函数图像的四种变换形式

合集下载

函数图像变换规律

函数图像变换规律

函数图像变换规律
●自变量改变而导致图像的左右(横坐标)变化
1.自变量加则向左,减则向右平移,简记为“左加右减”;
2.自变量乘ω,则图像的每个点的横坐标变为原来的1/ω倍;
3.自变量加负号(即乘-1),则图像关于y轴对称,即每个点的横坐标变为原来的
1/-1倍;
4.自变量加上绝对值,则擦去左边,再做右边关于y轴对称;
●函数值改变而导致图像的上下(纵坐标)变化
1.函数值加则向上,减则向下平移;
2.函数值乘ω,则图像的每个点的纵坐标变为原来的ω倍;
3.函数值加负号(即乘-1),则图像关于x轴对称,即每个点的纵坐标变为原来的
-1倍;
4.函数值加上绝对值,则把x轴下方向上翻折。

●练习:
1)在函数y=log3(x2-2x)的自变量中减2,可得y=________________;
2)在函数y=log3(x2-2x)的函数值中减2,可得y=________________;
3)在函数y=log3(x2-2x)的自变量中加绝对值,可得y=________________;
4)在函数y=2sin(p/3-x)的自变量中加p/4,可得y=________________;
5)在函数y=1/x中的自变量中加负号,得y =______________;再在自变量中减2,得y=____________________;再在函数值中加1,得y =______________;。

函数图像变换(整理)

函数图像变换(整理)

函数的图象变换函数图象的基本变换:(1)平移;(2)对称;(3)伸缩。

由函数y = f (x)可得到如下函数的图象1. 平移:(1)y = f (x + m) (m>0):把函数y =f (x)的图象向左平移m 的单位(如m<0则向右平移-m 个单位)。

(2)y = f (x) + m (m>0):把函数y =f (x)的图象向上平移m 的单位(如m<0则向下平移-m 个单位)。

2. 对称:✧ 关于直线对称(Ⅰ) (1)函数y = f (-x)与y = f (x)的图象关于y 轴对称。

(2)函数y = -f (x)与y = f (x)的图象关于x 轴对称。

(3)函数y = f (2a -x)与y = f (x)的图象关于直线x = a 对称。

(4)函数y = 2b -f (x)与y = f (x)的图象关于直线y = b 对称。

(5)函数)x (f y 1-=与y = f (x)的图象关于直线y = x 对称。

(6)函数)x (f y 1--=-与y = f (x)的图象关于直线y = -x 对称。

(Ⅱ)(7)函数y = f (|x|)的图象则是将y = f (x)的y 轴右侧的图象保留,并将y =f (x)右侧的图象沿y 轴翻折至左侧。

(留正去负,正左翻(关于y 轴对称));(8)函数y = |f (x)|的图象则是将y = f (x)在x 轴上侧的图象保留,并将y = f (x)在x 轴下侧的图象沿x 轴翻折至上侧。

(留正去负,负上翻;)一般地:函数y = f (a+mx)与y = f (b -mx)的图象关于直线m2a b x -=对称。

✧ 关于点对称(1) 函数y = - f (-x)与y = f (x)的图象关于原点对称。

(2) 函数y = 2b -f (2a -x)与y = f (x)的图象关于点(a,b)对称。

3. 伸缩(1) 函数y = f (mx) (m>0)的图象可将y = f (x)图象上各点的纵坐标不变,横坐标缩小到原来的m 1倍得到。

高考数学《图像变换在三角函数中的应用》基础知识与典型例题分析

高考数学《图像变换在三角函数中的应用》基础知识与典型例题分析

高考数学《图像变换在三角函数中的应用》基础知识与典型例题分析在高考中涉及到的三角函数图像变换主要指的是形如()sin y A x ωϕ=+的函数,通过横纵坐标的平移与放缩,得到另一个三角函数解析式的过程。

要求学生熟练掌握函数图像变换,尤其是多次变换时,图像变化与解析式变化之间的对应联系。

一、基础知识:(一)图像变换规律:设函数为()y f x =(所涉及参数均为正数) 1、函数图像的平移变换:(1)()f x a +:()f x 的图像向左平移a 个单位 (2)()f x a −:()f x 的图像向右平移a 个单位 (3)()f x b +:()f x 的图像向上平移b 个单位 (4)()f x b −:()f x 的图像向下平移b 个单位 2、函数图像的放缩变换:(1)()f kx :()f x 的图像横坐标变为原来的1k(图像表现为横向的伸缩) (2)()kf x :()f x 的图像纵坐标变为原来的k 倍(图像表现为纵向的伸缩) 3、函数图象的翻折变换: (1)()fx :()f x 在x 轴正半轴的图像不变,负半轴的图像替换为与正半轴图像关于y 轴对称的图像(2)()f x :()f x 在x 轴上方的图像不变,x 轴下方的部分沿x 轴向上翻折即可(与原x 轴下方图像关于x 轴对称)(二)图像变换中要注意的几点:1、如何判定是纵坐标变换还是横坐标变换?在寻找到联系后可根据函数的形式了解变换所需要的步骤,其规律如下: ① 若变换发生在“括号”内部,则属于横坐标的变换 ② 若变换发生在“括号”外部,则属于纵坐标的变换例如:()31y f x =+:可判断出属于横坐标的变换:有放缩与平移两个步骤()2y f x =−+:可判断出横纵坐标均需变换,其中横坐标的为对称变换,纵坐标的为平移变换2、解析式变化与图像变换之间存在怎样的对应?由前面总结的规律不难发现: (1)加“常数”⇔ 平移变换(2)添“系数”⇔放缩变换 (3)加“绝对值”⇔翻折变换3、多个步骤的顺序问题:在判断了需要几步变换以及属于横坐标还是纵坐标的变换后,在安排顺序时注意以下原则:① 横坐标的变换与纵坐标的变换互不影响,无先后要求 ② 横坐标的多次变换中,每次变换只有x 发生相应变化 例如:()()21y f x y f x =→=+可有两种方案方案一:先平移(向左平移1个单位),此时()()1f x f x →+。

高中数学-函数图象变换及经典例题练习

高中数学-函数图象变换及经典例题练习

高中数学-函数图象变换1、平移变换(左加右减上加下减):y=f(x)h 左移→y=f(x+h); y=f(x)h 右移→y=f(x -h); y=f(x)h 上移→y=f(x)+h; y=f(x)h 下移→y=f(x)-h.2、对称变换:y=f(x) 轴x →y= -f(x); y=f(x)轴y →y=f(-x); y=f(x) 原点→y= -f(-x). y=f(x) a x =→直线y=f(2a -x); y=f(x) x y =→直线y=f -1(x);3、翻折变换:(1)函数|()|y f x =的图像可以将函数()y f x =的图像的x 轴下方部分沿x 轴翻折到x 轴上方, 去掉原x 轴下方部分,并保留()y f x =的x 轴上方部分即可得到;(2)函数(||)y f x =的图像可以将函数()y f x =的图像右边沿y 轴翻折到y 轴左边替代原y 轴左 边部分并保留()y f x =在y 轴右边部分即可得到.4、伸缩变换:y=f(x)ω⨯→x y=f(ωx ); y=f(x)ω⨯→y y=ωf(x). 经典题型:作已知函数的图像、知式选图或知图选式、图像应用例1.函数111--=x y 的图象是( ) 答案B例2.如图所示,)(),(),(),(4321x f x f x f x f 是定义在]1,0[上的四个函数,其中满足性质:“对]1,0[中任意的1x 和2x ,)]()([21)2(2121x f x f x x f +≤+恒成立”的只有( ) 答案A例3、利用函数x x f 2)(=的图象,作出下列各函数的图象:(1))1(-x f ;(2)|)(|x f ;(3)1)(-x f ;(4))(x f -;(5).|1)(|-x f例4已知0>a ,且≠a 1,函数x a y =与)(log x y a -=的图象只能是图中的( ) 答案B例5函数)(x f y =与函数)(x g y =的图象如右上,则函数)(x f y =·)(x g 的图象是( ) 答案A例6 已知函数y =f (x )的周期为2,当x ∈[-1,1]时f (x )=x 2,那么函数y =f (x )的图象与函数y =|lg x |的图象的交点共有( ).A .10个B .9个C .8个D .1个解析:画出两个函数图象可看出交点有10个.答案 A例7.y =x +cos x 的大致图象是( )解析 当x =0时,y =1;当x =π2时,y =π2;当x =-π2时,y =-π2,观察各选项可知B 正确. 例8.函数cos622x xx y -=-的图象大致为( )例9.函数y =11-x的图象与函数y =2sin πx (-2≤x ≤4)的图象所有交点的横坐标之和为( ). A .2 B .4 C .6 D .8解析 此题考查函数的图象、两个函数图象的交点及函数的对称性问题.两个函数都是中心对称图形.如右图,两个函数图象都关于点(1,0)成中心对称,两个图象在[-2,4]上共8个公共点,每两个对应交点横坐标之和为2,故所有交点的横坐标之和为8.例10.函数21log 1x y x+=-的图象( ) A . 关于原点对称 B. 关于主线y x =-对称C. 关于y 轴对称D. 关于直线y x =对称解析 设21()log 1x f x x +=-,则21()log 1x f x x --=+=()f x -,所以函数21log 1x y x+=-是奇函数,其图象关于原点对称,故选A.例11. 若方程2a =|a x -1|(a >0,a ≠1)有两个实数解,求实数a 的取值范围.解:当a >1时,函数y =|a x -1|的图象如图①所示,显然直线y =2a 与该图象只有一个交点,故a >1不合适; 当0<a <1时,函数y =|a x -1|的图象如图②所示,要使直线y =2a 与该图象有两个交点,则0<2a <1,即0<a <12.综上所述,实数a 的取值范围为(0,12).函数图像及图像变换练习(带答案)1. 函数)1(||>⋅=a a x x y x 的图象的基本形状是 ( ) 答案A2.方程lg x =sin x 解的个数为( )。

函数图像的变换法则

函数图像的变换法则

( 0,1 )和( 0,1 ) ( 2,0 )和( 2, 2 )
三﹑对称变换
y
(-x,y) .
(-x,-y) .
(y,x) . .(x,y)
x
.(x,-y)
函数图象对称变换的规律:
1. y f ( x) y f ( x)
关于x轴对称
2. y f ( x) y f ( x)
函数图象变换的应用:
①作图﹑② 识图﹑ ③用图
(2)方程 f(x)-a=x 的根的个数等价于 y=f(x)与 y=x-a 的交点的个数,所以可以借助图像进行分析.
规范解答 解
2 x-2 -1, x∈-∞,1]∪[3,+∞ f(x)= 2 -x-2 +1, x∈1,3
作出图像如图所示.
[2 分]
(1)递增区间为[1,2],[3,+∞), 递减区间为(-∞,1],[2,3]. [4 分] (2)原方程变形为 |x2-4x+3|=x+a, 于是,设 y=x+a,在同一坐标系下再作出 y=x+a 的图 像.如图. 则当直线 y=x+a 过点(1,0)时,a=-1; [6 分]
a a
1 x
a

a ax a a a
x

ax a ax
1 y 1
a a a
x

a
x
x
a a
f (1 x)
所以,函数y=f(x)的图象关于点(1/2,1/2)对称
(2)由对称性知f(1-x)+f(x)=1,所以 f(-2)+ f(-1)+ f(0)+ f(1)+ f(2)+ f(3)=3。
对称变换是指两个函数图象之间的对称关系,而”满足 f(x)= f(2a-x)或f(a+x)= f(a-x)有y=f(x)关于直线x=a对称”是 指一个函数自身的性质属性,两者不可混为一谈.

函数图像的变换(周期,平移,对称)

函数图像的变换(周期,平移,对称)

函数的变换(平移,对称,翻折,周期)【自主梳理】1.() (0)y f x a a =+>的图象可由()y f x =的图象向 平移单位而得到.() (0)y f x a a =->的图象可由()y f x =的图象向 平移单位而得到. 2.() (0)y f x b b =+>的图象可由()y f x =的图象向 平移单位而得到.() (0)y f x b b =->的图象可由()y f x =的图象向 平移单位而得到. 3.() (0)y Af x A =>的图象可由()y f x =图象上所有点的纵坐标变为 ,不变而得到.4.() (0)y f ax a =>的图象可由()y f x =图象上所有点的横坐标变为 ,不变而得到. 【自我检测】1.若()f x 的图象过(0,1)点,则(1)f x +的图象过点 . 2.函数2xy =的图象向右平移2个单位所得函数解析式为 . 3.将函数lg()y x =-的图象 可得函数lg(1)y x =-+的图象.4.函数xy x a =-+的图象的对称中心为(1,1)--,则a = . 5.将函数1cos 2y x =图象的横坐标缩短到原来的21倍,纵坐标扩大为原来的2倍,所得函数解析式为 . 6.为了得到函数3lg10x y +=的图象,只需把函数lg y x =的图象上所有的点向左平移 个单位长度,再向 平移个单位长度. 二、课堂活动: 【例1】填空题:(1)设函数()y f x =图象进行平移变换得到曲线C ,这时()y f x =图象上一点(2,1)A -变为曲线C 上点(3,3)A '-,则曲线C 的函数解析式为.(2)如果直线l 沿x 轴负方向平移3个单位,再沿y 轴正方向平移1个单位后,又回到原来的位置,那么直线l 的斜率是.(3)要得到函数sin(2)3y x π=-的图象,只需将函数cos2y x =的图象. (4)若函数()2sin y x θ=+的图象按向量(,2)6π平移后,它的一条对称轴是4x π=,则θ的一个可能的值是.【例2】作出下列函数的图象.(1)12x y -= (2)211x y x +=-【例3】(1)函数()24log 12y x x =-+的图象经过怎样的变换可得到函数2log y x =的图象?(2)函数21cos cos 12y x x x =+⋅+的图象可由sin y x =的图象经过怎样的平移和伸缩变换得到?【自主梳理】1.(1)函数()y f x =-与()y f x =的图像关于 对称; (2)函数()y f x =-与()y f x =的图像关于对称;(3)函数()y f x =--与()y f x =的图像关于 对称. 2.奇函数的图像关于对称,偶函数图像关于对称.3.若对于函数()y f x =定义域内的任意x 都有()()f a x f b x +=-,则()y f x =的图像关于直线 对称. 4.对0a >且1a ≠,函数xy a =和函数log a y x =的图象关于直线对称.5.要得到()y f x =的图像,可将()y f x =的图像在x 轴下方的部分以为轴翻折到x 轴上方,其余部分不变.6.要得到()y f x =的图像,可将()y f x =,[)0,x ∈+∞的部分作出,再利用偶函数的图像关于的对称性,作出(),0x ∈-∞时的图像.3.函数y e =-的图象与函数 的图象关于坐标原点对称.4.将函数1()2x f x +=的图象向右平移一个单位得曲线C ,曲线C '与曲线C 关于直线y x =对称,则C '的解析式为 .5.设函数()y f x =的定义域为R ,则函数(1)y f x =-与(1)y f x =-的图像的关系为关 于 对称. 6.若函数()f x 对一切实数x 都有(2)(2)f x f x +=-,且方程()0f x =恰好有四个不同实根,求这些实根之和为 . 二、课堂活动:(1(2)对于定义在R 上的函数()f x ,有下列命题,其中正确的序号为.①若函数()f x 是奇函数,则(1)f x -的图象关于点(1,0)A 对称;②若对x R ∈,有(1)(1)f x f x +=-,则()y f x =的图象关于直线1x =对称;③若函数(1)f x -的图象关于直线1x =对称,则函数()f x 是偶函数;④函数(1)y f x =+与函数(1)y f x =-的图象关于直线1x =对称.(3)将曲线lg y x =向左平移1个单位,再向下平移2个单位得到曲线C .如果曲线C '与C 关于原点对称,则曲线C '所对应的函数式是.【例2】作出下列函数的图象:(1)12log ()y x =-;(2)12xy ⎛⎫=- ⎪⎝⎭;(3)2log y x =;(4)21y x =-.【例3】(1)将函数12log y x =的图象沿x 轴向右平移1个单位,得图象C ,图象C '与C 关于原点对称,图象C ''与C '关于直线y x =对称,求C ''对应的函数解析式; (2)已知函数()y f x =的定义域为R ,并且满足(2)(2)f x f x +=-.①证明函数()y f x =的图象关于直线2x =对称;②若()f x 又是偶函数,且[]0,2x ∈时,()21f x x =-,求[]4,0x ∈-时()f x 的表达式.一.周期函数的定义:设函数y=f(x)的定义域为D ,若存在常数T ≠0,使得对一切x ∈D ,且x+T ∈D 时都有f(x+T)=f(x),则称y=f(x)为D 上的周期函数,非零常数T 叫这个函数的周期。

高中数学知识点:初等函数图象变换

高中数学知识点:初等函数图象变换

高中数学知识点:初等函数图象变换
基本初等函数包含以下九种函数:正比例函数、反比例函数、一次函数、二次函数、幂函数、指数函数、对数函数.(三角函数、反三角函数待讲)
由基本初等函数经过四则运算以及简单复合所得的函数叫初等函数.
如:2()f x x =的图象变换,22(1),1,y x y x =+=+222,||y x y x ==
(1)平移变换
y =f (x )→y =f (x +a ) 图象左(0a >)、右(0a <)平移 y =f (x )→y =f (x )+b 图象上(b 0>)、下(b 0<)平移
(2)对称变换
y =f (x ) →y =f (-x ), 图象关于y 轴对称
y =f (x ) →y =-f (x ) , 图象关于x 轴对称
y =f (x ) →y =-f (-x ) 图象关于原点对称
y =f (x )→1()y f x -=
图象关于直线y =x 对称
(3)翻折变换: y =f (x ) →y =f (|x |),把y 轴右边的图象保留,然后将y 轴左边部分
关于y 轴对称.(注意:它是一个偶函数)
y =f (x ) →y =|f (x )| 把x 轴上方的图象保留,x 轴下方的图象
关于x 轴对称
要点诠释:
(1)函数图象是由基本初等函数的图象经过以上变换变化而来。

(2)若f(a-x)=f(a+x),则函数y=f(x)的图象关于直线x=a对称。

高中数学函数图象的4种简单变换知识点总结(平移、对称、翻折、伸缩)

高中数学函数图象的4种简单变换知识点总结(平移、对称、翻折、伸缩)

高中数学函数图象的简单变换知识点总结 高中阶段,函数图象的简单变换有:平移变换、对称变换、翻折变换、伸缩变换。

一、函数图象的平移变换①左右平移变换:()y f x =与()y f x a =+()()00a a a a y f x y f x a ><=−−−−−−−−−−−→=+时,向左平移个单位时,向右平移个单位 如:1y x =+的图象可由y x =的图象向右平移一个单位得到; 1y x =-的图象可由y x =的图象向下平移一个单位得到。

②上下平移变换()()00a a a a y f x y f x a ><=−−−−−−−−−−−→=+时,向上平移个单位时,向下平移个单位 如:1y x =+的图象可由y x =的图象向上平移一个单位得到。

1y x =-的图象可由y x =的图象向下平移一个单位得到。

【注】变换的口诀为:“上加下减,左加右减”。

二、函数图象的对称变换①()()y y f x y f x =−−−−−−−−−→=-作关于轴对称的图象②()()x y f x y f x =−−−−−−−−−→=-作关于轴对称的图象 ③()()y f x y f x =−−−−−−−−−→=--作关于原点对称的图象 如:(i )()sin sin y x y x ϕ=→=+①0ϕ>时,把sin y x =的图象向左平移ϕ个单位得到; ②0ϕ<时,把sin y x =的图象向右平移ϕ个单位得到;(ii )已知()2f x x x =-,则()()2g x f x x x =-=+的图象可由()2f x x x =- 的图象做关于y 轴对称的图象得到;函数()h x ()2f x x x =-=-+的图象可由 ()2f x x x =-的图象作关于x 轴对称后的图象得到;函数()()u x f x =--= 2x x --的图象可由()2f x x x =-的图象做关于坐标系原点对称的图象得到。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数图像的四种变换
1.平移变换
左加右减,上加下减
)
(
)
(a
x
f
y
x
f
y+
=
−→

=沿x轴左移a个单位;
)
(
)
(a
x
f
y
x
f
y-
=
−→

=沿x轴右移a个单位;

a
x
f
y
x
f
y+
=
−→

=)
(
)
(沿y轴上移a个单位;
a
x
f
y
x
f
y-
=
−→

=)
(
)
(沿y轴下移a个单位。

2.对称变换
同一个函数求对称轴或对称中心,则求中点或中心。

两个函数求对称轴或对称中心,则求交点。

,
(1)对称变换
①函数)
(x
f
y=与函数)
(x
f
y-
=的图像关于直线x=0(y轴)对称。

②函数)
(x
f
y=与函数)
(x
f
y-
=的图像关于直线y=0(x轴)对称。

③函数)
(a
x
f
y+
=与)
(x
b
f
y-
=的图像关于直线
2a
b x -
=对称
(2)中心对称
\
①函数)
(x
f
y=与函数)
(x
f
y-
-
=的图像关于坐标原点对称
②函数)
(x
f
y=与函数)
2(
2x
a
f
y
b-
=
-的图像关于点(a,b)对称。

3伸缩变换
(1))
(x
af
y=的图像,可以将)
(x
f
y=的图像纵坐标伸长(a>1)或缩短(a<1)到原来的a倍,横坐标不变。

(2))
(ax
f
y=(a>0)的图像,可以将)
(x
f
y=的横坐标伸长(0<a<1)
或缩短(a>1)到原来的1/a 倍,纵坐标不变。

^
4.翻折变换
(1)形如)(x f y =,将函数)(x f 的图像在x 轴下方的部分翻到x 轴上方,去掉原来x 轴下方的部分,保留原来在x 轴上方的部分。

(2)形如)(y x f =,将函数)(x f 在y 轴右边的部分沿y 轴翻到y 轴左边并替代原来y 轴左边部分,并保留)(x f y 轴左边部分,为)(y x f =的图像。

习题:①做出32y 2++=)(x 的图像 ②做出3+=x y 的图像。

相关文档
最新文档