2020中考专题8——最值问题之将军饮马
最值问题----将军饮马(一)

本节课你的收获是什么?
【问题解析】 △PMN周长即PM+PN+MN的最小值,此处 M、N均为折点,分别作点P关于OB、OA对称点P'、P'', 化PM+PN+MN为P'N+MN+P''M.当P'、N、M、P''共线时, 得△PMN周长的最小值,即线段P'P''长,连接OP'、OP'', 可得△OP'P''为等边三角形,所以P'P''=OP'=OP=8.
【问题解析】:此处点P为折点,可以作点D关于折点P 所在直线OA的对称: 也可以作点C的对称:
05 正方形中的将军饮马。
【问题描述】:如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,
DC=1,点P是AB上的动点,则PC+PD的最小值为( )
A.4
B.5
C.6
D.7
【问题解析】:作点C关于P点 所在直线AB的对称点C',当C'、 P、D共线时,PC+PD最小, 最小值为5,故选B.
05 正方形中的将军饮马。
【问题描述】:如图,正方形ABCD的边长是4,M在DC上,且DM=1, N是AC边上 的一动点,则△DMN周长的最小值是________。
【问题解析】:考虑DM为定值, 故求△DMN周长最小值即求 DN+MN最小值.点N为折点, 作点D关于AC的对称点,即点B, 连接BN交AC于点N,此时 △DMN周长最小.
04 将军饮马模型系列“一定两动”之点到线。
【问题描述】:在OA、OB上分别取点M、N,使得PM+MN最小。
2020中考数学复习 最值问题-将军饮马问题 (51张PPT)

02、将军饮马模型系列 ————“一定两动”之点到点
当P'、N、M、P''共线时,得△PMN周长的最小值,即线段P'P''长,连接OP'、 OP'',可得△OP'P''为等边三角形,所以P'P''=OP'=OP=8.
02、将军饮马模型系列 ————“两定两动”之点到点
在OA、OB上分别取点M、N使得四边 形PMNQ的周长最小。
05、将军过桥
【分析】 考虑MN长度恒定,只要求AM+NB最小值即可。问题 在于AM、NB彼此分离,所以首先通过平移,使AM与 NB连在一起,将AM向下平移使得M、N重合,此时A 点落在A'位置。
问题化为求A'N+NB最小值,显 然,当共线时,值最小,并得出 桥应建的位置.
05、将军过桥
通过几何变换将若干段原本彼此分离线段组合到一起,是解决问题的关键~
此处M点为折点,作点P关于OA对称 的点P',将折线段PM+MN转化为 P'M+MN,即过点P'作OB垂线分别 交OA、OB于点M、N,得PM+MN 最小值(点到直线的连线中,垂线段 最短)
03、几何图形中的将军饮马
寻找几何图形中 端点关于折点所在直线的对称点位置
03、几何图形中的将军饮马 ----正方形中的“将军饮马”
则PC+PD的最小值为( )
A.4
B.5 C.6
D.7
03、几何图形中的将军饮马 ----正方形中的“将军饮马”
【分析】作点C关于P点所在直线AB的对称点C',当C'、P、D共线时, PC+PD最小,最小值为5,故选B.
2020年中考复习 将军饮马问题 讲义

将军饮马(作对称点求最短线段终极版)背景知识:早在古罗马时代,传说亚历山大城有一位精通数学和物理的学者,名叫海伦.一天,一位罗马将军专程去拜访他,向他请教一个百思不得其解的问题.将军每天从军营A出发,先到河边饮马,然后再去河岸同侧的军营B开会,应该怎样走才能使路程最短?这个问题的答案并不难,据说海伦略加思索就解决了它.从此以后,这个被称为“将军饮马”的问题便流传至今.常用知识点:两点之间线段最短,垂线段最短,三角形三边关系,轴对称,平移;解题思路:找对称点,变折线为直线。
常见模型:一、两定点一动点型:如图:在定直线l上找一个动点P,使动点P到两个定点A与B的距离之和最小,即PA+PB最小。
解题思路:连接AB,与直线的交点为点Q,即此时点P运动到点Q处,最小值为AB.证明:运用三角形三边关系:两边之和大于第三边,当A、P、B三点共线可取等于。
在定直线l上找一个动点P,使动点P到两个定点A与B的距离之和最小,即PA+PB的和最小.解题思路:作定点B关于直线l的对称点C,连接AC,交直线于点Q,当点P运动到点Q,最小值为AC.证明:关键是作其中一个定点的对称点,使得PB=PC,求PA+PB的最小值,即求PA+PC的最小值。
再转化为上述题型。
PA-值最大。
引申1:此题型也可以求PB解题思路:延长AB交直线l于点Q,当点P运动到点Q,PBPA-最大值为AB.证明:三角形任意两边之差小于第三边,当A、B、P三点共线可取等于.(提示:如果两定点不在直线的同侧,可以作其中一个定点关于直线l的对称点)PA-值最小。
引申2:此题型也可以求PB解题思路:连接AB,作AB的垂直平分线角l于点P.证明:垂直平分线上的点到线段的两端距离相等,可得PA=PB二.两动点一定点型(两动点在角的两边上)如图,在∠MON 的内部有一点A ,在OM 上找一点B ,在ON 上找一点C ,使得△BAC 周长最短.解题思路:作点A 关于OM 的对称点'A ,作点A 关于ON 的对称点''A ,连接'''A A ,与OM 交于点B , 与ON 交于点C ,连接AB ,AC ,此△ABC 周长最短.证明:两点之间,线段最短变式1:如图:在∠MON 的内部有一点A ,在OM 上找一点B ,在ON 上找一点C ,使得AB +BC 最短.解题思路:作点A 关于OM 的对称点'A ,过点'A 作C A '⊥ON ,交OM 于点B ,交ON 于点C,即为所求。
将军饮马(最完整讲义)

第1讲将军饮马模型➢知识点睛一、“将军饮马”问题主要利用构造对称图形解决两条线段和差、三角形周长、四边形周长等一类问题, 会与直线、角、三角形、四边形、圆、抛物线等图形结合, 在近年的中考和竞赛中经常出现, 而且大多以压轴题的形式出现。
二、定直线与两定点模型作法结论当两定点在直线异侧时, 在直线上找上点, 使最小.当两定点在直线同侧时, 在直线上找上点, 使最小.当两定点在直线同侧时, 在直线上找上点, 使最大.当两定点在直线异侧时, 在直线上找上点, 使最大.当两定点在直线同侧时, 在直线上找上点, 使最小.二、角到定点模型作法结论点在的内部, 在上找一点, 在上找一点,使得周长最小.点在的内部, 在上找一点, 在上找一点,使得最小.点在的内部, 在上找一点, 在上找一点,使得四边形周长最小.点在的外部, 在射线上找一点, 使与点到射线的距离和最小.点在的内部, 在射线上找一点, 使与点到射线的距离和最小.点分别在的边是, 在上找一点, 在上找一点,使得最小.三、两定点一定长模型作法结论如图在直线上找上两点(在左), 使最小,且.如图, , 之间的距离为, 在上分别找两点, 使, 且最小.如图, , ,之间的距离为, 之间的距离为, 在上分别找两点, 使, 在上分别找两点, 使且最小.如图, 在⊙上找一点, 在直线找一点,使得最小.➢精讲精练例1: 如图, 点P是∠AOB内任意一点, ∠AOB=30°, OP=8, 点M和点N分别是射线OA和射线OB上的动点,则△PMN周长的最小值.例2: 如图, 正方形ABCD 的边长是4, M 在DC 上, 且DM=1, N 是AC 边上的一动点, 则△DMN 周长的最小值.A .例3: 如图, 在Rt △ABO 中, ∠OBA=90°, A (4,4), 点C 在边AB 上, 且AC:CB=1:3, 点D 为OB 的中点, 点P 为边OA 上的动点, 当点P 在OA 上移动时, 使四边形PDBC 周长最小的点P 的坐标为 B. ,C .,D .第3题图 第4题图 第5题图例4: 如图, 在△ABC 中, AC=BC, ∠ACB=90°, 点D 在BC 上, BD=3, DC=1, 点P 是AB 上的动点, 则PC+PD 的最小值为 A. 4 B. 5 C. 6 D. 7例5:如图, 在等边△ABC 中, AB=6, N 为AB 上一点且BN=2AN, BC 的高线AD 交BC 于点D, M 是AD 上的动点, 连结BM, MN, 则BM+MN 的最小值是___________.A BCDMN例6: 如图, 在Rt △ABD 中, AB=6, ∠BAD=30°, ∠D=90°, N 为AB 上一点且BN=2AN, M 是AD 上的动点, 连结BM, MN, 则BM+MN 的最小值.例7: 如图, 在Rt △ABC 中, ∠ACB=90°, AC=6. AB=12, AD 平分∠CAB, 点F 是AC 的中点, 点E 是AD 上的动点, 则CE+EF 的最小值为 A. 3 B. 4 C.D.第7题图 第8题图 第9题图A .例8: 如图, 在锐角三角形ABC 中, BC=4, ∠ABC=60°, BD 平分∠ABC, 交AC 于点D, M 、N 分别是BD, BC 上的动点, 则CM+MN 的最小值是B. 2C.D. 4例9: 如图, 在菱形ABCD 中, AC=, BD=6, E 是BC 的中点, P 、M 分别是AC.AB 上的动点, 连接PE 、PM, 则PE+PM 的最小值是A. 6B.C.D. 4.5E AFCDBNM DCBAEPDCBAMA .例10: 如图, 矩形ABOC 的顶点A 的坐标为(-4,5), D 是OB 的中点, E 是OC 上的一点, 当△ADE 的周长最小时, 点E 的坐标是B. C. D.第10题图 第11题图 第12题图例11: 如图, 在矩形ABCD 中, AB=6, AD=3, 动点P 满足, 则点P 到A.B 两点距离之和PA+PB 的最小值为A. B. C. D.例12: 如图, 矩形ABCD 中, AB=10, BC=5, 点E 、F 、G 、H 分别在矩形ABCD 各边上, 且AE=CG, BF=DH, 则四边形EFGH 周长的最小值为A. B. C. D.例13: 如图, ∠AOB=60°, 点P 是∠AOB 内的定点且OP=, 若点M 、N 分别是射线OA.OB 上异于点O 的动点, 则△PMN 周长的最小值是A. B. C. 6 D. 3第13题图 第14题图CBH FGEDCB AABMOPN例14: 如图, ∠AOB 的边OB 与x 轴正半轴重合, 点P 是OA 上的一动点, 点N (3,0)是OB 上的一定点, 点M 是ON 的中点, ∠AOB=30°, 要使PM+PN 最小, 则点P 的坐标为 .例15:如图, 已知正比例函数y=kx (k>0)的图像与x 轴相交所成的锐角为70°, 定点A 的坐标为(0, 4), P 为y 轴上的一个动点, M 、N 为函数y=kx (k>0)的图像上的两个动点, 则AM+MP+PN 的最小值为___________.第15题图例16: 如图, 在平面直角坐标系中, 矩形ABCD 的顶点B 在原点, 点A.C 在坐标轴上, 点D 的坐标为(6, 4), E 为CD 的中点, 点P 、Q 为BC 边上两个动点, 且PQ=2, 要使四边形APQE 的周长最小, 则点P 的坐示应为______________.例17:如图, 矩形ABCD 中, AD=2, AB=4, AC 为对角线, E 、F 分别为边AB 、CD 上的动点, 且EF ⊥AC 于点M,连接AF 、CE, 求AF+CE 的最小值.x例18: 如图, 正方形ABCD的面积是12, △ABE是等边三角形, 点E在正方形ABCD内, 在对角线AC上有一点P, 求PD+PE的最小值。
2020中考数学复习微专题:最值问题(将军饮马)突破与提升策略

2020中考数学复习微专题:最值问题(将军饮马)突破与提升策略【问题引入】“白日登山望烽火,黄昏饮马傍交河”,这是唐代诗人李颀《古从军行》里的一句诗。
而由此却引申出一系列非常有趣的数学问题,通常称为“将军饮马”。
【问题描述】如图,将军在图中点A处,现在他要带马去河边喝水,之后返回军营,问:将军怎么走能使得路程最短?A B将军军营河【问题简化】如图,在直线上找一点P使得P A+PB最小?P【问题分析】这个问题的难点在于P A+PB是一段折线段,通过观察图形很难得出结果,关于最小值,我们知道“两点之间,线段最短”、“点到直线的连线中,垂线段最短”等,所以此处,需转化问题,将折线段变为直线段.【问题解决】作点A关于直线的对称点A’,连接P A’,则P A’=P A,所以P A+PB=P A’+PB当A’、P、B三点共线的时候,P A’+PB=A’B,此时为最小值(两点之间线段最短)【思路概述】作端点(点A或点B)关于折点(上图P点)所在直线的对称,化折线段为直线段.将军饮马模型系列【一定两动之点点】在OA、OB上分别取点M、N,使得△PMN周长最小.B B此处M、N均为折点,分别作点P关于OA(折点M所在直线)、OB(折点N所在直线)的对称点,化折线段PM+MN+NP为P’M+MN+NP’’,当P’、M、N、P’’共线时,△PMN周长最小.【例题】如图,点P是∠AOB内任意一点,∠AOB=30°,OP=8,点M和点N分别是射线OA和射线OB上的动点,则△PMN周长的最小值为___________.P O B AMN【分析】△PMN周长即PM+PN+MN的最小值,此处M、N均为折点,分别作点P关于OB、OA对称点P’、P’’,化PM+PN+MN为P’N+MN+P’’M.P''A当P’、N、M、P’’共线时,得△PMN周长的最小值,即线段P’P’’长,连接OP’、OP’’,可得△OP’P’’为等边三角形,所以P’P’’=OP’=OP=8.A【两定两动之点点】在OA、OB上分别取点M、N使得四边形PMNQ的周长最小。
2020中考数学总复习:将军饮马型最值问题-解题技巧总结精选全文

图T3-13
1
10
3
3
(3)∵y=- x2+ x,∴抛物线的对称轴为直线 x=5.
∵A,O 两点关于对称轴对称,∴PA=PO,
当 P,O,D 三点在一条直线上时,PA+PD=PO+PD=OD,此时△ PAD 的周长最小.
如图,OD 与对称轴的交点即为满足条件的点 P,
由(2)可知 D 点坐标为(10,5).
1
1
1
∵S△ PAB=3S 矩形 ABCD,∴2AB·h=3AB·AD,
2
∴h=3AD=2,∴动点 P 在与 AB 平行且与 AB 的距离是 2 的线段 l 上,如图,作点 A
关于直线 l 的对称点 A',连接 AA',BA',则 BA'即为所求的最短距离.在 Rt△ ABA'中,
AB=4,AA'=2+2=4,∴BA'= 2 + '2 = 42 + 42 =4 2,即 PA+PB 的最小值为
)
D.80°
[答案]D
[解析]分别作A关于直线BC和CD的对称点A',A″,连接A'A″,交BC于E,交CD于F,则
A'A″长即为△AEF周长的最小值.作DA延长线AH,易知∠DAB=130°,∠HAA'=50°.
又∠EA'A=∠EAA',∠FAD=∠A″,且∠EA'A+∠EAA'=∠AEF,∠FAD+∠A″=
图T3-4
.
[答案] 2 5
[解析]如图,在 CB 上截取 CM=CA,连接 DM.
= ,
在△ CDA 与△ CDM 中, ∠ = ∠,
专题 几何最值之将军饮马问题【热点专题】

专题几何最值之将军饮马问题【热点专题】“将军饮马”问题主要利用构造对称图形解决求两条线段和差、三角形周长、四边形周长等一类最值问题,会与直线、角、三角形、四边形、圆、抛物线等图形结合,在近年的中考和竞赛中经常出现,而且大多以压轴题的形式出现.【抽象模型】如图,在直线上找一点P使得PA+PB最小?【模型解析】作点A关于直线的对称点A’,连接PA’,则PA’=PA,所以PA+PB=PA’+PB当A’、P、B三点共线的时候,PA’+PB=A’B,此时为最小值(两点之间线段最短)题型一:两定一动模型当两定点【例1】1.如图,点C的坐标为(3,y),当△ABC的周长最短时,求y的值.【例2】2.如图,正方形ABCD中,AB=7,M是DC上的一点,且DM=3,N是AC上的一动点,求|DN-MN|的最小值与最大值.【例3】3.如图1(注:与图2完全相同),在直角坐标系中,抛物线经过点三点A(1,0),B(5,0),C(0,4).(1)求抛物线的解析式和对称轴;(2)P是抛物线对称轴上的一点,求满足PA+PC的值为最小的点P坐标(请在图1中探索);(3)在第四象限的抛物线上是否存在点E,使四边形OEBF是以OB为对角线且面积为12的平行四边形?若存在,请求出点E坐标,若不存在请说明理由.(请在图2中探索)题型二:一定两动模型模型作法结论点P 在∠AOB 内部,在OB 边上找点D ,OA 边上找点C ,使得△PCD 周长最小.分别作点P 关于OA 、OB 的对称点P ′、P ″,连接P ′P ″,交OA 、OB 于点C 、D ,点C 、D 即为所求.△PCD 周长的最小值为P ′P ″点P在∠AOB 内部,在OB 边上找点D ,OA 边上找点C ,使得PD +CD 最小.作点P 关于OB 的对称点P ′,过P ′作P ′C ⊥OA 交OB 于D ,点C 、点D 即为所求.PD +CD 的最小值为P ′C【例4】4.如图,点P 是∠AOB 内任意一点,∠AOB =30°,OP =8,点M 和点N 分别是射线OA 和射线OB 上的动点,则△PMN 周长的最小值为___________.【例5】5.如图,点P 是∠AOB 内任意一点,且∠AOB =40°,点M 和点N 分别是射线OA 和射线OB 上的动点,当△PMN周长取最小值时,则∠MPN的度数为()A.140°B.100°C.50°D.40°【例6】6.如图,在正方形ABCD中,点E,F分别是边AD,BC的中点,连接DF,过点E作EH⊥DF,垂足为H,EH的延长线交DC于点G.(1)猜想DG与CF的数量关系,并证明你的结论;(2)过点H作MN∥CD,分别交AD,BC于点M,N,若正方形ABCD的边长为10,点P是MN上一点,求△PDC周长的最小值.【例7】7.如图,抛物线y=ax2﹣5ax+c与坐标轴分别交于点A,C,E三点,其中A(﹣3,0),C(0,4),点B在x 轴上,AC=BC,过点B作BD⊥x轴交抛物线于点D,点M,N分别是线段CO,BC上的动点,且CM=BN,连接MN,AM,AN.(1)求抛物线的解析式及点D的坐标;(2)当△CMN是直角三角形时,求点M的坐标;(3)试求出AM+AN的最小值.题型三:两定两动模型模型作法结论点P、Q在∠AOB内部,在OB边上找点D,OA边上找点C,使得四边形PQDC周长最小.分别作点P、Q关于OA、OB的对称点P′、Q′,连接P′Q′,分别交OA、OB于点C、D,点C、D即为所求.PC+CD+DQ的最小值为P′Q′,所以四边形PQDC周长的最小值为PQ+P′Q′【例8】8.如图,在矩形ABCD 中,AB =4,BC =7,E 为CD 的中点,若P 、Q 为BC 边上的两个动点,且PQ =2,若想使得四边形APQE 的周长最小,则BP 的长度应为__________.【例9】9.如图,已知直线l 1∥l 2,l 1、l 2之间的距离为8,点P 到直线l 1的距离为6,点Q 到直线l 2的距离为4,PQ =430,在直线l 1上有一动点A ,直线l 2上有一动点B ,满足AB ⊥l 2,且PA +AB +BQ 最小,此时PA +BQ =______.题型四:两定点一定长模型作法结论如图,在直线l 上找M 、N 两点(M 在左),使得AM +MN+NB 最小,且MN =d .将A 向右平移d 个单位到A ′,作A ′关于l 的对称点A ",连接A "B 与直线l 交于点N ,将点N 向左平移d 个单位即为M ,点M ,N 即为所求.AM +MN +NB 的最小值为A "B +d如图,l 1//l 2,l 1、l 2间距离为d ,在l 1、l 2分别找M 、N 两点,将A 向下平移d 个单位到A ,连接A ′B 交直线l 2于点N ,过点N 作MN ⊥l 1,连接AM .点M 、N 即为所求.AM +MN +NB 的最小值为A 'B +d .使得MN⊥l1,且AM+MN+NB最小.【例10】10.在平面直角坐标系中,矩形OABC如图所示,点A在x轴正半轴上,点C在y轴正半轴上,且OA=6,OC=4,D为OC中点,点E、F在线段OA上,点E在点F左侧,EF=2,当四边形BDEF的周长最小时,求点E的坐标【例11】11.村庄A和村庄B位于一条小河的两侧,若河岸彼此平行,要架设一座与河岸垂直的桥,桥址应如何选择,才使A与B之间的距离最短?12.如图,在Rt△ABC中,∠ACB=90°,AC=6,AB=12,AD平分∠CAB,点F是AC的中点,点E是AD 上的动点,则CE+EF的最小值为()A.3B.4C.33D.2313.如图,在锐角三角形ABC中,BC=4,∠ABC=60°,BD平分∠ABC,交AC于点D,M、N分别是BD,BC 上的动点,则CM+MN的最小值是()A.3B.2C.23D.414.如图,在正方形ABCD中,AB=9,点E在CD边上,且DE=2CE,点P是对角线AC上的一个动点,则PE+PD 的最小值是()A.310B.103C.9D.9215.如图,在正方形ABCD中,E是AB上一点,BE=2,AB=8,P是AC上一动点,则PB+PE的最小值_____.16.如图,∠AOB的边OB与x轴正半轴重合,点P是OA上的一动点,点N(3,0)是OB上的一定点,点M 是ON的中点,∠AOB=30°,要使PM+PN最小,则点P的坐标为______.17.如图,等边△ABC的边长为4,AD是BC边上的中线,F是AD边上的动点,E是AC边上一点,若AE=2,当EF+CF取得最小值时,则∠ECF的度数为多少?18.在平面直角坐标系中,矩形OACB的顶点O在坐标原点,顶点A、B分别在x轴、y轴的正半轴上,A(3,0),B(0,4),D为边OB的中点.(1)若E为边OA上的一个动点,求△CDE的周长最小值;(2)若E、F为边OA上的两个动点,且EF=1,当四边形CDEF的周长最小时,求点E、F的坐标.19.如图所示抛物线y=ax2+bx+c过点A−1,0,点C0,3,且OB=OC(1)求抛物线的解析式及其对称轴;(2)点D,E在直线x=1上的两个动点,且DE=1,点D在点E的上方,求四边形ACDE的周长的最小值;(3)点P为抛物线上一点,连接CP,直线CP把四边形CBPA的面积分为3∶5两部分,求点P的坐标.20.如图,在平面直角坐标系中,矩形OABC的边BC交x轴于点D,AD⊥x轴,反比例函数y=k(x>0)的图x象经过点A,点D的坐标为(3,0),AB=BD.(1)求反比例函数的解析式;(2)点P为y轴上一动点,当PA+PB的值最小时,求出点P的坐标.21.如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(﹣1,0)B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.。
2020年安徽中考常见最值问题——将军饮马1(共16张)

解:设△PAB中AB边上的高是PE
1
1
S△PAB
3
S矩形ABCD
53 3
5
1
5
S△PAB 2 AB PE 2 PE
PE= 2
动点P在与AB平行且与AB的距离是2的对称点B',连接AB',则AB'就是所求的最短距离。
在Rt△ABE中,∵AB=5,BB'=2+2=4,
C.5 2 ;
D. 41 .
————竹竹子子系系本本科科生生
0
PRAT 01 将军饮马1
• 总结:
特征:
(1)两个定点一个动点,即“两定一动” (2)定点在动点轨迹l(即对称轴)的同侧 ( 3 ) 求 动 点 到 两 个 定 点 距 离 和 的 最 小 值 ( 如 : PA + P B )
l P
解法:
Q
点
坐标
即
为
x y
-1 x
3
解得:xy
=
-1 2
∴Q(−1,2)。
————竹竹子子系系本本科科生生
0
PRAT 01 将军饮马1
• 总结:
特征:
(1)两个定点一个动点,即“两定一动” (2)定点在动点轨迹l(即对称轴)的同侧 ( 3 ) 求 动 点 到 两 个 定 点 距 离 和 的 最 小 值 ( 如 : PA + P B )
AB' AB2 BB'2 52 42 41
即PA PB的最小值为 41
————竹竹子子系系本本科科生生
0
引例:
如图,在矩形
ABCD
中,AB=5,AD=3,动点
P
满足 S△PAB
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
16.如图,抛物线 y 1 x2 2x 4 交 y 轴于点 B,点 A 为 x 轴上的一点,OA=2,过点 A 作直线 MN AB 2
交抛物线与 M、N 两点. (1)求直线 AB 的解析式; (2)将线段 AB 沿 y 轴负方向平移 t 个单位长度,得到线段 A1B1 ,求 MA1 MB1 取最小值时实数 t 的值.
[南瓜讲数学]系列之中考专题
2020 中考专题 8——最值问题之将军饮马
【模型解析】
班级
姓名
.
总结:以上四图为常见的轴对称类最短路程问题,最后都转化到:“两点之间,线段最短”解决。
特点:①动点在直线上;②起点,终点固定;
方法:作定点关于动点所在直线的对称点。
【例题分析】
例 1.如图,在平面直角坐标系中,Rt△OAB 的顶点 A 在 x 轴的正半轴上,顶点 B 的坐标为(3, 3 ),
例 5.解:如图所示,直线 OC、y 轴关于直线 y=kx 对称,直线 OD、直线 y=kx 关于 y 轴对称,点 A′是点 A 关于直线 y=kx 的对称点.
作 A′E⊥OD 垂足为 E,交 y 轴于点 P,交直线 y=kx 于 M,作 PN⊥直线 y=kx 垂足为 N, ∵PN=PE,AM=A′M,∴AM+PM+PN=A′M+PM+PE=A′E 最小(垂线段最短), 在 RT△A′EO 中,∵∠A′EO=90°,OA′=4,∠A′OE=3∠AOM=60°, ∴OE= 1 OA′=2,A′E= 42 22 =2 3 .
值为
.
4.如图 4,钝角三角形 ABC 的面积为 9,最长边 AB=6,BD 平分∠ABC,点 M、N 分别是 BD、BC
上的动点,则 CM+MN 的最小值为
.
5.如图 5,在△ABC 中,AM 平分∠BAC,点 D、E 分别为 AM、AB 上的动点,
(1)若 AC=4,S△ABC=6,则 BD+DE 的最小值为
.
图6
图7
图8
图9
7.如图 7,AB 是⊙O 的直径,AB=8,点 M 在⊙O 上,∠MAB=20°,N 是弧 MB 的中点,P 是直
径 AB 上的一动点,则 PM+PN 的最小值为
.
8.如图 8,在锐角△ABC 中,AB=4,∠BAC=45°,∠BAC 的平分线交 BC 于点 D,M、N 分别是
AD 和 AB 上的动点,则 BM+MN 的最小值是
当 BM+EN=BM+FM=BF′时,四边形 BMNE 的周长最小,
由∠FEQ=∠ACB=45°,可求得 FQ=EQ=1,
∵∠DPC=∠FPQ,∠DCP=∠FQP,∴△PFQ∽△PDC,
∴
PQ
= PQ ,∴ PQ = 1 ,解得:PQ= 2 ,∴PC= 8 ,
PQ QE EC CD
PQ 2 4
4.解:过点 C 作 CE⊥AB 于点 E,交 BD 于点 M,过点 M 作 MN⊥BC 于 N, ∵BD 平分∠ABC,ME⊥AB 于点 E,MN⊥BC 于 N,∴MN=ME, ∴CE=CM+ME=CM+MN 是最小值. ∵三角形 ABC 的面积为 9,AB=6,∴ 1 ×6CE=9,∴CE=3.
∴cos∠HAB= AH = 2 3 = 3 ,∴∠HAB=30°,∴∠ABH=60°,∴∠ABC=120°,
AB 4
2
∵∠BAC=∠C=30°,
3
3
由对称性可求得 tan∠MBC=tan∠PDC= 2 . 3
例 4.【提示】 将△AEO 向右平移转化为△AEO 不动,点 B 向左平移,则点 B
移动的轨迹为一平行于 x 轴的直线,所以作点 E 关于该直线的对称 点 E1,连接 AE1,与该直线交点 F 即为最小时点 B 的位置,求出 BF 长度即可求出点 E 向右平移的距离.
例 5.如图,已知正比例函数 y=kx(k>0)的图像与 x 轴相交所成的锐角为 70°,定点 A 的坐标为(0,
4),P 为 y 轴上的一个动点,M、N 为函数 y=kx(k>0)的图像上的两个动点,则 AM+MP+PN 的
最小值为
.
【巩固训练】
1.如图 1 所示,正方形 ABCD 的面积为 12,△ABE 是等边三角形,点 E 在正方形 ABCD 内,在对
角线 AC 上有一点 P,使 PD+PE 的和最小,则这个最小值为
.
图1
图2
图3
图4
2.如图 2,在菱形 ABCD 中,对角线 AC=6,BD=8,点 E、F、P 分别是边 AB、BC、AC 上的动
点,PE+PF 的最小值是
.
3.如图 3,在边长为 2 的等边△ABC 中,D 为 BC 的中点,E 是 AC 边上一点,则 BE+DE 的最小
2 ∴AM+MP+PN 的最小值为 2 3 .
6
[南瓜讲数学]系列之中考专题
【巩固训练】答案
1. 解:连接 BD, ∵点 B 与 D 关于 AC 对称,∴PD=PB,∴PD+PE=PB+PE=BE 最小. ∵正方形 ABCD 的面积为 12,∴AB=2 3 , 又∵△ABE 是等边三角形,∴BE=AB=2 3 ,故所求最小值为 2 3 .
点 C 的坐标为( 1 ,0),点 P 为斜边 OB 上的一动点,则 PA+PC 的最小值为
.
2
例 2.如图,在五边形 ABCDE 中,∠BAE=120°,∠B=∠E=90°,AB=BC=1,AE=DE=2,
在 BC、DE 上分别找一点 M、N.
(1)当△AMN 的周长最小时,∠AMN+∠ANM=
;
OC、OB 上,则 CE+DE+DB 的最小值是
.
图 10
图 11
图 12
图 13
11.如图 11,点 A(a,1)、B(-1,b)都在双曲线 y=- 3 (x<0)上,点 P、Q 分别是 x 轴、y 轴上 x
的动点,当四边形 PABQ 的周长取最小值时,PQ 所在直线的解析式是
.
12.如图 12,点 P 是∠AOB 内任意一点,OP=5cm,点 M 和点 N 分别是射线 OA 和射线 OB 上的
.
9. 如图 9,圆柱形玻璃杯高为 12cm、底面周长为 18cm,在杯内离杯底 4cm 的点 C 处有一滴蜂蜜,
此时一只蚂蚁正好在杯外壁,离杯上沿 4cm 与蜂蜜相对的点 A 处,则蚂蚁到达蜂蜜的最短距离为
cm.
10.如图 10,菱形 OABC 中,点 A 在 x 轴上,顶点 C 的坐标为(1, 3 ),动点 D、E 分别在射线
(2)求△AMN 的周长最小值.
例 3.如图,正方形 ABCD 的边长为 4,点 E 在边 BC 上且 CE=1,长为 2 的线段 MN 在 AC 上运
动.
(1)求四边形 BMNE 周长最小值;
(2)当四边形 BMNE 的周长最小时,则 tan∠MBC 的值为
.
1
[南瓜讲数学]系列之中考专题
例 4.在平面直角坐标系中,已知点 A(一 2,0),点 B(0,4),点 E 在 OB 上,且∠OAE=∠OBA.如 图,将△AEO 沿 x 轴向右平移得到△AE′O′,连接 A'B、BE'.当 AB+BE'取得最小值 时,求点 E'的坐标.
(2)若∠BAC=30°,AB=8,则 BD+DE 的最小值为
.
(3)若 AB=17,BC=10,CA=21,则 BD+DE 的最小值为
.
2
图5
[南瓜讲数学]系列之中考专题
6.如图 6,在△ABC 中,AB=BC=4,S△ABC=4 3 ,点 P、Q、K 分别为线段 AB、BC、AC 上任意
一点,则 PK+QK 的最小值为
(1)点 P 是边 BC 上的一个动点,在线段 BC 上找一点 P,使得 AP+PD 最小,在下图中画出点 P;
(2)在(1)的条件下,连接 CD 交 AP 于点 Q,求 AQ 与 PQ 的数量关系;
图 14
3
[南瓜讲数学]系列之中考专题
15.在矩形 ABCD 中,AB=6,BC=8,G 为边 AD 的中点. (1)如图 1,若 E 为 AB 上的一个动点,当△CGE 的周长最小时,求 AE 的长. (2)如图 2,若 E、F 为边 AB 上的两个动点,且 EF=4,当四边形 CGEF 的周长最小时,求 AF
例 3.解:作 EF∥AC 且 EF= 2 ,连结 DF 交 AC 于 M,在 AC 上截取 MN= 2 ,延长 DF 交 BC 于 P,
作 FQ⊥BC 于 Q,作出点 E 关于 AC 的对称点 E′,则 CE′=CE=1,将 MN 平移至 E′F′处,
5
[南瓜讲数学]系列之中考专题
则四边形 MNE′F′为平行四边形,
2 即 CM+MN 的最小值为 3.
7
[南瓜讲数学]系列之中考专题
5.提示:作点 E 关于 AM 的对称点 E′,BH⊥AC 于 H,易知 BD+DE 的最小值即为 BH 的长. 答案:(1)3;(2)4;(3)8.
6.解:如图,过 A 作 AH⊥BC 交 CB 的延长线于 H,
∵AB=CB=4,S△ABC=4 3 ,∴AH=2 3 ,
2.解:∵四边形 ABCD 是菱形,对角线 AC=6,BD=8,∴AB=5,
作 E 关于 AC 的对称点 E′,作 E′F⊥BC 于 F 交 AC 于 P,连接 PE,则 E′F 即为 PE+PF 的最
小值,∵ 1 ACBD=ADE′F,∴E′F= 24 ,∴PE+PF 的最小值为 24 .
2
5
5
3.解:作 B 关于 AC 的对称点 B′,连接 BB′、B′D,交 AC 于 E,此时 BE+ED=B′E+ED=B′D, 根据两点之间线段最短可知 B′D 就是 BE+ED 的最小值, ∵B、B′关于 AC 的对称,∴AC、BB′互相垂直平分,∴四边形 ABCB′是平行四边形, ∵三角形 ABC 是边长为 2,D 为 BC 的中点,∴AD⊥BC,AD= 3 ,BD=CD=1,BB′=2AD=2 3 , 作 B′G⊥BC 的延长线于 G,∴B′G=AD= 3 , 在 Rt△B′BG 中,BG=3,∴DG=BG﹣BD=3﹣1=2,在 Rt△B′DG 中,B′D= 7 . 故 BE+ED 的最小值为 7 .