岩体力学 几种常见岩石哒弹性模量 推导公式

合集下载

常用的岩土和岩石物理力学参数

常用的岩土和岩石物理力学参数

(E v) •与(K. G)的转换关系如下:3(1-2v)G = ------------ (7.2)2(1+ v)当v 值接近0.5的时候不能盲目的使用公式3.5,因为汁算的K 值将会非常的高,偏离 实际值很多。

最好是确左好K 值(利用压缩试验或者P 波速度试验估计),然后再用K 和v 来计算G 值。

表7」和7.2分别给出了岩土体的一些典型弹性特性值。

各向异性弹性特性一一作为各向异性弹性体的特姝情况,横切各向同性弹性模型需要 5中弹性常量:E], E 3, V 12, VI 3和On ;正交%向异性弹性模型有9个弹性模量E h E 2,E 3, V12, V13, V23,G12,G13 GlJo 这些常量的定义见理论篇。

均质的节理或是层状的岩仃一般表现出横切各向同性弹性特性。

一些学者已经给出了 用各向同性弹性特性参数、巧理刚度和空间参数来表示的弹性常数的公式。

表3.7给出了 各向异性岩石的一些典型的特性值。

1 / 10页岩66.849.50」70.2125.3大理石6&650.20.060.2226.6花岗岩10.7 5.20.200.41 1.2流体弹性特性一一用于地F水分析的模型涉及到不可压缩的土粒时用到水的体积模量K…如果土粒是可压缩的,则要用到比奥模量M o纯净水在室温情况下的K「值是2 Gpa Q 其取值依赖于分析的目的。

分析稳态流动或是求初始孔隙压力的分布状态(见理论篇第三章流体■固体相互作用分析),则尽量要用比较低的Kr,不用折减。

这是由于对于大的K(流动时间步长很小,并且,力学收敛性也较差。

在FLAC3D中用到的流动时间步长,△"与孔隙度m渗透系数k以及心有如下关系:(7.3)对于可变形流体(多数课本中都是将流体设左为不可压缩的)我们可以通过获得的固结系数C,来决定改变&的结果。

(7.4)英中1m|z = -------------K + 4G/3 k = k /f其中,k—一FLAC3D使用的渗透系数k一一渗透系数,单位和速度单位一样(如米/秒)r r——水的单位重量考虑到固结时间常量与G,成比例,我么可以将K(的值从英实际值(2xlOSd)减少,利用上面得表达式看看其产生的误差。

煤系地层常见岩石力学参数

煤系地层常见岩石力学参数
2
24
7-1煤
1370
27
7煤
1400
20
8-1煤
1420
20
9煤
1400
20
III煤
1470
39
II煤
1540
39
IV煤
1500
39

1400
1
28

1430
1
28

1420
20
软煤
1300
30
硬煤
1851
42
砂岩
砂岩
2487
40
2580
25
42
2350
5
35
2350
35
2300
33
2550
9
35
2650
41
2690
41
2650
40
粉砂岩
2460
38
2680
8
38
2460
38
2460
38
2630
5
6
35
2665
2650
2730
8
2160
10
4
细砂岩
2873
42
2540
2
35
1
3258
42
2570
9
2790
43
2800
43
2800
43
2597
27
42
2586
43
中粗砂岩
2630
22
36
中砂岩
2580
常见岩层力学参数
组号
岩石名称
容重d/ (kg/m3)

各种岩石及土的弹性模量及泊松比

各种岩石及土的弹性模量及泊松比
在岩石的弹性工作范围内,μ一般为常数,但超越弹性范围以后,μ随应力的增大而增大,直到μ=为止。
岩石种类
E(10的4次方MPa)?
μ
闪长岩?
~?

细粒花岗岩?
~?

斜长花岗岩?
~?

斑状花岗岩?
~?

花岗闪长岩?
~?

石英砂岩?
~?

片麻花岗岩?
~?

正长岩?
~?

片岩?
~?

玄武岩?
~?

安山岩?
~?

绢云母页岩?
?
--
花岗岩?
~?

细砂岩?
~?

中砂岩?
~?

中灰岩?
~?

石英岩?
~?

板状页岩?
~?
--
粗砂岩?
~

片麻岩?
~

页岩?
~?

大理岩?
~

炭质砂岩?
~

泥灰岩?
~

石膏?
~?
土的泊松比
土的种类和状态?
泊松比
碎石土?
砂土?
粉土?
粉质粘土
坚硬状态?
可塑状态?
软塑或流动?
粘土
坚硬状态?
可塑状态?
软塑或流动?
但是应该注意,土的泊松是很难精确得到的,以上只是近似值。《地基与基础》(顾晓鲁等主编,中国建工,1993,第二版)142面:

煤系地层常见岩石力学参数

煤系地层常见岩石力学参数
0.22
2.11
29.5
2.6
粉砂岩
2730
8.0
4.30
3.36
0.19
7.1
32.9
10.2
12-1煤
1820
3.8
1.92
1.62
0.17
1.89
24.2
1.9
细砂岩
2570
9.0
6.25
3.57
0.26
9.2
31.4
8.5
12-2煤
1460
3.2
1.67
1.36
0.18
2.3
27.8
2.3
粉砂岩
0.33
2.6
39

1400
0.99
0.85
0.38
0.31
1
28
0.5

1430
1.2
1
0.46
0.3
1.2
28
0.6

1420
0.5
0.46
0.19
0.32
0.8
20
0.01
软煤
1300
0.4
0.63
0.145
0.39
0.34
30
0.2
硬煤
1851
2.2
1.05
0.956
0.15
1.88
42
1.77
7.8
32
3.65
石灰岩
2800
10.69
5.57
4.53
0.18
11.4
38
6.7
常见岩层力学参数分类汇总
类别
岩石名称
容重d/ (kg/m3)

岩体力学参数确定的方法

岩体力学参数确定的方法

岩体力学参数确定的方法岩体力学参数的确定方法在岩石工程实践中,首先需要了解作为研究对象的工程岩体的力学性质,并确定其特征参数。

岩石力学参数的合理确定一直是岩石力学研究和发展的难点之一。

在应用工程力学领域,如果完整地使用经典理论力学的连续性假设和定义,就会存在理解上的问题。

必须考虑假设的合理使用范围和每个物理量的适用定义。

本文讨论了地下岩体工程中根据不同的重点确定岩体参数的方法。

1、确定岩体参数的传统方法地下巷道、硐室开挖后,围岩产生应力重分异作用,径向应力减少,切向应力增加,并且随着工程不断推进,岩体应力状态不断改变。

巷道、硐室围岩处于“三高一扰动”条件下,岩体表现的力学特性是破坏条件下的稳定失稳再平衡过程。

围岩体处于一种拉压相间出现的复杂应力状态。

该类工程岩体的力学参数的确定要进行岩体的卸荷试验研究,且要依据现场工程实际条件进行卸荷条件下的应力、渗流与温度三场耦合试验研究。

需要进行循环加卸载条件下的岩体力学特性研究,进而获得岩体的力学参数特征。

地下巷道和硐室工程岩体力学参数的确定方法如下:(1)三轴应力状态下的卸荷三场耦合力学试验,获得有关参数;(2)进行岩体流变特性试验研究,获得有关岩体的流变参数。

目前在该领域要进行大量的工作,包括设备仪器的研制等,同时还要利用新的计算机技术才会实现。

二.建立力学模型确定岩体力学参数建立工程岩体力学参数模型主要是解决复杂岩体力学参数的确定问题。

为了确定复杂岩体的力学参数,需要将工程岩体视为一个连续模型。

采用确定岩体力学参数的新方法,建立了层状斜节理岩体的力学模型,并进行了力学试验,确定了岩体的基本力学参数。

1.工程岩体力学参数模型目前,关于岩石的力学性质和划分基本上有两种观点:一种观点认为岩石本身是一种连续的非各向异性材料,另一种观点认为岩石是由多晶系统组成的,存在空洞和裂缝等缺陷,这使得岩石本身的结构表现出各向异性和不连续性。

岩体一般被视为不连续介质,但在一定条件下仍满足连续介质力学的基本假设。

常见岩石力学参数

常见岩石力学参数
白云岩
0.15~0.35
安山岩
0.20~0.30
石英岩
0.08~0.25
辉长岩
0.10~0.30
片麻岩
0.10~0.35
玄武岩
0.10~0.35
片岩
0.20~0.40
砂岩
0.20~0.30
板岩
0.20~0.30
2.弹性模量的变化范围:
岩石名称
弹性模量E/GPa
岩石名称
弹性模量E/GPa
花岗岩
50~100
岩石名称
内摩擦角φ/(°)
内聚力c/MPa
岩石名称
内摩擦角φ/(°)
内聚力c/0
页岩
20~35
2~30
流纹岩
45~60
15~50
石灰岩
35~50
3.5~40
闪长岩
45~55
15~50
白云岩
35~50
8~40
安山岩
40~50
15~40
石英岩
50~60
20~60
辉长岩
45~55
页岩
20~80
流纹岩
50~100
石灰岩
50~100
闪长岩
70~100
白云岩
50~94
安山岩
50~120
石英岩
60~200
辉长岩
70~150
片麻岩
10~100
玄武岩
60~120
片岩
10~80
砂岩
10~100
板岩
20~80
3.常温常压下强度极限:
岩石名称
抗压强度/MPa
抗剪强度/MPa
抗张强度/MPa
花岗岩

关于常用的岩土和岩石物理力学参数

关于常用的岩土和岩石物理力学参数

(E , ν) 与(K , G )的转换关系如下:)1(2ν+=EG ()当ν值接近的时候不能盲目的使用公式,因为计算的K 值将会非常的高,偏离实际值很多。

最好是确定好K 值(利用压缩试验或者P 波速度试验估计),然后再用K 和ν来计算G 值。

表和分别给出了岩土体的一些典型弹性特性值。

岩石的弹性(实验室值)(Goodman,1980) 表土的弹性特性值(实验室值)(Das,1980) 表各向异性弹性特性——作为各向异性弹性体的特殊情况,横切各向同性弹性模型需要5中弹性常量:E 1, E 3, ν12,ν13和G 13;正交各向异性弹性模型有9个弹性模量E 1,E 2,E 3, ν12,ν13,ν23,G 12,G 13和G 23。

这些常量的定义见理论篇。

均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。

一些学者已经给出了用各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。

表给出了各向异性岩石的一些典型的特性值。

横切各向同性弹性岩石的弹性常数(实验室) 表流体弹性特性——用于地下水分析的模型涉及到不可压缩的土粒时用到水的体积模量K f ,如果土粒是可压缩的,则要用到比奥模量M 。

纯净水在室温情况下的K f 值是2 Gpa 。

其取值依赖于分析的目的。

分析稳态流动或是求初始孔隙压力的分布状态(见理论篇第三章流体-固体相互作用分析),则尽量要用比较低的K f ,不用折减。

这是由于对于大的K f 流动时间步长很小,并且,力学收敛性也较差。

在FLAC 3D 中用到的流动时间步长,? tf 与孔隙度n ,渗透系数k 以及K f 有如下关系:'f f k K nt ∝∆ () 对于可变形流体(多数课本中都是将流体设定为不可压缩的)我们可以通过获得的固结系数νC 来决定改变K f 的结果。

f'K n m k C +=νν ()其中其中,'k ——FLAC 3D 使用的渗透系数k ——渗透系数,单位和速度单位一样(如米/秒) f γ——水的单位重量考虑到固结时间常量与νC 成比例,我么可以将K f 的值从其实际值(Pa 9102⨯)减少,利用上面得表达式看看其产生的误差。

常用的岩土和岩石物理力学参数

常用的岩土和岩石物理力学参数

常用的岩土和岩石物理力学参数(E, ν) 与(K, G)的转换关系如下:)21(3ν-=EK)1(2ν+=EG (7.2)当ν值接近0.5的时候不能盲目的使用公式3.5,因为计算的K 值将会非常的高,偏离实际值很多。

最好是确定好K 值(利用压缩试验或者P 波速度试验估计),然后再用K 和ν来计算G 值。

表7.1和7.2分别给出了岩土体的一些典型弹性特性值。

岩石的弹性(实验室值)(Goodman,1980)表7.1干密度(kg/m 3)E(GPa) ν K(GPa) G(GPa) 砂岩19.3 0.38 26.8 7.0 粉质砂岩26.3 0.22 15.6 10.8 石灰石2090 28.5 0.29 22.6 11.1 页岩2210-257011.1 0.29 8.8 4.3大理石2700 55.8 0.25 37.2 22.3 花岗岩73.8 0.22 43.9 30.2土的弹性特性值(实验室值)(Das,1980)表7.2干密度(kg/m 3) 弹性模量E(MPa) 泊松比ν 松散均质砂土1470 10-26 0.2-0.4 密质均质砂土 1840 34-69 0.3-0.45 松散含角砾淤泥质砂土 1630 密实含角砾淤泥质砂土 1940 0.2-0.4 硬质粘土 1730 6-14 0.2-0.5 软质粘土1170-1490 2-3 0.15-0.25 黄土1380 软质有机土610-820 冻土2150各向异性弹性特性——作为各向异性弹性体的特殊情况,横切各向同性弹性模型需要5中弹性常量:E 1, E 3, ν12,ν13和G 13;正交各向异性弹性模型有9个弹性模量E 1,E 2,E 3, ν12,ν13,ν23,G 12,G 13和G 23。

这些常量的定义见理论篇。

均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。

一些学者已经给出了用各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动弹性模量与静弹性模量的比值 一般来说,岩体越坚硬越完整,则差值越小,否则,差值就越大。 从动弹性模量的数字来看,多集中在 15~50GPa之间。
E jEd
j-为折减系数,可根据岩石完整性系数Kv进行选择
Kv
v
2 pm
v
2 pr
Vpm—岩体的纵波速度; Vpr—岩块的纵波速度。
3.3 影响岩体弹性波波速的因素
Ed Vs2(3Vp24Vs2)/(Vp2Vs2) d 12(Vp22Vs2)/(Vp2Vs2)
注:若V s 分辨不清,则可用 ,Vp, (一般可用静泊松比代替)求 E d ,

Ed=ρVp2(1+u)(1-2u)/(1-u)
Vp
/Vs
[2(1)]12 12
若 =0.25时,V p / Vs =1.73
量出声源与接收器之间的距离如图中的D1或D2 测出P波和S波传播的时间tP tS 计算弹性波速度Vp和Vs
注意:
激发方式有:换能器激发、电火花激发、锤击激发 相邻两测点的距离:采用换能器激发1~3m,采用电火花激发时10~30cm,
采用锤击激发时应大于3m
钻孔或风钻孔应冲洗干净,并在孔内注满水,水即作为耦合剂,对软岩 宜采用干孔测试
粘弹性波—在非线性弹性体中传播的波,这种波,除弹性变形产生的 弹性应力外,还产生摩擦应力或粘滞应力。
塑性波—在能够传播塑性波的介质中,应力超过弹性极限的波。其速 度小于弹性波。
冲击波—如果固体介质的变形性质能使大扰动的传播速度远比小扰动 的传播速度大,在介质中就会形成波头陡峭的、以超声波传 播的冲击波。
(三)岩体弹性波测定结果
由表可见,一般来说, 纵波速度大于横波速度,岩体纵波波速变化范围较大,受各种因素影响。 岩块波速要大于岩体波速; 新鲜完整的岩体波速大; 裂隙越发育和风化破碎岩体的波速越小。
根据实验结果整理的岩体动、弹性模量 动弹性模量比静弹性模量高百分之几甚至10倍
动弹模
静弹模
平行于应力方向
拉应力(MPa)
与拉应力垂直方向上的纵波波速, 随应力增长而减小
(二)现场量测的结果
在某工程中,测定了巷道 两帮的应力变化对声波波速 的影响可以推断松动圈的范 围。工程测点布置如图
1.在巷道壁钻孔测试声波速度
在松动区内,由于岩体破碎且是低 应力区,因而波速较小;弹性区,岩 体完整,波速达到最大;原岩应力区, 波速正常。
图3-10表示了纵波波速与吸水率之间的关系 。
从图中可以看出:
2.随着吸水率的增加,纵波波速急剧的下降
四、岩体波速与各向异性性质有关 岩体因成岩条件、结构面和地应力等原因而具有各向异性,因而弹性波在 岩体中的传播、岩体动弹性模量等也具有各向异性。
1. 平行层面纵波波速大于垂直层面波速 平行层面波速/垂直岩层波速=各向异性系数C C=1.08-2.28;多数:C=1.67 相当一部分:c=1.10
1.频率越低,跨越裂隙宽度俞大,反之俞小
2. 裂隙数目越多,则纵波速度愈小
3.岩体的风化程度愈高弹性波的速度亦小
4.夹层厚度愈大弹性波纵波速度愈小
三、岩体波速与岩体的有效孔隙率n及吸水率 W a 有关
一些岩浆岩,沉积岩和变质岩的纵波 速度与有效孔隙率n之间的关系见图所示 。
从图中可以看出:
1.随着有效孔隙率的增加,纵波波速 则急剧下降
)
x
Gd 2u
u 2 t 2
(
Gd )
y
Gd 2v
v2 t 2
(
Gd ) z
Gd2w
w2 t 2
dEd
(1d)1(2d)
Gd
Ed
2(1d)
拉梅常数 动剪切模量
uvw
x y z
体积应变
Δ2——拉普拉斯算子
2 x22 y22 z22
u、v、w为x、y、z方向上的位移
由以上方程导出纵波在各向同性岩体中的传播速度:
岩体声波的传播速度可以在巷道帮面或平坦的岩面上测定。
在岩体上打两个孔,在一个钻孔内埋放炸药, 在另一个孔内安放接受地震波的地震计,并 把它接在接收仪器上。炸药爆炸时产生的弹 性波,通过地震计接收,由示波器显示并记 录下来。由于地震计与震源(炸药埋设点) 的距离L为已知,只要测定弹性波从震源传 播到地震计的时间t,就可直接计算出波速 Vp和Vs,然后再计算出μd和Ed。
一、岩体弹性波速与岩体种类、岩石密度和生成年代有关
1.岩石的密度和完整性越高,波 速越大
2.岩石密度越大,弹性波的速度 也相应增加
V P0.3 51.88
二、岩体波速与岩体中裂隙或夹层的关系
弹性波在岩体中传播时,遇到裂隙,则视充填物而异。若裂隙中充填物为空气, 则弹性波不能通过,而是绕过裂隙断点传播。在裂隙充水的情况下,弹性波有5%可 以通过,若充填物为其他液体或固体物质,则弹性波可部分或完全通过。弹性波跨越 裂隙宽度的能力与弹性波的频率和振幅有关.
Vp
( 2Gd
横波在各向同性岩体中的传播速度:
1
)2
Vs
( Gd
1
)2
将 (1d E)d1 ( d 2d)

Gd
Ed
1 d
代入
上两式,得:Vp[(1 Ed(d1)1(d2)d)]1 2
Vs
[
Ed
1
]2
(1d)
若已知 ,Vp,Vs,则可根据上两式推出求动弹性模量 E d 和动泊松 比 d ,即:
1.加载方式对声波波速的影响 在单向压缩且垂直应力方向测试岩石的波速时,所测波速有较明显的
影响
静水压力
单向压缩平行应力方向
单向压缩垂直应力方向
随着压力的增大,纵波的 波速亦随之增大。在开始 阶段较快,然后逐渐变小, 最后可能不增加。
2. 对于层面发育的沉积岩石,垂直于层面方向纵波波速,在低应力阶段波速 随应力增长而急速增加,当波速超过平行层面方向的波以后,增长变慢。
平行于层面方向的纵波速度随应力的增大而增大,但增幅较小。
3.当岩石种类不同,纵波波速不同。但基本规律相同,即在低应力区纵波波 速增长很快,随着应力的增大,增长减慢,趋于常值。
平行于应力方向
4.当岩石单向拉伸后,量测的 波速因方向的不 同而不同
与压应力相同方向上的纵波波速,在 低应力阶段波速急速增长,达到一定 程度后增速减缓
发射传感器
t0—系统的零延时
(1)测定纵波速度适宜采用凡士林或黄油作耦合剂; (2)测定横波速度适宜采用铝箔或铜箔作耦合剂;
(二)岩体声波传播速度的现场测定
当现场岩石受振激发时,岩体内就产生了一种应力波,即弹性波。动力法现场 测试工作主要包括激发、接收弹性波、记测弹性波的传播时间、振幅和波形。根据激 发波采用的方法和产生波的频率不同,通常分超声波法、声波法和地震波法三种,超 声波法主要用于现场比较大的岩块,声波法用于测试岩体表面,它的测试范围在5~ 50m之间,最优范围是5~10m,地震波法的能量大、频率低,传播距离远,一般可以 在大范围内测试。这些方法都是通过测定岩石内的弹性波速,然后用弹性力学公式计 算。
根据波速沿测孔深度的变化曲线, 确定这三个区的范围。
2.测试结果
如图可见,3条测线总 的趋势大约在1.5米处, 波速最大,可推测松动圈 范围在此处。
另外,曲线1在1.5米更 深处波速更大,这可能是 该处巷道纵横交错,应力 较复杂之故。
2.平行岩层面的动弹模大于垂直岩层的动弹模 各向异性系数数值在1.01-2.72之间;绝大部分小于1.30
3. 压力愈大,纵波波速各向异性系数愈小 由表可见,所有系数来自大于1;其最大系数在1.6MPa
五、岩体受压应力对弹性波传播的影响
(一)室内测试的结果
岩石在压应力作用下,对弹性波的波速和动弹性模量有一定的影响,受力状 态可分静水压缩、三向压缩和单向压缩,量测方式可分为平行或垂直于最大应力 或层面方向。
岩石在受到扰动时在岩体中主要传播的是弹性波,塑性波和冲击波只有 在振源处才可以看到。
弹性波
体波(由岩体内部传播 的波)
纵波(又称:压力波、P波) 质点振动的方向和传播方向一致的波,产生压缩或拉伸变形。
横波(又称:拉力波、S波) 质点振动方向和传播方向垂直的波,产生剪切变形。
面波(仅在岩石表面传 播)
经过各方面试验验证,V p / Vs 一般在1.6~1.7之间。
三、岩体弹性波速得测定
(一)岩块声波传播速度室内测定
测定时,把声源和接收器放在岩块试件得两端,通常用超声波,
其频率为1000Hz-2MHz。
接收传感器
测出 tP tS
耦合济

石 试
l

声波仪
VP l /(tP t0 ) VS l /(tS t0 )
第三章 岩体的动力学性质
3.1 概述 3.2 岩体中应力波类型及传播 3.3 影响岩体弹性波速度的因素
山东科技大学资源与环境工程学院
3.1 概述
岩体的动力学性质是岩体在动荷载作用下所表现出来的性质,包括岩 体动力变形和强度性质及岩体中弹性波的传播规律。
应变率等级分类
岩体流变力学 岩体静力学 岩体动力学
瑞利波(又称:R波) 质点在平行于波传播方向的垂直平面内作椭圆运 动,其长轴垂直于表面,
勒夫波(又称:L波) 质点在水平面内垂直于波前进方向作水平振动
•按波面形状,应力波又区分为平面波、球面波和和柱面波。
二、弹性波在固体中的传播
由运动方程、几何方程、物理方程可得出:
拉梅运动方程 (不计体力)
(
Gd
山东科技大学资源与环境工程学院
3.2 岩体中应力波类型及传播
一、固体中应力波的种类
波—某种扰动或某种运动参数或状态参数(例如应力、变 形、震(振)动、温度、电磁场强度等)的变化在介质中 的传播。应力波就是应力在固体介质中的传播。
相关文档
最新文档