机械设计第5章知识点整理
机械设计基础第5章 间歇运动机构

6
图5.4 自行车小链轮中的内啮合棘轮机 1—轴;2—棘爪;3—小链轮
7
图5.5 有级变速棘轮机构 1—棘爪;2—齿罩;3—棘轮
8
图5.6 无级变速棘轮机构 1—棘爪;2—棘轮;3—制动棘爪
9
三、棘轮机构的设计 1)棘爪顺利进入棘轮齿槽的条件 如图5.7所示,棘爪与棘轮在A点接触,即将 进入齿槽,轮齿对棘爪作用有正压力N与摩擦力F (F=fN)。为了棘爪顺利进入齿槽,使棘爪滑入 齿槽的力矩NLtanα应大于阻止其滑入齿槽的力矩F L,即棘爪顺利进入棘轮齿槽的条件为: (2)棘轮机构的主要参数 1)棘轮齿数z 2)周节和模数 3)几何尺寸
16
三、槽轮机构的主要参数选择及几何尺寸计算 (1)槽轮机构的槽数z的选择 如图5.8所示,槽轮上分布的槽数z,当拨盘转 过角度2φ1时,则槽轮转过2φ2,两转角之间的关 系为: (2)圆销数目z′的选择
17
(3)几何尺寸计算 槽轮机构的中心距a可根据机械结构尺寸确定 。其余主要几何尺寸按表5.2给出的公式进行计算 。
13
图5.8 外接式槽轮机构 1—拨盘;2—槽轮
14
图5.9 内接式槽轮机构 1—拨盘;2—槽轮
15
二、槽轮机构的特点和应用 槽轮机构具有构造简单,制造容易,工作可靠 和机械效率高等特点。但不像棘轮机构那样具有超 越性能,也不能改变或调节从动轮的转动角度。由 于槽轮机构工作时,存在冲击,故不能运用于高速 的场合,其适用的范围受到一定的限制。当需要槽 轮停歇时间短,传动较平稳,机构外廓尺寸小和实 现同向传动时,可采用内接式槽轮机构。
10
图5.7 棘爪顺利进入棘轮齿槽的条件
11
表5.1 棘轮机构的主要几何尺寸
12
机械设计基础第5章

5.4 螺 旋 机 构
5.4.1 螺纹的参数、类型和应用 1.螺旋线、螺纹的形成 在直径为d2的圆柱面上,绕一底边长为πd2的 直角三角形,底边与圆柱体的底面重合,则斜边 在圆柱表面上将形成一条螺旋线,如图5.18(a) 所示。取一平面图形(如图5.18(b)所示),使其 一边与圆柱体的母线贴合,并沿螺旋线移动,移 动时保持此平面图形始终通过圆柱体的轴线,此 平面图形在空间形成的轨迹构成螺纹。
按从动件的间歇运动方式分类,它又有以下 几种形式。 (1) 单向间歇转动如图5.1、图5.2所示,从动 件均作单向间歇转动。 (2) 单向间歇移动如图5.3所示,当主动件1 往复摆动时,棘爪2推动棘齿条3作单向间 歇移动。 (3) 双动式棘轮机构如图5.4所示,主动摇杆 1上装有主动棘爪2和2′,摇杆1绕O1轴来回 摆动都能使棘轮3沿同一方向间歇转动,摇 杆往复摆动一次,棘轮间歇转动两次。
2. 棘轮机构的类型 根据工作原理,棘轮机构可分为齿式棘 轮机构和摩擦式棘轮机构两大类。 1) 齿式棘轮机构 齿式棘轮机构的工作原理为啮合原理。 按啮合方式分类,它有外啮合(如图5.1所示) 和内啮合(如图5.2所示)两种型式。内啮合棘 轮机构由轴1、驱动棘爪2与止回棘爪4、棘 轮3以及弹簧5组成。
2) 摩擦式棘轮机构 摩擦式棘轮机构的工作原理为摩擦原理。在 图5.6所示的机构中,当摇杆往复摆动时, 主动棘爪2靠摩擦力驱动棘轮3作逆时针单 向间歇转动,止回棘爪4靠摩擦力阻止棘轮 反转。由于棘轮的廓面是光滑的,所以又 称为无棘齿棘轮机构。该类机构棘轮的转 角可以无级调节,噪声小,但棘爪与棘轮 的接触面间容易发生相对滑动,故运动的 可靠性和准确性较差。
1. 间歇式送进 图5.8所示为浇注流水线的送进装置,棘轮与带轮固连 在同一根轴上,当活塞1在汽缸内往复移动时,输送带2间 歇移动,输送带静止时进行自动浇注。 2. 超越运动 图5.9所示为自行车后轴上的内啮合棘轮机构,飞轮1 即是内齿棘轮,它用滚动轴承支承在后轮轮毂2上,两者 可相对转动。轮毂2上铰接着两个棘爪4,棘爪用弹簧丝压 在棘轮的内齿上。当链轮比后轮转的快时(顺时针),棘轮 通过棘爪带动后轮同步转动,即脚蹬得快,后轮就转得快。 当链轮比后轮转的慢时,如自行车下坡或脚不蹬时,后轮 由于惯性仍按原转向转动,此时,棘爪4将沿棘轮齿背滑 过,后轮与飞轮脱开,从而实现了从动件转速超越主动件 转速的作用。按此原理工作的离合器称为超越离合器。
《机械设计基础》第5章 轮系

3’ Z4 × 2’ × Z1 Z1 Z2’ Z3’ nn =n1 ( -) ) ) = 21( - Z ( 2 Z (- Z )2× × Z 3 2 4 4 Z3 3 n2’ (代入) i2’3= n = Z 5 (代入) 5 n3 4 Z2’ Z4 n5 =n4 (i45= n = ) Z1 Z Z2’ Z4 5 Z2’ ( - Z (5 Z ) ) n3 =n2’ Z ) = n1 ( Z1 Z2’ Z23’ 3 Z4 () n5 = n1 ( - Z3 ( Z ) ) () Z4 Z5 2 3
H 1 3
再代入公式计算
混合轮系及其传动比
混合轮系: =定轴轮系+周转轮系
H
求解思路: 1 区分轮系 (定轴,周转) 2 分别求传动比 3 联立求解
周转轮系 定轴轮系
(差动)
2 1
3 2’ 4
5
3’
3 已知: 例,联立求解 Z1=24, Z2=52, n5= nH Z2’=21, Z3=78, Z3’=18,
V=
60×1000
(m/s)
ω1 ω2
ω1
Fa1
v2 ω2
(左右手法则)
1 2 3 2’ 4
解1: 求:1 欲使猴子上升,
D 2 因猴子有心脏病, 例:图示电梯, 试确定电机轴 D 3’ 要求:V≤0.1m/s。 已知: 的转向;V 试校核安全性 4 Z1=16 , Z2=32 , V4 ω (D=600mm);倘若 Z2’=20, Z3=40 , 不安全,从机构运 Z3’= 2 , Zω=40 , 4 3’ 动角度出发,可采 n1 =800 rpm 取哪些措施。
轮系的分类:
——分类的方法是按照轮系传动时各 轮轴心线的位置是否运动进行分类的。
【机械设计基础】第五章 轮系

轮
系
三个运动件中,有两个构件为主动件 一个为从动 三个运动件中 有两个构件为主动件,一个为从动, 运动复合的差动轮系 有两个构件为主动件 一个为从动, 三个运动件中,有一件主动,两件从动, 三个运动件中,有一件主动,两件从动,运动分解的差动轮系 三个运动件中,两个中心轮之一固定, 三个运动件中,两个中心轮之一固定, 行星轮系 系杆H固定 演变为定轴轮系。 固定, 系杆 固定,演变为定轴轮系。
第五章
轮
系
重点学习内容
1.定轴轮系和周转轮系的传动比计算 2.轮系中从动轮转动方向的判定
机 械 设 计 基 础
第五章
轮
系
第一节 定轴轮系及其传动比计算 第二节 周转轮系及其传动比计算 第三节 轮系的功用
机 械 设 计 基 础
第五章
轮
系
现代机械中, 现代机械中,为了满足不同的工作要求只用一对齿轮传 动往往是不够的,通常用一系列齿轮共同传动。 动往往是不够的,通常用一系列齿轮共同传动。这种由一系列 齿轮(包括蜗杆蜗轮)组成的传动系统称为齿轮系(简称轮系)。 齿轮(包括蜗杆蜗轮)组成的传动系统称为齿轮系(简称轮系)。 齿轮系
机 械 设 计 基 础
周转轮系的分类: 周转轮系的分类:
第五章
轮
系
1、行星轮系:自由度为1的周转轮系,需要两个原动 、行星轮系:自由度为 的周转轮系 的周转轮系, 件才能有确定的运动。 件才能有确定的运动。 2、差动轮系:自由度为2的周转轮系,需要一个原动 、差动轮系:自由度为 的周转轮系 的周转轮系, 件才能有确定的运动。 件才能有确定的运动。
第五章
转化后的定轴轮系 的传动比为: 的传动比为:
H 13
n1 n1 − nH i = H = n3 n3 − nH
机械设计第五章

由表5-5查得接合面间的摩擦系数 f=0.16,并取
Cb 0.2 Cb Cm Cm 0.8 Cb Cm
(P84)
取防滑系数Ks=1.2,则各螺栓所需要的预紧力为
5)上面每个螺栓所受的总拉力F2按式(5-34)求得:
3.确定螺栓直径 选择螺栓材料为Q235、性能等级为4.6的螺栓,由表5-8 查得材料屈服极限=240MPa,由表5-10查得安全系数S=1.5 故螺栓材料的许用应力
螺栓预紧力F0后,在工作 拉力F 的作用下,螺栓总拉力 式中F1为残余预紧力,为保证联 接的紧密性,应使 F1>0
未拧紧
已拧紧
加载
当螺栓承受工作载荷F后: (1)被联接件的压缩力由预紧力F0,减至残余预紧力F1 (2)螺栓所受的拉力由预紧力F0增加到F2= F+ F1; 消去F1,得到 消去 螺栓相对刚度 (越小越好)
悬臵螺母和环槽螺母都是全部或局部改变螺母旋合部 分的变形性质,使之变为拉伸变形,使螺纹牙上载荷分布 趋于均匀;
内斜螺母可使载荷较大的头几圈螺纹牙容易变形,使 载荷上移而改善载荷分布不均。
(三)减小应力集中的影响 在螺栓上的螺纹、螺栓头和螺栓杆的过渡处以及螺栓 横截面突变处等应力集中较大处卸荷结构。
5-5螺栓组联接的设计
一、螺栓组联接的结构设计
螺纹联接组的设计1
机械设计基础----第5章轮系

图5-4c
三、周转轮系的传动比计算
一)基本思路
如图5-4 a、b所示。
周转轮系与定轴轮系的
根本区别在于周转轮系
中有一个转动着的行星
架,因此使行星轮既自
转又公转。如果能
图5-4 a、b
够设法使行星架固定不动,那么周转轮系就可转化成一个
假想的定轴轮系,并称其为周转轮系的转化轮系。
在周转轮系转化为转化轮系后,就可以对转化轮系应
2、5的转向相同)
∴
i17=
z2 z1
•
z3 z 2
•
z4 z3
•
z5 z4
•
z6 z5
•
z7 z6
上例中的轮4,其齿数多少不影响传动比的大小,只
起改变转向的作用,在轮系中的这种齿轮称为惰轮(过桥
齿轮)——仅影响 i 的符号,而不影响 i 的大小。
▲自学:P74例5-1。
§5—3 周转轮系及其传动比
构件的轴线可互不平行;
3、正负号——指转化轮系中轮G、K的转向关系,图上画 箭头来确定(同定轴轮系);
4、真实转速nG、nK、nH中的已知量代入公式时要带正负 号(可假定某一转向为正,则相反的转向为负),求
得的未知量的转向也依据计算结果的正负号来确定。
例:在图示的轮系中,已知z1=z2=30,z3=90。试求当构件 1、3的转速分别为 n1=10rpm,n3=10rpm (转向如图) 时,求 nH及i1H的值。
转轮系)。
图a
图b
三、轮系的传动比(Transmission ratio)
一对齿轮的传动比:是指两轮的角速度或转速之比,即 i12=ω1 /ω2= n1 /n2 = z2 /z1。
机械设计基础(第五版)第5章

三、定轴轮系中首末两轮的转向确定 z 定轴轮系中首末两轮的转向确定 zz⋯ 1、平面定轴轮系 平面定轴轮系 2、空间定轴轮系 空间定轴轮系
H z2 z3 z3 n1 n1 − nH H i13 = H = =− =− n3 n3 − nH z1z2 z1
转化轮系的传动比 ◆ 转化轮系的传动比
一般式: 一般式:
周转轮系的传动比及转速的求法 ◆ 周转轮系的传动比及转速的求法 已知条件满足的情况下,列出转化轮系的传动 已知条件满足的情况下, 比计算公式,当已知n 比计算公式,当已知 1、n3、nH中任意两个的大小 和转向时,即可求第三个和任意两个之比(传动比 传动比)。 和转向时,即可求第三个和任意两个之比 传动比 。 式中n 式中 1、n3、nH是真实的
H i1H =1−i13
作业: 一 作业:5一2、3、4、5、8、9
已知: 例5 - 2 已知:z1=27、z2=17、z3=61、n1=6000 r/min 求:i1H=? 、nH=? 解:由图可知该轮系是行星轮系
H n1 Z H =1− − 3 i1H =1−i =1− Z 1 n3 61 =1− − ≈ 3.26 符号确定 27 H 13
正号说明n 转向相同。 正号说明 1、nH、转向相同 转向相同
n1 6000 nH = = ≈1840 r m in i1H 3.26
若求n 若求 2:
H n1 n1 − nH z2 H i12 = H = =− n2 n2 − nH z1
机械设计基础第5章带传动(包含动画)

环境下的传动。
03
带传动工作原理与性能分析
Chapter
摩擦力与张力关系
1 2 3
带的紧边和松边张力
紧边张力大于松边张力,是带传动的基本条件。
摩擦力与张力关系
带与带轮之间的摩擦力是带传动的动力来源,摩 擦力的大小取决于张紧力、摩擦系数和包角等因 素。
带的弹性变形
在带传动过程中,由于带的弹性变形,会产生弹 性滑动现象,影响传动效率和带的疲劳寿命。
高效率
同步带传动的传动效率高 ,可达98%以上。
特殊类型带传动
多楔带传动
01
多楔带由多个楔形截面组成,与带轮槽紧密配合,适用于大功
率、高转速的场合。
圆形带传动
02
圆形带截面呈圆形,与带轮槽配合紧密,适用于小功率、低转
速的场合。
复合材料带传动
03
采用复合材料制成的带具有较高的强度和耐磨性,适用于恶劣
施来提高传动效率。
疲劳寿命预测方法
疲劳寿命定义
疲劳寿命是指带在交变应力作用下发生疲劳破坏前所能承受的总应力循环次数或总工作时 间。
预测方法
疲劳寿命预测方法主要有试验法、理论计算法和经验公式法等。其中,试验法是最直接的 方法,但成本较高;理论计算法基于材料的疲劳性能和应力分析进行预测;经验公式法则 是根据大量试验数据得出的经验公式进行预测。
Chapter
平带传动
结构简单
平带由平面带和带轮组成,结构相对简单,易于制造和安装。
传动平稳
由于平带与带轮接触面积大,传动过程中受力均匀,因此传动平 稳,噪音小。
适用于低速重载
平带传动适用于低速重载的场合,如输送机、提升机等。
V带传动
结构紧凑
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第5章螺纹连接和螺旋传动
分类:可拆连接:允许多次装拆而无损于使用性能的连接(螺纹连接、键连接、销连接)
不可拆连接:不损坏组成零件就不能拆开的连接。
(焊接、铆接、粘接)螺纹连接的基本知识
一、螺纹的形成及类型
二、螺纹的主要几何参数
三、常用螺纹的特点及应用
四、螺纹连接的基本类型
五、螺纹连接的预紧和防松
1、螺纹的形成
螺旋线----将一直角三角形绕到一圆柱体上,并使其底边与圆柱体底边重合,其斜边在圆柱体表面上所形成的空间曲线为螺旋线。
螺纹----一平面图形沿螺旋线运动,运动时保持该图形通过圆柱体的轴线,就得到螺纹。
二、螺纹的主要几何参数
螺距P:相邻两牙在中径线上对应两点间的轴向距离。
导程S:同一条螺旋线上的相邻两牙在中径线上对应两点间的轴向距离
螺纹升角ψ:中径d2圆柱上,螺旋线的切线与垂直于螺纹轴线的平面的夹角牙型角α:轴向截面内螺纹牙型相邻两侧边的夹角
牙侧角β:牙型侧边与螺纹轴线的垂线间的夹角
三、常用螺纹的特点及应用
1.三角形螺纹
(连接螺纹)
2.传动螺纹矩形螺纹优点:传动效率最高
缺点:牙根强度弱,未标准化
梯形螺纹传动效率较高,牙根强度较高
锯齿形螺纹优点:传动效率高
缺点:单向传动
四、螺纹连接的基本类型及螺纹紧固件
一、螺纹连接的基本类型
1、螺栓连接普通螺栓连接(螺栓与孔之间留有间隙)
铰制孔用螺栓连接(螺栓与孔直接接触)
特点:①用于被连接件较薄且是通孔
②允许多次装拆
2、双头螺柱连接特点:①用于被连接件之一较厚且是盲孔
②允许多次装拆
3、螺钉连接特点:①用于被连接件之一较厚且是盲孔
②不允许多次装拆
4、紧定螺钉连接特点:①用于固定两连接件周向的相对位置
②用于传力不大场合
二、螺纹紧固件螺栓
双头螺柱
螺钉、紧定螺钉
螺母
垫圈
作用:增加支撑面积以减小压强,避免拧紧螺母擦伤表面、防松。
五、螺纹连接的预紧和防松
(一)螺纹连接的预紧
1、目的:提高连接的可靠性、紧密性
预紧力矩T用于克服螺纹副的摩擦阻力矩T1
用于克服螺母与被连接件支撑面间的摩擦阻力矩T2
2、预紧力的控制
1)预紧力的确定拧紧后螺纹连接件在预紧力作用下产生的预紧应力不得超过其材料屈服极限σs的80%
2)预紧力与预紧力矩之间的关系
预紧力和预紧力矩之间的关系为:T≈0.2F0d
注意:对于重要的连接,应尽可能不采用直径过小(<M12)的螺栓
3)预紧力的控制方法
利用控制拧紧力矩的方法来控制预紧力的大小
人工经验
测力矩扳手或定力矩扳手——重要连接
拧紧前后的伸长变形量——更为重要或大型连接(二)螺纹连接的防松
防松的根本问题在于防止螺纹副的相对转动
防松的方法:
1. 利用附加摩擦力防松——摩擦防松
弹簧垫圈、弹簧垫圈、尼龙圈锁紧螺母
2. 采用专门防松元件防松
3. 破坏螺旋副运动关系防松
螺纹升角ψ越大,螺纹越倾斜ψ越小,越不易下滑
自锁:螺纹连接被拧紧后,若不加反向外力矩,不论轴向力
多大,螺母也不会自动松开
自锁条件:ψ≤ ρ 摩擦角
用于连接的螺纹必须自锁。