D (8,0)∴S △OPC =S △DOC -S △POD =12OD ⋅CE -12OD ⋅PF =12×8×6-12×8×2=16;(3)作点C 关于y 轴对称点C ′(-2,6),连结C ′P ,∵CQ =C ′Q ,∴PQ +CQ =PQ +C Q ≥PC ,当C ′P 交y 轴于Q ,PQ +CQ 的值最小,∴PQ +CQ 最小=PC =6+2 2+(6-2)2=45.【点睛】本题考查待定系数法求反比列函数解析式,三角形相似判定与性质,待定系数法求直线解析式,用割补法求三角形面积,轴对称,最短路径问题,掌握待定系数法求反比列函数解析式,三角形相似判定与性质,待定系数法求直线解析式,用割补法求三角形面积,轴对称,最短路径问题常作对称点,与对称点连线找交点解决问题.13【定义】斜率,表示一条直线相对于横轴的倾斜程度.当直线l 的斜率存在时,对于一次函数y =kx +b (k ≠0),k 即为该函数图象(直线)的斜率.当直线过点(x 1,y 1)、(x 2,y 2)时,斜率k =y 2-y 1x 2-x 1,特别的,若两条直线l 1⊥l 2,则它们的斜率之积k 1•k 2=-1,反过来,若两条直线的斜率之积k 1•k 2=-1,则直线l 1⊥l 2【运用】请根据以上材料解答下列问题:(1)已知平面直角坐标系中,点A (1,3)、B (m ,-5)、C (3,n )在斜率为2的同一条直线上,求m 、n 的值;(2)在(1)的条件下,点P 为y 轴上一个动点,当∠APC 为直角时,求点P 的坐标;(3)在平面直角坐标系中另有两点D (3,2)、E (-1,-6),连接DA 并延长至点G ,使DA =AG ,连接GE 交直线AB 于点F ,M 为线段FA 上的一个动点,求DM +55MF 的最小值.【答案】(1)-3;7;(2)(0,4)或(0,6);(3)4【分析】(1)设直线的解析式为y =2x +b ,将A (1,3)代入求出b =1,得到函数解析式,再将点B 、C 分别代入求出m 、n 的值;(2)设点P (0,y ),当∠APC 为直角时,根据K PA •K PC =-1,得到y -30-1⋅y -70-3=-1,求解即可;(3)连接DE ,证得AB ∥DE ,AB ⊥DA ,DE ⊥DA ,求出AD 、DE 、DG ,利用勾股定理求出EG ,及sin ∠GFA 的值,过M 作MN ⊥GF 于N ,则MN =55MF ,过点D 作DH ⊥GE 于H ,则DH 即为最小值,由DH •GE =DG •DE 得到DH =4.【详解】解:(1)设直线的解析式为y =2x +b ,将A (1,3)代入得b =1,∴直线的解析式为y =2x +1,将B (m ,-5)、C (3,n )两点分别代入解析式,得m =-3,n =7;(2)设点P (0,y ),当∠APC 为直角时,有K PA •K PC =-1,由(1)知,A (1,3)、C (3,7),∴y -30-1⋅y -70-3=-1,解得y =4或y =6,∴点P 的坐标为(0,4)或(0,6).(3)如图,连接DE ,由题意知,K AB =2,K DE =2-(-6)3-(-1)=2,K DA =3-21-3=-12,∵K AB =K DE ,K AB ⋅K DA =2×-12=-1,∴AB ∥DE ,AB ⊥DA ,DE ⊥DA ,∴AD =(1-3)2+(3-2)2=5,DE =45,DG =2AD =25,∴EG =DG 2+DE 2=10,∴sin ∠GFA =sin ∠GED =2510=55,过M 作MN ⊥GF 于N ,则MN =55MF ,∴DM +55MF =DM +MN ,过点D 作DH ⊥GE 于H ,则DH 即为最小值.由DH •GE =DG •DE ,得DH =4,即DM+55MF的最小值为4.【点睛】此题考查胡不归问题的综合知识,正确理解题意中斜率的计算公式,勾股定理,最小值问题是解题的关键.14如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点B的坐标为(23,4),一次函数y= -33x+b的图象与边OC、AB、x轴分别交于点D、E、F,∠DFO=30°,并且满足OD=BE,点M是线段DF上的一个动点.(1)求b的值;(2)连接OM,若ΔODM的面积与四边形OAEM的面积之比为1:3,求点M的坐标;(3)求OM+12MF的最小值.【答案】(1)b=3;(2)M233,73;(3)92【分析】(1)利用矩形的性质,用b表示点E的坐标,再利用待定系数法即可求解;(2)首先求出四边形OAED的面积,再根据条件求出△ODM的面积,即可解决问题;(3)过点M作MN⊥x轴交于点N,则OM+12MF=OM+MN,即可转化为求OM+MN的最小值,作点O关于一次函数的对称点O ,过点O 作x轴的垂线交x轴于点N ,交一次函数于点M,即OM+MN的最小值为O N ,算出长度即可.【详解】(1)在y=-33x+b中,令x=0,则y=b,∴点D的坐标为(0,b),∵OD=BE,B(23,4),∴E(23,4-b),把E(23,4-b)代入y=-33x+b中得:4-b=-33×23+b,解得:b=3;(2)由(1)得一次函数为y=-33x+3,D(0,3),E(23,1),∴OD=3,AE=1,OA=23,∴S四边形OADE =12(OD+AE)⋅OA=12×(3+1)×23=43,∵ΔODM的面积与四边形OAEM的面积之比为1:3,∴ΔODM的面积与四边形OADE的面积之比为1:4,∴S△ODM=14S四边形OADE=3,设点M 的横坐标为a ,则12×3a =3,解得:a =233,把x =233代入y =-33x +3中得:y =73,∴M 233,73;(3)如图所示,过点M 作MN ⊥x 轴交于点N ,∵∠DFO =30°,∴MN =12MF ,∴OM +12MF =OM +MN ,作点O 关于一次函数的对称点O ,且OO '与直线DF 交于Q 点,过点O 作x 轴的垂线交x 轴于点N ,∴OM =O M ,∴OM +12MF =OM +MN =O M +MN ,当O 、M 、N 在同一直线时O M +MN 最小,即OM +12MF =OM +MN =O M +MN 的最小值为O N ,∵∠DFO =30°,∴∠ODF =60°,∠DOQ =30°,∠O ON =90°-30°=60°,在Rt △ODQ 中,OQ =OD ⋅sin60°=3×32=332,∴OO =2OQ =33,在Rt △ON O 中.O N =OO sin60°=33×32=92,∴OM +12MF 的最小值为92.【点睛】本题考查几何图形与函数的综合题,包括一次函数、矩形的性质、四边形的面积,解直角三角形以及胡不归问题,属于中考压轴题.15如图1,一次函数y =34x -6的图象与坐标轴交于点A ,B ,BC 平分∠OBA 交x 轴与点C ,CD ⊥AB ,垂足为D .(1)求点A ,B 的坐标;(2)求CD 所在直线的解析式;(3)如图2,点E 是线段OB 上的一点,点F 是线段BC 上的一点,求EF +OF 的最小值.。

中考数学专题利用”将军饮马“解决线段最值问题

中考数学专题利用”将军饮马“解决线段最值问题
解题思路:要求AM+MN+NB的最小值,MN为定值,即要求AM+BN的最小值.通 过平移构造平行四边形将线段AM转化为A′N,此时问题转化为直线同侧求两条线段和 的最小值问题.
针对训练 2. 在平面直角坐标系中,矩形OACB的顶点O为坐标原点,顶点A、B分别在x轴、y轴 的正半轴上,OA=3,OB=4,D为边OB的中点,且E、F为边OA上的两个动点,且 EF=2,当四边形CDEF的周长最小时,求点E、F的坐标.
在平面直角坐标系中矩形oacb的顶点o为坐标原点顶点ab分别在x轴y轴轴的正半轴上oa3ob4d为边ob的中点且ef为边oa上的两个动点且ef2当四边形cdef的周长最小时求点ef的坐标
微专题 利用“将军饮马”解决线段最值问题
模型一 “一线两点”型(一个动点+两个定点) (1)异侧线段和最小值问题 模型分析
5. 如图,抛物线的顶点D(-1,4),抛物线与x轴交于A、B两点(A在B的左侧),与y轴交 于点C(0,3).已知点E(0,-3),点F为抛物线对称轴上一动点,当△CEF的周长取得 最小值时,点F的坐标为___________.
第5题图
(3)同侧线段差最大值问题
模型分析 问题:两定点A、B位于直线l同侧,在直线l上找一点P,使得|PA-PB|的值最大. 解题思路:当A、B、P三点不共线时,根据三角形任意两边之差小于第三边可得|PAPB|<AB,当A、B、P三点共线时,|PA-PB|=AB,则|PA-PB|的最大值为线段AB的 长.连接AB并延长,与直线l的交点即为点P.
针对训练 1. 如图,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,点G、H分别是边BC、 CD上的动点,则四边形EFGH周长的最小值为________.
第1题图

初中数学最值系列之将军饮马

初中数学最值系列之将军饮马

最值系列之——将军饮马一、什么是将军饮马?【问题引入】“白日登山望烽火,黄昏饮马傍交河”,这是唐代诗人李颀《古从军行》里的一句诗。

而由此却引申出一系列非常有趣的数学问题,通常称为“将军饮马”。

【问题描述】如图,将军在图中点A处,现在他要带马去河边喝水,之后返回军营,问:将军怎么走能使得路程最短?A B将军军营河【问题简化】如图,在直线上找一点P使得P A+PB最小?【问题分析】这个问题的难点在于PA+PB是一段折线段,通过观察图形很难得出结果,关于最小值,我们知道“两点之间,线段最短”、“点到直线的连线中,垂线段最短”等,所以此处,需转化问题,将折线段变为直线段.【问题解决】作点A关于直线的对称点A’,连接P A’,则P A’=P A,所以P A+PB=P A’+PB当A’、P、B三点共线的时候,P A’+PB=A’B,此时为最小值(两点之间线段最短)【思路概述】作端点(点A或点B)关于折点(上图P点)所在直线的对称,化折线段为直线段.二、将军饮马模型系列【一定两动之点点】在OA、OB上分别取点M、N,使得△PMN周长最小.B B此处M、N均为折点,分别作点P关于OA(折点M所在直线)、OB(折点N所在直线)的对称点,化折线段PM+MN+NP为P’M+MN+NP’’,当P’、M、N、P’’共线时,△PMN周长最小.【例题】如图,点P是∠AOB内任意一点,∠AOB=30°,OP=8,点M和点N分别是射线OA和射线OB上的动点,则△PMN周长的最小值为___________.P O B AMN【分析】△PMN周长即PM+PN+MN的最小值,此处M、N均为折点,分别作点P关于OB、OA对称点P’、P’’,化PM+PN+MN为P’N+MN+P’’M.P''A当P’、N、M、P’’共线时,得△PMN周长的最小值,即线段P’P’’长,连接OP’、OP’’,可得△OP’P’’为等边三角形,所以P’P’’=OP’=OP=8.A【两定两动之点点】在OA、OB上分别取点M、N使得四边形PMNQ的周长最小。

专题六—线段最值问题之将军饮马问题.doc

专题六—线段最值问题之将军饮马问题.doc
让我们跟着上面讲的五步骤來做一下本题第一步一一找到你要作轴对称的点很明显de均可第二步一一找到你要作关于哪条直线的对称点根据上面给的方法是p所在直线即为ac第三部一一作出轴对称图形虽然第一步说了对称点即为点b第四步一一连接与直线的交点即为所要找的点p连接be与ac交点即为点p有的学生会连接bd然后把bd与ac的交点误以为是点p明显是没有按照基本模型来第五步一一计算线段be即为所求最小值由于aabe为等边三角形所以beab由于正方形面积为12所以边长ab2a3即pdpe的最小值为2a3还要把dp连起来去计算dppe的我也是醉了课堂练习1在边长为2cm的正方形abcd中点q为bc边的中点点p为对角线ac一动点连接pbpq则apbq周长的最小值为2在菱形abcd屮对角线ac6bd8点ef分别是边abbc的中点点p在ac上运动在运动过程中存在pepf3如图在边长为2的等边zabc中d为bc的中点e是ac边上一点则bede的最小值为4如图在rtaabc中zc90zb二60
学员编号: 学员姓名:
授课 类型 授课日 期时段
T (同步知识主题)
辅导讲义
小初高中精品学科讲义
年 级:初三 辅导科目:数学
课 时 数:3 学科教师:
C (专题方法主题)
T (学法与能力主题)
线段最值问题—将军饮马问题
唐朝诗人李欣的诗《古从军行》开头两句说:"白日登山望烽火,黄昏饮马傍交河."诗中隐含着一个有趣的 数学问题.如图所示,诗中将军在观望烽火之后从山脚下的 A 点出发,走到河边饮马后再到 B 点宿营.请问怎样 走才能使总的路程最短?
落在 AB 边上的点 E 处,若点 P 是直线 AD 上的动点,则△ PEB 的周长的最小值是

5、如图,在锐角△ ABC 中,AB=4,∠BAC=45°,∠BAC 的平分线交 BC 于点 D,M、N 分别是 AD 和 AB 上的动

2020年九年级中考数学三轮复习之将军饮马 压轴题突破

2020年九年级中考数学三轮复习之将军饮马 压轴题突破

中考数学第三轮复习之将军饮马习题汇编将军饮马用于解决:PA+PB类线段最小值问题或|PA-PB|类最大值问题,其中动点P在某条直线上运动,A,B均为定点。

其解题步骤为标准三步曲:Step1:定河流:动点所在的直线为河流;Step2:作对称:做其中一个定点关于河流的对称点;Step3:连线段:对称点与剩余一个定点的连线与河流的交点即为所求的动点位置。

如下图所示:常考点:①求AP+BP的最小值;②求△ABP周长的最小值;③求点P的坐标;【习题练习】1、如图,正方形ABCD的面积为16,△ABE是等边三角形,点E在正方形的内部,在对角线AC上有一动点P,当PD+PE最小时,这个最小值是________。

【答案】42、如图,菱形ABCD 中,∠BAD=60°,M 是AB 的中点,P 是对角线AC 上一动点,若AB 长是3,则PM+PB 的最小值为________。

【答案】323 3、在平面直角坐标系中,有A(3,2),B(4,2)两点,现在另取一点C(n,0),当n=____时,AC+BC 的值最小。

【答案】25 4、已知点A(1,3),B(5,2),在x 轴上找一点P ,使得|AP -BP|最大,则P 点的坐标为________。

【答案】)0,13(5、如图,点A(a,1),B(-1,b)都在双曲线)0(2<-=x xy 上,点P ,Q 分别是x 轴、y 轴上的动点,当四边形PABQ 的周长取得最小值时,PQ 所在直线的解析式为_________。

【答案】1+=x y6、如图,在边长为10的菱形ABCD 中,对角线BD=16,点E 是AB 的中点,P 和Q 是BD 上的动点,且PQ=2,则四边形AEPQ 的周长的最小值为_______。

【答案】857+7、如图,抛物线y=ax ²+c(a>0)经过梯形ABCD 的四个顶点,梯形的底AD 在x 轴上,其中A(-2,0),B(-1,-3)。

2020 中考 将军饮马+变式最值

2020 中考 将军饮马+变式最值

使用日期:2020年 月 日 2020 中考 数学 培优压轴题训练 第 讲 “将军饮马”型最值问题模型分析:情景模式 作图方法 证明过程题目: A ,B 为定点,在直线l 上找一点P ,使得PA+PB 的值最小?原型变式①题目:如图,A 为定点,在直线1l ,2l 上分别找一点P ,Q ,使得AP+PQ+QA 的值最小?变式②题目:如图,A ,B 为定点,在直线1l ,2l 上分别找一点P ,Q ,使得AP+PQ+QB 的值最小?变式③变式④例1 (中考题-改编)如图,已知点A (-4,8)和点B (2,n )在抛物线2ax y =上.(1)求a 的值;(2)在x 轴上找一点Q ,使得AQ+BQ 最短,求出点Q 的坐标;(3)平移抛物线,记平移后A 的对应点为A ',点B 的对应点为 B ',当抛物线向左平移到某个位置时,B C C A '+'最短,求此时抛物线的函数解析式.例2 如图,抛物线3518532+-=x x y 和y 轴的交点为A ,M 为OA 的中点,若有一动点P ,自M 点处出发,沿直线运动到x 轴上的某点(设为点E ),再沿直线运动到该抛物线对称轴上的某点(设为点F ),最后又沿直线运动到点A ,求使点P 运动的总路程最短的点E ,点F 的坐标,并求出这个最短路程的长.例3 (2017 花都一模16题)如图,四边形ABCD 中,∠BAD=120°,∠B=∠D=90°,在BC 、CD 上分别找一点M 、N ,使△AMN 周长最小时,则∠AMN+∠ANM 的度数为 .例4 如图,∠MON=20°,A为射线OM上一点,OA=4,D为射线ON上一点,OD=8,C为射线AM 上任意一点,B是线段OD上任意一点,那么折线ABCD的长AB+BC+CD的最小值是 .例5如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上,顶点B的坐标为(3,3),点C的坐标为(12,0),点P为斜边OB上的一动点,则PA+PC的最小值为______ .例6 已知,如图,二次函数()0322≠-+=a a ax ax y 图象的顶点为H ,与x 轴交于A ,B 两点(B 在A 点右侧),点H 、B 关于直线333:+=x y l 对称. (1)A 坐标为 ;B 坐标为 ;H 坐标为 ;(2)求二次函数解析式;(3)过点B 作直线BK ∥AH 交直线l 于K 点, M 、N 分别为直线AH 和直线l 上的两个动点,连接HN 、NM 、MK ,求HN+NM+MK 和的最小值.例7 如图,地上放着一个长、宽、高分别为50cm 、40cm 、30cm 的箱子,位于角A 处的一只蚂蚁发现了位于角B 处的一只苍蝇,问:蚂蚁沿着箱面怎样爬才能使它到B 处的路程最短,最短路程是多少?(结果精确到0.01cm )例8 如图所示,已知一个圆柱体杯子高为6,直径为 18,点O 是CD 的中点,一只蚂蚁在A 处(杯子外面),想吃到杯子内部点O 处的糖,当P 在何处即PC= 时,蚂蚁爬行的路程最短.例9 圆锥的底面半径为1,母线长为3,一只蚂蚁从底面圆周上的点B出发沿圆锥侧面爬到过母线AB的轴截面上另一母线AC的中点D.问蚂蚁沿怎样的路线爬行,使路程最短?最短的路程是多少?【巩固练习】1.已知点A(1,1)和点B(3,2),在直线y=-x上有一个点P,满足PA+PB最小,则PA+PB的最小值是 .2.如图,长方体的长、宽、高分别为8、4、5,一只蚂蚁沿长方体表面从顶点A爬到顶点B,则它走过的路程最短为 .3.邮递员从邮局出发,分别到村庄A、B、C投递邮件,其所走的顺序为邮局A→B→C→邮局,则邮局应建在公路l的何位置,可使邮递员走的路程最短?4.八(二)班举行元旦文艺晚会,桌子摆成两条直线(如图中所示的AO,BO),AO桌面上摆满了桔子,OB 桌面上摆满了糖果,坐在C处的小花先拿桔子再拿糖果,然后送给D处的小红,最后回到C处.请你帮助她设计一条行走路线,使其所走的总路程最短(尺规作图,并写出作法,不需说明理由)5.如图:有一圆锥形粮仓,其轴截面是边长为6m的正三角形ABC,一只蚂蚁从圆锥底面圆周上点B出发,沿着圆锥的侧面爬行到达母线AC的中点P,则蚂蚁爬行的最短路程是 .6.如图,在边长为2cm的正方形ABCD中,点Q为BC边的中点,点P为对角线AC上一动点,连接PB、PQ,则△PBQ周长的最小值为______cm(结果不取近似值).7.已知点A是半圆上的一个三等分点,点B是弧AN的中点,点P是半径ON上的动点,若⊙O的半径长为1,则 AP+BP的最小值为__________.8. 如图所示,有一圆柱体高为10cm ,底面圆的半径为4cm , 1AA ,1BB 为相对的两条母线,在1AA 上有一只蜘蛛在Q 点,QA=3cm ;在1BB 上有一只苍蝇在P 点,1PB =2cm ,蜘蛛沿圆柱体侧面爬到P 点吃苍蝇,最短的路径是 cm.(结果用带和根号的式子表示)9. 已知直线l 为x+y=8,点P (x ,y )在l 上,点A 的坐标为(6,0).在直线l 上有一点P ,使OP+PA 的和最小,求点M 的坐标.10. (2018 越秀八下期末16题)如图,在边长为2的等边三角形中,D 是BC 的中点,点E 在线段AD 上,连接BE ,在BE 的下方作等边△BEF ,连接DF.当△BDF 的周长最小时,∠DBF 的度数是 .11. 如图,∠AOB=α,P 在∠AOB 内,OP=2,M 和N 分别为OA ,OB 上一动点,当△PMN 的周长为最小值2时,α= .12. 如图,在平面直角坐标系中,直线x=4与y=32x+b 的图象交于点A (4,341),直线y=-21x+4与直线y=32x+b 交于点B ,与x 轴交于点C . (1)求点B 的坐标; (2)直线l :y=-21x+4与y 轴交于点D ,在直线x=4上是否存在点P 使得△PDC 是等腰直角三角形?若存在,请直接写出点P 的坐标,若不存在,请说明理由.(3)在平面直角坐标系中,点Q 从点B 出发沿适当路径运动到直线x=4上的点M ,然后再沿适当路径运动到y 轴上的点N ,最后再沿适当路径运动到点C .当Q 点的运动路径最小时,求点M ,N 的坐标及运动路径的最小值;。

将军饮马等8类常见最值问题(原卷版)

将军饮马等8类常见最值问题(原卷版)

将军饮马等8类常见最值问题题型一 两定一动型(线段和差最值问题) 题型二 双动点最值问题(两次对称)题型三 动线段问题:造桥选址(构造平行四边形) 题型四 垂线段最短题型五 相对运动平移型将军饮马 题型六 通过瓜豆得出轨迹后将军饮马 题型七 化斜为直,斜大于直 题型八 构造二次函数模型求最值一、单动点问题【问题1】在直线l 上求一点P ,使PA +PB 最小问题解决:连接AB ,与l 交点即为P ,两点之间线段最短PA +PB 最小值为AB【问题2】在直线l 上求一点P ,使PA +PB 最小lA l问题解决:作B 关于l 的对称点B '⇒PB =PB ',则PA +PB =PA +PB ',当A ,P ,B '共线时取最小,原理:两点之间线段最短,即PA +PB 最小值为AB '【问题3】在直线l 上求一点P ,使|PA -PB |最大 问题解决:连接AB ,当A ,B ,P 共线时取最大原理:三角形两边之和大于第三边,在△AB 'P 中,|PA -PB '|≤AB '【问题4】在直线l 上求一点P ,使|PA -PB |最大问题解决:作B 关于直线l 的对称点B '⇒PB =PB ',|PA -PB |=|PA -PB '| 原理:三角形两边之和大于第三边,连接AB ',在△AB 'P 中|PA -PB '|≤AB 'llllll二、双动点问题(作两次对称)【问题5】在直线1l ,2l 上分别求点M ,N ,使△PMN 周长最小问题解决:分别作点P 关于两直线的对称点P ’和P '',PM =P 'M ,PN =P ''N ,原理:两点之间线段最短,P ',P '',与两直线交点即为M ,N ,则AM +MN +PN 的最小值为线段P 'P ''的长【问题6】P ,Q 为定点,在直线1l ,2l 上分别求点M ,N ,使四边形PQMN 周长最小 问题解决:分别作点P ,Q 关于直线1l ,2l 的对称点P ’和Q ',PM =P 'M ,QN =Q 'N原理:两点之间线段最短,连接P 'Q ',与两直线交点即为M ,N ,则PM +MN +QN 的最小值为线段P 'Q '的长,周长最小值为P 'Q '+PQl 1l 1l 1l 1【问题7】A ,B 分别为1l ,2l 上的定点,M ,N 分别为1l ,2l 上的动点,求AN MN BM ++最小值 问题解决:分别作A ,B 关于1l ,2l 的对称点'A ,'B ,则'AN A N =,'BM B M =,''A B 即所求 原理:两点之间距离最短,A ',N ,M ,B '共线时取最小,则AN +MN +BM =A 'N +MN +B 'M ≤A 'B '三、动线段问题(造桥选址)【问题8】直线m ∥n ,在m ,n 上分别求点M ,N ,使MN ⊥m ,且AM +MN +BN 的最小值 问题解决:将点B 向上平移MN 的长度单位得B ',连接B 'M ,当AB 'M 共线时有最小值 原理:通过构造平行四边形转换成普通将军饮马,AM +MN +BN =AM +MN +B 'M ≤AB '+MNl 2l 2n mn m【问题9】在直线l 上求两点M ,N (M 在左)且MN =a ,求AM MN BN ++的最小值问题解决:将B 点向左移动a 个单位长度,再作B '关于直线l 的对称点B '',当''AB M 共线有最小值原理:通过平移构造平行四边''''BB MN BN B M B M ⇒==,''''AM MN BN AM MN B M AB ≤++=++四、垂线段最短【问题10】在直线1l ,2l 上分别求点A ,B ,使PB +AB 最小问题解决:作P 关于2l 的对称点'P ,作1'P A l ⊥于A ,交2l 于B ,'P A 即所求 原理:点到直线,垂线段最短,''PB AB P B AB P A ≤+=+lll1l 1五、相对运动,平移型将军饮马【问题11】在直线l 上求两点M ,N (M 在左)且MN =a ,求AM +AN 的最小值问题解决:相对运动或构造平行四边形 策略一:相对运动思想过点A 作MN 的平行线,相对MN ,点A 在该平行线上运动,则可转化为普通饮马问题策略二:构造平行四边形等量代换,同问题9.六、瓜豆轨迹,手拉手藏轨【问题12】如图,点P 在直线BC 上运动,将点P 绕定点A 逆时针旋转90°,得到点Q ,求Q 点轨迹?问题解决:当AP 与AQ 夹角固定且AP :AQ 为定值的话,P 、Q 轨迹是同一种图形.当确定轨迹是线段的时候,可以任取两个时刻的Q 点的位置,连线即可,比如Q 点的起始位置和终点位置,连接即得Q 点轨迹线段.llA''Q 2Q 1ABC原理:由手拉手可知12ABC AQ Q △≌△,故21CB AQ Q A =∠∠,故Q 点轨迹为直线七、化斜为直,斜大于直【问题13】已知:AD 是Rt ABC △斜边上的高 (1)求ADBC的最大值;(2)若2AD =,求BC 的最大值问题解决:取BC 中点M ,(1)则12AD AM BC BC ≤=;(2)224BC AM AD =≤= 八、构造二次函数求最值这类问题一般无法通过纯几何方法来解决或几何方法比较复杂,需要通过面积法或者构造全等、相似建立等量关系,将待求的线段或图形的面积用含有自变量的式子来表示,一般是一个二次函数或者换元后是一个二次函数,然后通过配方得到最值.当然,配方的目的是为了避开基本不等式这个超纲的知识点,如果是选择题或填空题,你可以直接用基本不等式来秒杀,不需要配方.【问题14】正方形ABCD 的边长为6,点Q 在边CD 上,且3CD CQ =,P 是边BC 上一动点,连接PQ ,过点P 作EP PQ ⊥交AB 边于点E ,设BP 的长为x ,则线段BE 长度的最大值为 .问题解决:根据题意,作出图形,根据两个三角形相似的判定得到∽△△PCQ EBP ,进而根据相似比得到()219322BE x =−−+,利用二次函数求最值方法求解即可得到答案 【详解】易知∽△△PCQ EBP ∴,QC PCBP BE ∴=, 3CD CQ =,6CD =,∴2QC =,26x x BE−∴=, ∴()()()()221119663062222BE x x x x x x =−=−−=−−+≤≤,BB102−< ,∴()219322BE x =−−+在3x =时有最大值,最大值为92题型一 两定一动型(线段和差最值问题)2.透明圆柱形容器(容器厚度忽略不计)的高为12cm ,底面周长为10cm ,在容器内壁离底部3cm的点B 处有一饭粒,此时一只蚂蚁正好在容器外壁且离容器上沿3cm 的点A 处.求蚂蚁吃到饭点C 的坐标为(1,0),且∠AOB =30°点P 为斜边OB 上的一个动点,则P A +PC 的最小值为( )4.如图,点A ,B 在直线MN 的同侧,A 到MN 的距离8AC =,B 到MN 的距离5BD =,已知4CD =,5.如图,在矩形ABCD 中,AB =3,BC =5.动点P 满足S △PBC =S 矩形ABCD .则点P 到B ,C 两点距离之和PB+PC 的最小值为 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 第 1 页 共 12 页

【模型解析】 2020 中考专题 8——最值问题之将军饮马 班级 姓名 .

总结:以上四图为常见的轴对称类最短路程问题,最后都转化到:“两点之间,线段最短”解决。 特点:①动点在直线上;②起点,终点固定; 方法:作定点关于动点所在直线的对称点。 【例题分析】 例 1.如图,在平面直角坐标系中,Rt△OAB 的顶点 A 在 x 轴的正半轴上,顶点 B 的坐标为(3, 3 ),

点 C 的坐标为( 1 ,0),点 2 P 为斜边 OB 上的一动点,则 PA+PC 的最小值为 .

例 2.如图,在五边形 ABCDE 中,∠BAE=120°,∠B=∠E=90°,AB=BC=1,AE=DE=2, 在 BC、DE 上分别找一点 M、N. (1)当△AMN 的周长最小时,∠AMN+∠ANM= ; (2)求△AMN 的周长最小值.

例 3.如图,正方形 ABCD 的边长为 4,点 E 在边 BC 上且 CE=1,长为 2 的线段 MN 在 AC 上运动. (1) 求四边形 BMNE 周长最小值; (2) 当四边形 BMNE 的周长最小时,则 tan∠MBC 的值为 . [南瓜讲数学]系列之中考专题

2 图 5

第 2 页 共 12 页

例 4.在平面直角坐标系中,已知点 A(一 2,0),点 B(0,4),点 E 在 OB 上,且∠OAE=∠OBA.如图,将△AEO 沿 x 轴向右平移得到△AE′O′,连接 A'B、BE'.当 AB+BE'取得最小值时,求点 E'的坐标.

例 5.如图,已知正比例函数 y=kx(k>0)的图像与 x 轴相交所成的锐角为 70°,定点 A 的坐标为(0, 4),P 为 y 轴上的一个动点,M、N 为函数 y=kx(k>0)的图像上的两个动点,则 AM+MP+PN 的最小值为 .

【巩固训练】 1. 如图 1 所示,正方形 ABCD 的面积为 12,△ABE 是等边三角形,点 E 在正方形 ABCD 内,在对角线 AC 上有一点 P,使 PD+PE 的和最小,则这个最小值为 .

图 1 图 2 图 3 图 4 2. 如图 2,在菱形 ABCD 中,对角线 AC=6,BD=8,点 E、F、P 分别是边 AB、BC、AC 上的动点,PE+PF 的最小值是 . 3. 如图 3,在边长为 2 的等边△ABC 中,D 为 BC 的中点,E 是 AC 边上一点,则 BE+DE 的最小值为 . 4. 如图 4,钝角三角形 ABC 的面积为 9,最长边 AB=6,BD 平分∠ABC,点 M、N 分别是 BD、BC 上的动点,则 CM+MN 的最小值为 . 5. 如图 5,在△ABC 中,AM 平分∠BAC,点 D、E 分别为 AM、AB 上的动点, (1)若 AC=4,S△ABC=6,则 BD+DE 的最小值为 (2) 若∠BAC=30°,AB=8,则 BD+DE 的最小值为 . (3) 若 AB=17,BC=10,CA=21,则 BD+DE 的最小值为 . [南瓜讲数学]系列之中考专题 第 3

6. 如图 6,在△ABC 中,AB=BC=4,S△ABC=4一点,则 PK+QK 的最小值为 . ,点 P、Q、K 分别为线段 AB、BC、AC 上任意

图 6 图 7 图 8 图 9 7. 如图 7,AB 是⊙O 的直径,AB=8,点 M 在⊙O 上,∠MAB=20°,N 是弧 MB 的中点,P 是直径 AB 上的一动点,则 PM+PN 的最小值为 . 8. 如图 8,在锐角△ABC 中,AB=4,∠BAC=45°,∠BAC 的平分线交 BC 于点 D,M、N 分别是 AD 和 AB 上的动点,则 BM+MN 的最小值是 . 9. 如图 9,圆柱形玻璃杯高为 12cm、底面周长为 18cm,在杯内离杯底 4cm 的点 C 处有一滴蜂蜜, 此时一只蚂蚁正好在杯外壁,离杯上沿 4cm 与蜂蜜相对的点 A 处,则蚂蚁到达蜂蜜的最短距离为 cm. 10. 如图 10,菱形 OABC 中,点 A 在 x 轴上,顶点 C 的坐标为(1, OC、OB 上,则 CE+DE+DB 的最小值是 . ),动点 D、E 分别在射线

图 10 图 11 图 12 图 13 11. 如图 11,点 A(a,1)、B(-1,b)都在双曲线 y=- 3 (x<0)上,点 P、Q 分别是 x 轴、y 轴上 x

的动点,当四边形 PABQ 的周长取最小值时,PQ 所在直线的解析式是 . 12. 如图 12,点 P 是∠AOB 内任意一点,OP=5cm,点 M 和点 N 分别是射线 OA 和射线 OB 上的动点,△PMN 周长的最小值是 5cm,则∠AOB 的度数是 . 13. 如图 13,∠AOB=30°,点 M、N 分别在边 OA、OB 上,且 OM=1,ON=3,点 P、Q 分别在边 OB、OA 上,则 MP+PQ+QN 的最小值是 . 14. 如图 14,在 Rt△ABC 中,∠ACB=90°,点 D 是 AB 边的中点,过 D 作 DE⊥BC 于点 E. (1)点 P 是边 BC 上的一个动点,在线段 BC 上找一点 P,使得 AP+PD 最小,在下图中画出点 P; (2)在(1)的条件下,连接 CD 交 AP 于点 Q,求 AQ 与 PQ 的数量关系;

图 14

3 3 [南瓜讲数学]系列之中考专题

第 4

15. 在矩形 ABCD 中,AB=6,BC=8,G 为边 AD 的中点. (1) 如图 1,若 E 为 AB 上的一个动点,当△CGE 的周长最小时,求 AE 的长. (2) 如图 2,若 E、F 为边 AB 上的两个动点,且 EF=4,当四边形 CGEF 的周长最小时,求 AF 的长.

16. 如图,抛物线 y   1 x2  2x  4 交y 轴于点B,点A 为x 轴上的一点,OA=2,过点A 作直线MN  AB 2

交抛物线与 M、N 两点. (1) 求直线 AB 的解析式; (2) 将线段 AB 沿 y 轴负方向平移 t 个单位长度,得到线段 A1B1 ,求 MA1  MB1 取最小值时实数 t 的值. [南瓜讲数学]系列之中考专题

第 5

3 31

7

2020 中考专题 8——最值问题之将军饮马 参考答案 例 1.解:作 A 关于 OB 的对称点 D,连接 CD 交 OB 于 P,连接 AP,过 D 作 DN⊥OA 于 N, 则此时 PA+PC 的值最小, ∵DP=PA,∴PA+PC=PD+PC=CD,∵B(3, ),∴AB= ,OA=3, ∵tan∠AOB= AB = 3 ,∴∠AOB=30°,∴OB=2AB=2 , OA 3 1 1 3 3 由三角形面积公式得: ×OA×AB= 2 ×OB×AM,∴AM= 2 ,∴AD=2× 2 =3, 2

∵∠AMB=90°,∠B=60°,∴∠BAM=30°,∵∠BAO=90°,∴∠OAM=60°,

∵DN⊥OA,∴∠NDA=30°,∴AN= 1 AD= 2 3 ,由勾股定理得: 2 DN= 3 3 , 2

∵C( 1 ,0),∴CN=3﹣ 1 ﹣

2 2 3 =1,在 Rt△DNC 中,由勾股定理得:DC= , 2 2

即 PA+PC 的最小值是 31 . 2

例 2.解:作 A 关于 BC 和 ED 的对称点 A′,A″,连接 A′A″,交 BC 于 M,交 ED 于 N,则 A′A″即为 △AMN 的周长最小值. ⑴作 EA 延长线的垂线,垂足为 H,∠BAE=120°,∴∠AA′A″+∠AA″A′=60°, ∠AA′A″=∠A′AM,∠AA″A′=∠EAN,∴∠CAN=120°-∠AA′A″-∠AA″A′=60°, 也就是说∠AMN+∠ANM=180°-60°=120°. ⑵过点 A′作 EA 延长线的垂线,垂足为 H, ∵AB=BC=1,AE=DE=2,∴AA′=2BA=2,AA″=2AE=4, 则 Rt△A′HA 中,∵∠EAB=120°,∴∠HAA′=60°,

∵A′H⊥HA,∴∠AA″H=30°,∴AH= 1 AA′=1,∴A′H= 2 ,A″H=1+4=5,

∴A′A″=2 ,

例 3.解:作 EF∥AC 且 EF= 于 P, ,连结 DF 交 AC 于 M,在 AC 上截取 MN= ,延长 DF 交 BC 作 FQ⊥BC 于 Q,作出点 E 关于 AC 的对称点 E′,则 CE′=CE=1,将 MN 平移至 E′F′处,

3 3 3 2 2 [南瓜讲数学]系列之中考专题 第 6

42  22 3 3

则四边形 MNE′F′为平行四边形, 当 BM+EN=BM+FM=BF′时,四边形 BMNE 的周长最小, 由∠FEQ=∠ACB=45°,可求得 FQ=EQ=1, ∵∠DPC=∠FPQ,∠DCP=∠FQP,∴△PFQ∽△PDC,

∴ PQ PQ  QE  EC = PQ ,∴ CD PQ PQ  2 1 = ,解得:PQ= 4 2 ,∴PC= 8 ,

3 3

由对称性可求得 tan∠MBC=tan∠PDC= 2 . 3

例 4.【提示】 将△AEO 向右平移转化为△AEO 不动,点 B 向左平移,则点 B 移动的轨迹为一平行于 x 轴的直线,所以作点 E 关于该直线的对称点 E1,连接 AE1,与该直线交点 F 即为最小时点 B 的位置,求出 BF长度即可求出点 E 向右平移的距离.

例 5.解:如图所示,直线 OC、y 轴关于直线 y=kx 对称,直线 OD、直线 y=kx 关于 y 轴对称,点 A′是点 A 关于直线 y=kx 的对称点. 作 A′E⊥OD 垂足为 E,交 y 轴于点 P,交直线 y=kx 于 M,作 PN⊥直线 y=kx 垂足为 N, ∵PN=PE,AM=A′M,∴AM+PM+PN=A′M+PM+PE=A′E 最小(垂线段最短), 在 RT△A′EO 中,∵∠A′EO=90°,OA′=4,∠A′OE=3∠AOM=60°,

∴OE= 1 OA′=2,A′E= =2 . 2

∴AM+MP+PN 的最小值为 2 .

相关文档
最新文档