第10讲函数图像及其变换(教案)

合集下载

函数图像的变换及其变换教案

函数图像的变换及其变换教案

函数图像课题:函数的图象教学目标:1.熟练掌握基本函数的图象;2.能正确地从函数的图象特征去讨论函数的主要性质; 3.能够正确运用数形结合的思想方法解题.教学重点:熟练基本函数的图象并掌握图象的初等变换. 教学过程: 知识回顾:数形结合是中学数学的重要的数学思想方法,尤其是函数的图象更是历年高考的热点.函数图象是函数的一种表达形式,形象的显示了函数的性质,为研究数量关系提供了“形”的直观性,它是探求解题途径,获得问题的结果的重要工具.考点:作图,识图,用图(注意抓住特殊点,零点,与坐标轴的交点) 三种变换1.平移变换: (1)水平平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向左(0)a >或向右(0)a <平移||a 个单位即可得到;(2)竖直平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向上(0)a >或向下(0)a <平移||a 个单位即可得到. 2.对称变换:(1)函数()y f x =-的图像与函数()y f x =的图像关于y 轴对称; (2)函数()y f x =-的图像与函数()y f x =的图像关于x 轴对称; (3)函数()y f x =--的图像与函数()y f x =的图像关于原点对称; (4)函数1()y fx -=的图像与函数()y f x =的图像关于直线y x =对称;(5)函数()y f x =的图像与函数)2(x a f y -=的图像关于直线a x =称. 3.翻折变换:(1)函数|()|y f x =的图像可以将函数()y f x =的图像的x 轴下方部分沿x轴翻折到x 轴上方,去掉原x 轴下方部分,并保留()y f x =的x 轴上方部分即可得到;(2)函数(||)y f x =的图像可以将函数()y f x =的图像右边沿y 轴翻折到y 轴左边替代原y 轴左边部分并保留()y f x =在y 轴右边部分即可得到.4.伸缩变换:(1)函数()y af x =(0)a >的图像可以将函数()y f x =的图像中的每一点横坐标不变纵坐标伸长(1)a >或压缩(01a <<)为原来的a 倍得到;(2)函数()y f ax =(0)a >的图像可以将函数()y f x =的图像中的每一点纵坐标不变横坐标伸长(1)a >或压缩(01a <<)为原来的1a倍得到. 一画图1、画出下列函数的图像 (1)(2)|1|||1x x y --=练习(1)112++=x x y (2)2()|45|f x x x =--二识图12. (湖北卷)函数|1|||ln --=x ey x 的图象大致是( D )16、(安徽文7)图中的图象所表示的函数的解析式为(A)|1|23-=x y (0≤x ≤2) (B) |1|2323--=x y(0≤x ≤2)(C) |1|23--=x y (0≤x ≤2)(D) |1|1--=x y (0≤x ≤2)解析:图中的图象所表示的函数当0≤x ≤1时,它的解析式为32x y =,当1<x ≤2时,解析式为332y x =-+,∴解析式为|1|2323--=x y (0≤x ≤2),选B 。

函数图像及图像的变换授课学案

函数图像及图像的变换授课学案

授课学案学生姓名: 授课教师: 班主任: 科目: 上课时间: 年 月 日 时— 时函数图象与图象变换函数的图象与性质是高考考查的重点内容之一,它是研究和记忆函数性质的直观工具,利用它的直观性解题,可以起到化繁为简、化难为易的作用,因此同学们要掌握绘制函数图象的一般方法,掌握函数图象变化的一般规律,能利用函数的图象研究函数的性质. 一、基础知识1.作函数图象的一个基本方法------基本函数法 2.作函数图象的另一个基本方法——图象变换法. 一个函数图象经过适当的变换(如平移、伸缩、对称、旋转等),得到另一个与之相关的图象, 这就是函数的图象变换.在高中,主要学习了三种图象变换:平移变换、伸缩变换、对称变换.(1)平移变换函数y=f(x+a)(a ≠0)的图象可以通过把函数y=f(x)的图象向左(a >0)或向右(a <0)平移|a|个单位而得到;函数y=f(x)+b(b ≠0)的图象可以通过把函数y=f(x)的图象向上(b >0)或向下(b <0)平移|b|个单位而得到. (2)伸缩变换函数y=Af(x)(A >0,A ≠1)的图象可以通过把函数y=f(x)的图象上各点的纵坐标伸长(A >1)或缩短(0<A <1)成原来的A 倍,横坐标不变而得到.函数y=f(ωx)(ω>0,ω≠1)的图象可以通过把函数y=f(x)的图象上各点的横坐标伸长(0<ω<1)或缩短(ω>1)成原来的1倍,纵坐标不变而得到. (3)对称变换一、函数自身的对称性探究定理1.函数 y = f (x)的图像关于点A (a ,b)对称的充要条件是f (x) + f (2a -x) = 2b证明:(必要性)设点P(x ,y)是y = f (x)图像上任一点,∵点P( x ,y)关于点A (a ,b)的对称点P‘(2a -x ,2b -y )也在y = f (x)图像上,∴ 2b -y = f (2a -x)即y + f (2a -x)=2b 故f (x) + f (2a-x) = 2b ,必要性得证。

高中数学教案:函数的图像变化

高中数学教案:函数的图像变化

高中数学教案:函数的图像变化函数的图像变化一、引言函数是数学中重要的概念之一,而函数的图像变化则是理解函数性质与特点的关键所在。

本文将介绍高中数学教案中有关函数的图像变化以及相应教学策略和方法。

二、主体1. 函数图像的平移变化平移是指将函数图像在平面上沿着x轴、y轴方向上进行平行移动。

当实现一个基本函数(如y=f(x))的平移时,我们只需改变其自变量x或因变量y(或二者同时改变)即可实现不同程度和方向的平移效果。

2. 函数图像的缩放变化缩放指对函数图像进行纵向或横向方向上等比例拉伸或压缩。

纵向缩放会改变曲线在y轴方向上的长度,而横向缩放会改变曲线在x轴方向上的长度。

当a>1时,纵向缩放将使得曲线被拉长;当0<a<1时,纵向缩放将使得曲线被压缩。

3. 函数图像的翻折反转翻折反转是指对函数图像进行关于x轴或y轴反转得到新的图形。

当对函数进行关于x轴的翻折反转时,原函数图像上方的部分将变到下方,下方的部分将变到上方;当对函数进行关于y轴的翻折反转时,左侧的部分会变到右侧,右侧的部分会变到左侧。

4. 设计实例为了帮助学生更好地理解函数图像的变化,我设计了一个实例教案。

以一次函数y=2x+1为例,在教学中可以引导学生观察并理解函数在平移、缩放和翻折反转过程中图像的变化及其相应特点。

通过这个实例,学生可以直观地感受到不同参数对图像产生的影响。

5. 教学策略和方法(1)提供具体实例:通过给出具体的实例让学生参与其中,能够更加深入理解图像变化背后的数学原理。

(2)运用多媒体教学工具:结合使用多媒体投影仪、电子板等技术工具展示不同函数图形的动态演示,使得学生能够更加直观地感知图像变化。

(3)启发思考:在教学中鼓励学生自主思考问题,在交流讨论中激发学生的思维能力和创造力,培养学生解决问题的能力。

三、结论函数的图像变化是数学教学中重要的一环,通过理解和掌握平移、缩放和翻折反转等变化规律,学生可以更好地理解函数的性质和图像特点。

函数像与变换教案

函数像与变换教案

函数像与变换教案一、引言函数像与变换是高中数学课程中的重要内容。

通过学习函数像与变换,学生将能够更好地理解函数图像的变化规律以及函数之间的关系。

本教案将介绍函数像的概念,以及常见的函数变换形式。

二、函数像的概念1. 函数像的定义函数像是指函数中每个元素在定义域映射到值域中的对应元素。

函数的像可以用符号 f(x) 或 y 表示,其中 y 是函数的值域中的元素。

2. 函数像的性质- 函数像是定义域中元素的一个映射,每个定义域中的元素都有一个唯一的像。

- 函数像可以是实数、复数、或者其他类型的元素,具体取决于函数的性质和定义域。

- 函数像的集合称为函数的值域,可以用符号f(D) 或者Im(f) 表示。

三、常见的函数变换形式1. 平移变换平移变换是将函数图像在平面上向上、向下、向左或向右移动的变换形式。

- 上移:f(x) + a。

将函数图像沿 y 轴上移 a 个单位。

- 下移:f(x) - a。

将函数图像沿 y 轴下移 a 个单位。

- 左移:f(x + a)。

将函数图像沿 x 轴左移 a 个单位。

- 右移:f(x - a)。

将函数图像沿 x 轴右移 a 个单位。

2. 垂直伸缩变换垂直伸缩变换是将函数图像在 y 轴上纵向拉伸或压缩的变换形式。

- 上伸缩:af(x)。

将函数图像在 y 轴上方向上伸缩为原来的 a 倍。

- 下伸缩:f(ax)。

将函数图像在 y 轴上方向上压缩为原来的 a 倍。

3. 水平伸缩变换水平伸缩变换是将函数图像在 x 轴上横向拉伸或压缩的变换形式。

- 左伸缩:f(bx)。

将函数图像在x 轴上左方向上压缩为原来的b 倍。

- 右伸缩:f(x/b)。

将函数图像在 x 轴上右方向上伸缩为原来的 b 倍。

四、案例分析1. 函数像与平移变换考虑函数 f(x) = x^2,对该函数进行上移 2 个单位,可以表示为 f(x) + 2。

通过计算,得到新函数的像为 f(x) + 2 = (x^2) + 2。

函数的图象及变换 复习教案

函数的图象及变换  复习教案

函数的图象及变换一.教学目标:1.熟练掌握基本函数的图象;2.能正确地从函数的图象特征去讨论函数的主要性质;3.能够正确运用数形结合的思想方法解题.二.教学重点:熟练基本函数的图象并掌握图象的初等变换.三.教学过程:(一)主要知识:1.作图方法:描点法和利用基本函数图象变换作图;2.三种图象变换:平移变换、对称变换和伸缩变换等等;3.识图:分布范围、变化趋势、对称性、周期性等等方面.(二)主要方法:1.平移变换:(1)水平平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向左(0)a >或向右(0)a <平移||a 个单位即可得到;(2)竖直平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向上(0)a >或向下(0)a <平移||a 个单位即可得到.2.对称变换:(1)函数()y f x =-的图像可以将函数()y f x =的图像关于y 轴对称即可得到;(2)函数()y f x =-的图像可以将函数()y f x =的图像关于x 轴对称即可得到;(3)函数()y f x =--的图像可以将函数()y f x =的图像关于原点对称即可得到;(4))(x f y =满足)()(x b f x a f -=+⇔图象关于直线________为对称。

3.翻折变换:(1)函数|()|y f x =的图像可以将函数()y f x =的图像的x 轴下方部分沿x 轴翻折到x 轴上方,去掉原x 轴下方部分,并保留()y f x =的x 轴上方部分即可得到;(2)函数(||)y f x =的图像可以将函数()y f x =的图像右边沿y 轴翻折到y 轴左边替代原y 轴左边部分并保留()y f x =在y 轴右边部分即可得到.4.伸缩变换:(1)函数()y af x =(0)a >的图像可以将函数()y f x =的图像中的每一点横坐标不变纵坐标伸长(1)a >或压缩(01a <<)为原来的a 倍得到;(2)函数()y f ax =(0)a >的图像可以将函数()y f x =的图像中的每一点纵坐标不变横坐标伸长(1)a >或压缩(01a <<)为原来的1a倍得到. 5.函数周期性 (1) ()()f x a f x +=-, 则()x f 是以T=________为周期的周期函数;(2) ()()f x a f x a +=-,则()x f 是以T=________为周期的周期函数;例题分析例1.说明由函数2x y =的图像经过怎样的图像变换得到函数321x y --=+的图像.例2 简略画出下面函数图像(1)322--=x x y (2)322--=x x y(3))2(2log +=x y (4)x y 21sin = 例3 先画出函数x x y -+-=212的图像,再求函数的值域例4 画出如下函数所表示的图像(高三) (1)y = (2)y = (3)y =例5:(1)方程x x a =+)2(log (a >0且a ≠1)实数解的个数是________(2)已知偶函数)(x f 满足)3()3(x f x f -=+,当)3,0(∈x 时,2)(x x f =,当)12,9(∈x 时,)(x f =_____例6、函数2()1log f x x =+与1()2x g x -+=在同一直角坐标系下的图象大致是( )练习1 函数x xa y x=(01)a <<的图象的大致形状是 ( )2 函数)10(1||log )(<<+=a x x f a 的图象大致为 ()3 函数3log 3x y =的图象大致是例7、 设函数54)(2--=x x x f .(1)在区间]6,2[-上画出函数)(x f 的图像;(2)设集合{}),6[]4,0[]2,(,5)(∞+-∞-=≥= B x f x A .试判断集合A 和B 之间的关系,并给出证明;(3)若方程k x x =--542有四个实数解,求实数k 的取值范围 (3) 当2>k 时,求证:在区间]5,1[-上,3y kx k =+的图像位于函数)(x f 图像的上方.例8x m =+有两个不同的实数根,求实数m 的范围---数形结合思想变式:若方程m x x +=+-142有两个不同的实数根,求实数m 的范围---数形结合思想。

初中数学教案 函数的图像与变换

初中数学教案 函数的图像与变换

初中数学教案函数的图像与变换初中数学教案函数的图像与变换【引言】在初中数学中,我们学习了很多重要的数学概念和知识,其中函数是一个非常重要的部分。

函数是现实生活中的很多问题的数学描述,它可以帮助我们理解和解决实际问题。

本教案将重点介绍函数的图像和函数图像的变换,帮助同学们更好地理解函数的概念和性质。

【1. 函数的图像】1.1 函数图像的定义函数的图像是指函数在坐标系中通过其各个点所形成的曲线或曲线段。

函数图像展示了函数的各种特性和性质,帮助我们更好地理解和研究函数。

1.2 函数图像的绘制方法绘制函数图像的方法可以分为以下几个步骤:(1)确定函数的定义域和值域;(2)寻找函数的关键点,例如零点、极值点、拐点等;(3)根据给定函数的性质和特点,画出函数的曲线或曲线段。

【2. 函数图像的变换】2.1 平移变换平移是函数图像的常见变换之一,它可以使函数图像在坐标系中沿横轴或纵轴方向上移动。

平移变换的规律如下:(1)沿横轴方向平移:对于函数y = f(x),平移后的函数为y = f(x - a),其中a为平移的量;(2)沿纵轴方向平移:对于函数y = f(x),平移后的函数为y = f(x) + b,其中b为平移的量。

2.2 伸缩变换伸缩变换是指函数图像在坐标系中沿横轴或纵轴方向上的拉伸或压缩。

伸缩变换的规律如下:(1)沿横轴方向伸缩:对于函数y = f(x),伸缩后的函数为y = f(kx),其中k为伸缩的比例因子,若k > 1,则为拉伸;若0 < k < 1,则为压缩;(2)沿纵轴方向伸缩:对于函数y = f(x),伸缩后的函数为y = kf(x),其中k为伸缩的比例因子,若k > 1,则为拉伸;若0 < k < 1,则为压缩。

2.3 翻折变换翻折变换是指函数图像在坐标系中关于某条直线对称翻转。

常见的翻折变换包括关于x轴、y轴和原点的翻折变换。

翻折变换后的函数表示如下:(1)关于x轴翻折:对于函数y = f(x),翻折后的函数为y = -f(x);(2)关于y轴翻折:对于函数y = f(x),翻折后的函数为y =f(-x);(3)关于原点翻折:对于函数y = f(x),翻折后的函数为y = -f(-x)。

高中数学《函数图象的变换》教案

高中数学《函数图象的变换》教案

高中数学《函数图象的变换》精品教案第一章:函数图象的变换概述1.1 教学目标了解函数图象变换的概念和基本方法。

理解函数图象变换的实质和作用。

1.2 教学内容函数图象的平移变换:水平方向的平移和垂直方向的平移。

函数图象的缩放变换:横向缩放和纵向缩放。

函数图象的旋转变换。

1.3 教学方法采用多媒体演示和实际操作相结合的方式,让学生直观地理解函数图象的变换。

通过例题和练习题,让学生巩固所学内容。

1.4 教学评估通过课堂讲解和练习题,评估学生对函数图象变换概念的理解程度。

通过实际操作和练习题,评估学生对函数图象变换方法的掌握程度。

第二章:函数图象的平移变换2.1 教学目标掌握函数图象的水平方向和垂直方向的平移变换方法。

能够运用平移变换方法改变函数图象的位置。

2.2 教学内容水平方向的平移变换:左加右减的原则。

垂直方向的平移变换:上加下减的原则。

实际操作示例:通过几何画板或函数图象软件,演示函数图象的平移变换过程。

2.3 教学方法通过多媒体演示和实际操作,让学生直观地理解函数图象的平移变换方法。

通过例题和练习题,让学生巩固所学内容。

2.4 教学评估通过课堂讲解和练习题,评估学生对函数图象平移变换方法的理解程度。

通过实际操作和练习题,评估学生对函数图象平移变换的掌握程度。

第三章:函数图象的缩放变换3.1 教学目标掌握函数图象的横向缩放和纵向缩放变换方法。

能够运用缩放变换方法改变函数图象的大小。

3.2 教学内容横向缩放变换:横坐标的乘以一个非零常数。

纵向缩放变换:纵坐标的乘以一个非零常数。

实际操作示例:通过几何画板或函数图象软件,演示函数图象的缩放变换过程。

3.3 教学方法通过多媒体演示和实际操作,让学生直观地理解函数图象的缩放变换方法。

通过例题和练习题,让学生巩固所学内容。

3.4 教学评估通过课堂讲解和练习题,评估学生对函数图象缩放变换方法的理解程度。

通过实际操作和练习题,评估学生对函数图象缩放变换的掌握程度。

高中数学《函数图象的变换》教案

高中数学《函数图象的变换》教案

一、教学目标:1. 知识与技能:(1)理解函数图象的平移变换和伸缩变换规律;(2)能够运用变换规律对给定的函数图象进行变换;(3)掌握函数图象的变换在实际问题中的应用。

2. 过程与方法:(1)通过观察、分析、归纳函数图象的变换规律,培养学生的抽象思维能力;(2)利用数形结合的方法,让学生体会数学与实际生活的联系。

3. 情感态度与价值观:(1)培养学生对数学的兴趣和好奇心;(2)培养学生勇于探索、积极思考的科学精神。

二、教学重点与难点:1. 教学重点:(1)函数图象的平移变换和伸缩变换规律;(2)运用变换规律对函数图象进行变换。

2. 教学难点:(1)理解函数图象的平移变换和伸缩变换规律的推导过程;(2)灵活运用变换规律解决实际问题。

三、教学过程:1. 导入新课:(1)复习旧知识:回顾上一节课所学的函数图象的基本概念;(2)提出问题:如何对已知的函数图象进行变换?2. 知识讲解:(1)讲解函数图象的平移变换规律;(2)讲解函数图象的伸缩变换规律;(3)举例说明变换规律的应用。

3. 课堂练习:(1)让学生独立完成课本上的练习题;(2)挑选几名学生上黑板演示变换过程。

四、课后作业:1. 完成课后练习题;2. 选取一个实际问题,运用所学函数图象的变换规律进行解决。

五、教学反思:通过本节课的教学,学生应该能够掌握函数图象的平移变换和伸缩变换规律,并能够运用这些规律对给定的函数图象进行变换。

在教学过程中,要注意关注学生的学习情况,及时解答学生的疑问,提高学生的学习兴趣和自信心。

要注重培养学生的抽象思维能力和实际应用能力,提高学生解决实际问题的能力。

六、教学评价:1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答情况以及练习题的完成情况,了解学生的学习状态。

2. 作业评价:检查学生课后作业的完成质量,评估学生对课堂所学知识的理解和运用能力。

3. 成果展示评价:挑选几名学生展示他们解决问题的成果,评估学生的创新能力和团队合作精神。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数图像与变换教学目标:掌握常见函数图像及其性质(高考要求B ),熟悉常见的函数图像(平移、对称、翻折)变换(高考要求B ).教学重难点:掌握常见函数图像及其性质,会用“平移、对称、翻折”等手段进行函数图像变换。

教学过程:一.知识要点:1.常见函数图像及其性质: (1)平移变换:①y =f (x ) →y =f (x ±a )(a >0)图象 横向 平移a 个单位,(左+右—). ②y =f (x ) →y =f (x )±b (b >0)图象 纵向 平移b 个单位,(上+下—)③若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象; ④若将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图象. (2)对称变换:①y =f (x ) →y =f (-x )图象关于 y 轴 对称; 若f (-x )=f (x ),则函数自身的图象关于y 轴对称.②y =f (x ) →y =-f (x )图象关于x 轴 对称.③y =f (x ) →y =-f (-x )图象关于原点 对称; 若f (-x )=-f (x ),则函数自身的图象关于原点对称.④y =f (x ) →y =f -1(x )图象关于直线y =x 对称.⑤y =f (x ) →y =-f -1(-x )图象关于直线y =-x 对称. ⑥y =f (x ) →y =f (2a -x )图象关于直线x =a 对称; ⑦y =f (x ) →y =2b -f (x )图象关于直线y =b 对称. ⑧y =f (x ) →y =2b -f (2a -x )图象关于点(a ,b ) 对称.若f (x )=f (2a -x )(或f (a +x )=f (a -x ))则函数自身的图象关于直线x =a 对称.若函数()y f x =的图象关于直线2a bx +=对称()()f a mx f b mx ⇔+=-()()f a b mx f mx ⇔+-=(3)翻折变换主要有①y =f (x ) →y =f (|x |)的图象在y 轴右侧(x >0)的部分与y =f (x )的图象相同,在y 轴左侧部分与其右侧部分关于y 轴对称.②y =f (x ) →y =|f (x )|的图象在x 轴上方部分与y =f (x )的图象相同,其他部分图象为y =f (x )图象下方部分关于x 轴的对称图形. 二.基础练习:1.若把函数f (x )的图象作平移变换,使图象上的点P (1,0)变换成点Q (2,-1), 则函数y =f (x )的图象经此变换后所得图象的函数解析式为 ( A )A.y =f (x -1)-1B.y =f (x +1)-1C.y =f (x -1)+1D.y =f (x +1)+1 2.已知函数y =f (x )的图象如图2—3,则下列函数所对应的图象中,不正确的是( B ) A.y =|f (x )| B.y =f (|x |) C.y =f (-x ) D.y =-f (x )解: y =f (|x |)是偶函数,图象关于y 轴对称.图2—33.设函数y=2x的图象为C,某函数的图象C′与C关于直线x=2对称,那么这个函数是y=24-x解∵y=f(x)的图象与y=f(4-x)的图象关于直线x=2对称,设f(x)=2x,则f(4-x)=24-x4.设函数y=f(x)的定义域是R,且f(x-1)=f(1-x),那么f(x)的图象有对称轴直线x=0 解:设x-1=t,则f(t)=f(-t),函数为偶函数,关于y轴对称.5.函数y=12--xx的图象关于点(1,-1)_对称.解:y=12--xx=-1+11-x,y=12--xx的图象是由y=x1的图象先右移1个单位,再下移1个单位而得到,故对称点为(1,-1).三.例题精讲:例1.(1)函数y=||xxa x(0<a<1)的图象的大致形状是( D )(2).(2009·郑州模拟)定义运算,)()(⎩⎨⎧>≤=⊗babbaaba则函数f(x)=x21⊗的图象是 ( A )(3).已知函数y=f(x)的图象如图①所示,y=g(x)的图象如图②所示,则函数y=f(x)·g(x)的图象可能是图中的( C )例2. 作出下列函数的图象.(1).f(x)=x2-2|x|+1 (2)f(x)=x2-2|x|+1(3)f(x)=|x2-1|(4)f(x)=x2+2x+1(5)y=112--xx;(6)y=)21(|x|.(7)(2)y=|log21(1-x)|; (8)y=21(lgx+|lgx|);例3.(1)定义在R上的函数y=f(x)、y=f(-x)、y=-f(x)、y=-f(-x)的图象重合,它们的值域为__{0}.【解析】函数y=f(x)与y=f(-x)的图象重合,说明函数y=f(x)的图象关于y轴对称;y=f(x)与y=-f(x)图象重合,说明y=f(x)的图象关于x轴对称;y=f(x)与y=-f(-x)的图象重合,说明y=f(x)的图象关于原点对称.即若y=f(x)上任一点(x,y),则也有点(-x,y)、(x,-y)、(-x,-y);根据函数的定义,对于任一x∈R,只能有惟一的y与之对应,从而y=-y,即y=0,故函数的值域为{0}.(2)已知函数f(x)定义域为R,则下列命题中①y=f(x)为偶函数,则y=f(x+2)的图象关于y轴对称.②y=f(x+2)为偶函数,则y=f(x)关于直线x=2对称.③若f(x-2)=f(2-x),则y=f(x)关于直线x=2对称.④y=f(x—2)和y=f(2-x)的图象关于x=2对称.其中正确命题序号有_②④_(填上所有正确命题序号).【解析】 ①y =f (x )是偶函数,而f (x +2)是将f (x )的图象向左平移2个单位得到的,则对称轴左移2个单位为x =-2,所以f (x +2)图象关于直线x =-2对称.②y =f (x +2)为偶函数,则f (x +2)=f (2-x ),所以y =f (x )图象关于直线x =2对称. ③令x -2=t ,则2-x =-t ,得f (t )=f (-t ),y =f (x )的图象关于y 轴对称.④f (x )与f (-x )的图象关于y 轴对称,将f (x )与f (-x )的图象分别向右平移2个单位, 分别得到f (x -2)与f (2-x )的图象,对称轴右移2个单位为直线x =2. 例4.设f (x )是定义在R 上的奇函数,且f (x +2)=-f (x ),又当-1≤x ≤1时,f(x)=x 3. (1)证明直线x =1是函数f (x )的图象的一条对称轴;(2)当x ∈[1,5]时,求f (x )的解析式. 【解】 (1)设(x 0,y 0)是f (x )的图象上任意一点,它关于x =1对称的点为(x 1,y 1),则y 0=y 1,x 0=2-x 1,∴y 1=f (2-x 1)=-f (-x 1)=f (x 1)∴(x 1,y 1)也在y =f (x )的图象上,命题成立.(2)∵f (x )的图象关于x =1对称,故当1≤x ≤3时,f (x )=(2-x )3又当3<x ≤5时,-1<x -4≤1,此时f (x )=(x -4)3∴f (x )=⎪⎩⎪⎨⎧≤<-≤≤-)53(,)4()31(,)2(33x x x x 例5.设函数f(x)=x 2-2|x|-1 (-3≤x ≤3).(1)证明:f(x)是偶函数; (2)画出函数的图象; (3)指出函数f(x)的单调区间; (4)求函数的值域. (1)证明 f(-x)=(-x)2-2|-x|-1=x 2-2|x|-1=f(x),即f(-x)=f(x),∴f(x)是偶函数. (2)解 当x ≥0时,f(x)=x 2-2x-1=(x-1)2-2,当x <0时,f(x)=x 2+2x-1=(x+1)2-2,即f(x)=,)03(2)1()30(2)1(22⎩⎨⎧<≤--+≤≤--x x x x根据二次函数的作图方法,可得函数图象如图所示. (3)解 函数f(x)的单调区间为[-3,-1),[-1,0),[0,1),[1,3]. f (x )在区间[-3,-1)和[0,1)上为减函数,在[-1,0),[1,3]上为增函数.(4)解 当x ≥0时,函数f(x)=(x-1)2-2的最小值为-2,最大值为f(3)=2; 当x <0时,函数f(x)=(x+1)2-2的最小值为-2,最大值为f(-3)=2; 故函数f(x)的值域为[-2,2].例6.作函数y =x + 1x 的图象. 扩展:y =a x + bx(a >0,b >0)的图像.例7.(1)已知函数y=f(x)的定义域为R ,且当x ∈R 时f(m+x)=f(m-x)恒成立. 求证:y=f(x)的图象关于直线x=m 对称;(2)若函数y=log 2|ax-1|的图象的对称轴是x=2,求非零实数a 的值. (1)证明 设P (x 0,y 0)是y=f(x)图象上任意一点,则y 0=f(x 0).又设P 点关于x=m 的对称点为P ′,则P ′的坐标为(2m-x 0,y 0).由已知f(m+x)=f(m-x), 得f(2m-x 0)=f [m+(m-x 0)]=f [m-(m-x 0)]=f(x 0)=y 0.即),-(200y x m P '在y=f(x)图象上,∴y=f (x )的图象关于直线x=m 对称.(2)解 ∵对定义域内的任意x,有f(2-x)=f(2+x)恒成立.∴|a (2-x )-1|=|a (2+x )-1|恒成立,即|-ax+(2a-1)|=|ax+(2a-1)|恒成立.又a ≠0,∴2a-1=0,得a=21.自我检测1.(2008·全国Ⅱ理,3)函数f(x)=x1-x 的图象关于 坐标原点对称2.作出下列函数的图象. (1)y=2-2x;(2)y=112+-x x . (3)y =⎩⎪⎨⎪⎧x +1 x ≤112 (5-x ) 1<x ≤34-x x >33.已知f(x)=[][],1,0,10,1,12⎩⎨⎧∈+-∈+x x x x 则f(x-1)的图象是 4.若函数f(x)=3+log 2x 的图象与g(x)的图象关于 y=x 对称,则函数g(x)= 2x-35. 函数y=f(x)与函数y=g(x)的图象如图,则函数y=f(x)·g(x)的图象可能是 ( A )6.设a >1,实数x,y 满足|x|-log a y1=0,则y 关于x 的函数的图象形状大致是 ( B )7.使log 2(-x)<x+1成立的x 的取值范围是 .答案 (-1,0)8.设f(x)是定义在R 上奇函数,在(0,21)上单调递减,且f(x)=f(-x-1).给出下列四个结论:①函数f(x)的图象关于直线x=21对称;②f(x)在(21,1)上单调递增;③对任意的x ∈Z ,都有f(x)=0;④函数y=f )2(x -π的图象是中心对称图形,且对称中心为()0,2π.其中正确命题的序号是 .答案 ①②③④9.当x ∈(1,2)时,不等式(x-1)2<log a x 恒成立,则a 的取值范围为 .答案 (1,2]10.要得到)3lg(x y -=的图像,只需作x y lg =关于_y __轴对称的图像,再向__右__平移3个单位而得到11.函数()lg(2)1f x x x =⋅+-的图象与x 轴的交点个数有__2__个12.如若函数(21)y f x =-是偶函数,则函数(2)y f x =的对称轴方程是_12x =-__。

相关文档
最新文档