单调性与最值
函数的单调性和求函数的最值

函数的单调性与最值复习:按照列表、描点、连线等步骤画出函数2x y =的图像.图像在y 轴的右侧部分是上升的,当在区间[0,+∞)上取值时,随着x 的增大,相应的y 值也随着增大,如果取21,x x ∈[0,+∞),得到11()y f x =,2()y f x =,那么当1x <2x 时,有1y <2y .这时就说函数y =2()f x x =在[0,+ ∞)上是增函数.图像在y 轴的左侧部分是下降的,当x 在区间[0,+∞)上取值时,随着x 的增大,相应的y 值反而随着减小,如果取21,x x ∈[0,+∞),得到11()y f x =,2()y f x =,那么当1x <2x 时,有12y y <。
这时就说函数y =2()f x x =在[0,+ ∞)上是减函数.1.函数的单调性(1)单调函数的定义(2)单调区间的定义若函数f (x )在区间D 上是增函数或减函数,那么称函数f (x )在这一区间上具有(严格的)单调性,区间D 叫做f (x )的单调区间.注意:(1)函数的单调性也叫函数的增减性; (2)注意区间上所取两点x 1,x 2的任意性;(3)函数的单调性是对某个区间而言的,它是一个局部概念。
(4)若函数()f x 在其定义内的两个区间A 、B 上都是单调增(减)函数,一般不能认简单地认为()f x 在区间A B 上是增(减)函数. 例如1()f x x=在区间(,0)-∞上是减函数,在区间(0,)+∞上也是减函数,但不能说它在定义域(,0)(0,)-∞+∞上是减函数.(3)用定义法判断函数的单调性:①定义域取值;任取x 1,x 2∈D,且x 1<x 2; ②作差;作差f (x 1)-f (x 2); ③变形;通常是因式分解和配方; ④定符号;即判断差f (x 1)-f (x 2)的正负⑤下结论.指出函数f (x )在给定的区间D 上的单调性例1 证明函数xx f 1)(=在(0,+∞)上是减函数. 证明:设1x ,2x 是(0,+∞)上的任意两个实数,且1x <2x ,则)(1x f -)(2x f =11x -21x =2112x x x x -, 由1x ,2x ∈(0,+ ∞),得1x 2x >0,又由1x <2x ,得2x -1x >0 ,于是)(1x f -)(2x f >0,即)(1x f > )(2x f ∴xx f 1)(=在(0,+ ∞)上是减函数.练习:讨论函数21)(x x f -=在[-1,0]的单调性.在[-1,0]上任取x 1,x 2且x 1<x 2则2111)(x x f -=,2221)(x x f -=从而)(1x f -2221211)(x x x f ---== 2221222111)1()1(xx x x -+----=222112122221212211))((11xx x x x x xx x x -+--+=-+--∵21x x < ∴012>-x x 另外,恒有0112221>+++x x∵-1≤x 1<x 2≤0 则 x 1+x 2<0 则)(1x f -0)(2<x f )(1x f <)(2x f ∴ 在[-1,0]上f (x )为增函数2.基本函数的单调性例:讨论函数322+-=ax x f(x)在(-2,2)内的单调性.解:∵222332a (x-a)ax x f(x)-+=+-=,对称轴a x = ∴若2-≤a ,则322+-=ax x f(x)在(-2,2)内是增函数;若22<<-a 则322+-=ax x f(x)在(-2,a)内是减函数,在[a,2]内是增函数 若2≥a ,则322+-=ax x f(x)在(-2,2)内是减函数.3.判断函数的单调性的常见结论①设任意x 1,x 2∈[a ,b ],且x 1<x 2,那么()()210f x f x ->⇔f (x )在[a ,b ]上是增函数; ()()210f x f x -<⇔f (x )在[a ,b ]上是减函数.②设任意x 1,x 2∈[a ,b ],那么()()21210f x f x x x ->-⇔f (x )在[a ,b ]上是增函数;()()21210f x f x x x -<-⇔f (x )在[a ,b ]上是减函数.③ (x 1-x 2)[f (x 1)-f (x 2)]>0⇔f (x )在[a ,b ]上是增函数;(x 1-x 2)[f (x 1)-f (x 2)]<0⇔f (x )在[a ,b ]上是减函数.【梳理·总结】(1)函数()y f x =-与()y f x =的单调性相反;例:求函数y =x 2+x -6的单调区间.4. 关于分段函数的单调性(1)若函数()()[]()[],,,,g x x a b f x h x x c d ⎧∈⎪=⎨∈⎪⎩,()g x 在区间[],a b 上是增函数, ()h x 在区间[],c d 上是增函数,则()f x 在区间[][],,a b c d 上不一定是增函数,若使得()f x 在区间[][],,a b c d 上一定是增函数,需补充条件: ()()g b h c ≤(2)若函数()()[]()[],,,,g x x a b f x h x x c d ⎧∈⎪=⎨∈⎪⎩,()g x 在区间[],a b 上是减函数, ()h x 在区间[],c d 上是减函数,则()f x 在区间[][],,a b c d 上不一定是减函数,若使得()f x 在区间[][],,a b c d 上一定是减函数,需补充条件: ()()g b h c ≥例:已知函数()(0)(3)4(0)x a x f x a x a x ⎧<⎨-+≥⎩=若对任意x 1,x 2,都有()()21210f x f x x x -<-成立,则实数a 的取值范围是( )A .(0,14] B .(0,1) C .[14,1) D .(0,3)5.函数的最值例:f(x)=x 2-2x (x ∈[-2,4])的单调增区间为__________;f(x)max =________.6.利用函数的单调性求最值例题:已知函数f (x )对于任意x ,y ∈R ,总有f (x )+f (y )=f (x +y ),且当x >0时,f (x )<0,f (1)=-23.(1)求证:f (x )在R 上是减函数;(2)求f(x )在[-3,3]上的最大值和最小值.(1)证明:令0x y ==,则(0)0f =;再令y x =-,则应有()()f x f x -=-,从而在R 上任取12x x >,则121212()()()()()f x f x f x f x f x x -=+-=-.1212,0.x x x x >∴->又0x >时,()0f x <,从而12()0f x x -<,即12()()f x f x <,由定义可知函数()f x 在R 上的减函数. (2)函数()f x 是R 上的减函数,()f x ∴在区间[3,3]-上也是减函数.从而可知在区间[3,3]-上,(3)f -最大,(3)f 最小.2(3)(2)(1)(1)(1)(1)3(1)3()2,3f f f f f f f =+=++==⨯-=-(3)(3) 2.f f ∴-=-=即()f x 在[3,3]-上的最大值为2,最小值为-2.练习:已知定义在区间(0,+∞)上的函数f(x)满足f (yx)=f (x )-f (y ).,且当x >1时,f(x)<0. (1)求f(1) (2)判断f(x)(3)若f(3)=-1,解不等式f(|x|)<-2.(1)f(1) = f(1/1) = f(1) - f(1) = 0。
函数的单调性与极值 最值

例8
判断函数 y = x − ln x 的单调性
解
函数的定义域为 (0,+∞ ) x −1 1 Q y′ = 1 − = x x 当 0 < x < 1 时数在 ( 0,1) 内单调减少。 单调减少。
内单调增加。 在 (1, +∞ ) 内单调增加。
x >1
时, y′ > 0,
y
f ( x1 )
( 2)
则称函数 f ( x )在区间 I上是单调减少的 ;
f ( x2 )
y = f ( x)
o
x1
x2
x
I
一、函数的单调性
y
2.判别方法 判别方法
y A y = f (x) B
y = f (x)
A
B
o
a
f ′( x ) ≥ 0
b
x
o a
f ′( x ) ≤ 0
b x
在区间(a,b)上单调上升 若 y = f (x)在区间 上单调上升 在区间(a,b)上单调下降 若 y = f (x)在区间 上单调下降
y
间断
∴ 单增区间为 (−∞, −2) , ( 2, +∞ ) 单减区间为 (−2, 0) , (0, 2)
x < ln(1 + x ) < x . 复习 证明当 x > 0 时, 1+ x 课本P124 课本 证法一设 f ( t ) = ln(1 + t ) t ∈ [0, x ]
足拉格朗日中值定理的条件. 则 f ( x ) 在 [0, x ]上满足拉格朗日中值定理的条件. 故
∴ 在(−∞ ,1]上单调增加; −∞ 上单调增加;
f ′( x ) < 0, ∴ 在[1,2]上单调减少; 上单调减少;
函数的单调性与最值

函数的单调性与最值1.函数的单调性 (1)单调函数的定义自左向右看图象是上升的自左向右看图象是下降的如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做函数y =f (x )的单调区间.2.函数的最值 1.下列函数中,定义域是R 且为增函数的是( ) A .y =e -x B .y =x 3 C .y =ln x D .y =|x |答案:B2.函数y =(2k +1)x +b 在(-∞,+∞)上是减函数,则( ) A .k >12B .k <12C .k >-12D .k <-12答案:D3.已知函数f(x)=2x-1(x∈[2,6]),则函数的最大值为________.答案:21.易混淆两个概念:“函数的单调区间”和“函数在某区间上单调”,前者指函数具备单调性的“最大”的区间,后者是前者“最大”区间的子集.2.若函数在两个不同的区间上单调性相同,则这两个区间要分开写,不能写成并集.例如,函数f(x)在区间(-1,0)上是减函数,在(0,1)上是减函数,但在(-1,0)∪(0,1)上却不一定是减函数,如函数f(x)=1 x.3.两函数f(x),g(x)在x∈(a,b)上都是增(减)函数,则f(x)+g(x)也为增(减)函数,但f(x)·g(x),1f(x)等的单调性与其正负有关,切不可盲目类比.[小题纠偏]1.函数y=x2-6x+10在区间(2,4)上是()A.递减函数B.递增函数C.先递减再递增D.先递增再递减答案:C2.设定义在[-1,7]上的函数y=f(x)的图象如图所示,则函数y=f(x)的增区间为________.答案:[-1,1],[5,7]考点一函数单调性的判断(基础送分型考点——自主练透)[题组练透]1.下列四个函数中,在(0,+∞)上为增函数的是()A.f(x)=3-x B.f(x)=x2-3xC.f(x)=-1x+1D.f(x)=-|x|解析:选C当x>0时,f(x)=3-x为减函数;当x ∈⎝⎛⎭⎫0,32时,f (x )=x 2-3x 为减函数, 当x ∈⎝⎛⎭⎫32,+∞时,f (x )=x 2-3x 为增函数; 当x ∈(0,+∞)时,f (x )=-1x +1为增函数; 当x ∈(0,+∞)时,f (x )=-|x |为减函数.2.讨论函数f (x )=axx 2-1(a >0)在x ∈(-1,1)上的单调性. 解:法一(定义法): 设-1<x 1<x 2<1, 则f (x 1)-f (x 2)=ax 1x 21-1-ax 2x 22-1=ax 1x 22-ax 1-ax 2x 21+ax 2(x 21-1)(x 22-1)=a (x 2-x 1)(x 1x 2+1)(x 21-1)(x 22-1). ∵-1<x 1<x 2<1,a >0,∴x 2-x 1>0,x 1x 2+1>0,(x 21-1)(x 22-1)>0.∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 故函数f (x )在(-1,1)上为减函数. 法二(导数法):f ′(x )=a (x 2-1)-2ax 2(x 2-1)2=-a (x 2+1)(x 2-1)2.又a >0, 所以f ′(x )<0,所以函数f (x )在(-1,1)上为减函数.[谨记通法]判断或证明函数的单调性的2种重要方法及其步骤 (1)定义法,其基本步骤: 取值作差(商)变形确定符号(与1的大小)得出结论(2)导数法,其基本步骤: 求导函数确定符号得出结论考点二 求函数的单调区间(重点保分型考点——师生共研)[典例引领]求下列函数的单调区间: (1)y =-x 2+2|x |+1; (2)y =log 12(x 2-3x +2).解:(1)由于y =⎩⎪⎨⎪⎧-x 2+2x +1,x ≥0,-x 2-2x +1,x <0,即y =⎩⎪⎨⎪⎧-(x -1)2+2,x ≥0,-(x +1)2+2,x <0. 画出函数图象如图所示,单调递增区间为(-∞,-1]和[0,1],单调递减区间为[-1,0]和[1,+∞).(2)令u =x 2-3x +2,则原函数可以看作y =log 12u 与u =x 2-3x +2的复合函数.令u =x 2-3x +2>0,则x <1或x >2.∴函数y =log 12(x 2-3x +2)的定义域为(-∞,1)∪(2,+∞).又u =x 2-3x +2的对称轴x =32,且开口向上.∴u =x 2-3x +2在(-∞,1)上是单调减函数,在(2,+∞)上是单调增函数. 而y =log 12u 在(0,+∞)上是单调减函数,∴y =log 12(x 2-3x +2)的单调递减区间为(2,+∞),单调递增区间为(-∞,1).[由题悟法]确定函数的单调区间的3种方法[提醒] 单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结.[即时应用]1.若将[典例引领](1)中的函数变为“y =|-x 2+2x +1|”,则结论如何? 解:函数y =|-x 2+2x +1|的图象如图所示.由图象可知,函数y =|-x 2+2x +1|的单调递增区间为(1-2,1)和(1+2,+∞);单调递减区间为(-∞,1-2)和(1,1+2).2.函数y =⎝⎛⎭⎫132x 2-3x +1的单调递增区间为( ) A .(1,+∞) B.⎝⎛⎦⎤-∞,34 C.⎝⎛⎭⎫12,+∞ D.⎣⎡⎭⎫34,+∞ 解析:选B 令u =2x 2-3x +1=2⎝⎛⎭⎫x -342-18. 因为u =2⎝⎛⎭⎫x -342-18在⎝⎛⎦⎤-∞,34上单调递减,函数y =⎝⎛⎭⎫13u 在R 上单调递减. 所以y =⎝⎛⎭⎫132x 2-3x +1在⎝⎛⎦⎤-∞,34上单调递增. 考点三 函数单调性的应用(常考常新型考点——多角探明)[命题分析]高考对函数单调性的考查多以选择题、填空题的形式出现,有时也应用于解答题中的某一问中.常见的命题角度有: (1)求函数的值域或最值;(2)比较两个函数值或两个自变量的大小; (3)解函数不等式;(4)利用单调性求参数的取值范围或值.[题点全练]角度一:求函数的值域或最值1.函数f (x )=⎩⎪⎨⎪⎧1x ,x ≥1,-x 2+2,x <1的最大值为________.解析:当x ≥1时,函数f (x )=1x 为减函数,所以f (x )在x =1处取得最大值,为f (1)=1;当x <1时,易知函数f (x )=-x 2+2在x =0处取得最大值,为f (0)=2.故函数f (x )的最大值为2. 答案:2角度二:比较两个函数值或两个自变量的大小2.已知函数f (x )的图象关于直线x =1对称,当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,设a =f ⎝⎛⎭⎫-12,b =f (2),c =f (e),则a ,b ,c 的大小关系为( )A .c >a >bB .c >b >aC .a >c >bD .b >a >c解析:选D 因f (x )的图象关于直线x =1对称.由此可得f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫52.由x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,知f (x )在(1,+∞)上单调递减.∵1<2<52<e ,∴f (2)>f ⎝⎛⎭⎫52>f (e), ∴b >a >c .角度三:解函数不等式3.f (x )是定义在(0,+∞)上的单调增函数,满足f (xy )=f (x )+f (y ),f (3)=1,当f (x )+f (x -8)≤2时,x 的取值范围是( )A .(8,+∞)B .(8,9]C .[8,9]D .(0,8)解析:选B 2=1+1=f (3)+f (3)=f (9),由f (x )+f (x -8)≤2,可得f [x (x -8)]≤f (9),因为f (x )是定义在(0,+∞)上的增函数,所以有⎩⎪⎨⎪⎧x >0,x -8>0,x (x -8)≤9,解得8<x ≤9.角度四:利用单调性求参数的取值范围或值4.如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是( )A.⎝⎛⎭⎫-14,+∞ B.⎣⎡⎭⎫-14,+∞C.⎣⎡⎭⎫-14,0 D.⎣⎡⎦⎤-14,0解析:选D 当a =0时,f (x )=2x -3,在定义域R 上是单调递增的,故在(-∞,4)上单调递增;当a ≠0时,二次函数f (x )的对称轴为x =-1a ,因为f (x )在(-∞,4)上单调递增, 所以a <0, 且-1a ≥4,解得-14≤a <0.综上所述,实数a 的取值范围是⎣⎡⎦⎤-14,0. 5.已知函数f (x )=⎩⎪⎨⎪⎧(a -2)x -1,x ≤1,log ax ,x >1,若f (x )在(-∞,+∞)上单调递增,则实数a的取值范围为________.解析:要使函数f (x )在R 上单调递增, 则有⎩⎪⎨⎪⎧a >1,a -2>0,f (1)≤0,即⎩⎪⎨⎪⎧a >1,a >2,a -2-1≤0,解得2<a ≤3,即实数a 的取值范围是(2,3]. 答案:(2,3][方法归纳]函数单调性应用问题的常见类型及解题策略(1)求函数值域或最值.常用方法有:单调性法、图象法、基本不等式法、导数法、换元法.(2)比较大小.比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决.(3)解不等式.在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f ”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域.(4)利用单调性求参数.视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数.[提醒] ①若函数在区间[a ,b ]上单调,则该函数在此区间的任意子区间上也是单调的;②分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.一抓基础,多练小题做到眼疾手快1.下列函数中,定义域是R 且为增函数的是( )A .y =2-x B .y =x C .y =log 2 xD .y =-1x解析:选B 由题知,只有y =2-x与y =x 的定义域为R ,且只有y =x 在R 上是增函数.2.函数f (x )=|x -2|x 的单调减区间是( ) A .[1,2] B .[-1,0] C .[0,2]D .[2,+∞)解析:选A 由于f (x )=|x -2|x =⎩⎪⎨⎪⎧x 2-2x ,x ≥2,-x 2+2x ,x <2.结合图象可知函数的单调减区间是[1,2].3.已知函数f (x )=|x +a |在(-∞,-1)上是单调函数,则a 的取值范围是( ) A .(-∞,1] B .(-∞,-1] C .[-1,+∞)D .[1,+∞)解析:选A 因为函数f (x )在(-∞,-a )上是单调函数,所以-a ≥-1,解得a ≤1. 4.函数f (x )=1x -1在区间[a ,b ]上的最大值是1,最小值是13,则a +b =________.解析:易知f (x )在[a ,b ]上为减函数,∴⎩⎪⎨⎪⎧f (a )=1,f (b )=13,即⎩⎨⎧1a -1=1,1b -1=13,∴⎩⎪⎨⎪⎧a =2,b =4. ∴a +b =6. 答案:65.已知函数f (x )=x 2-2ax -3在区间[1,2]上具有单调性,则实数a 的取值范围为________________.解析:函数f (x )=x 2-2ax -3的图象开口向上,对称轴为直线x =a ,画出草图如图所示.由图象可知,函数在(-∞,a ]和[a ,+∞)上都具有单调性,因此要使函数f (x )在区间[1,2]上具有单调性,只需a ≤1或a ≥2,从而a ∈(-∞,1]∪[2,+∞).答案:(-∞,1]∪[2,+∞)二保高考,全练题型做到高考达标1.给定函数:①y =x 12;②y =log 12(x +1);③y =|x -1|;④y =2x +1.其中在区间(0,1)上单调递减的函数序号是( )A .①②B .②③C .③④D .①④解析:选B ①是幂函数,在(0,+∞)上为增函数,故此项不符合要求;②中的函数图象是由y =log 12x 的图象向左平移1个单位得到的,函数y =log 12x 是(0,+∞)上的减函数,所以函数y =log 12(x +1)是(-1,+∞)上的减函数,故此项符合要求;③中的函数在(-∞,1)上为减函数,(1,+∞)上为增函数,符合要求;④中的函数在R 上为增函数,不符合要求.2.已知函数f (x )=x 2-2x -3,则该函数的单调递增区间为( ) A .(-∞,1] B .[3,+∞) C .(-∞,-1]D .[1,+∞)解析:选B 设t =x 2-2x -3,由t ≥0, 即x 2-2x -3≥0,解得x ≤-1或x ≥3. 所以函数的定义域为(-∞,-1]∪[3,+∞).因为函数t =x 2-2x -3的图象的对称轴为x =1,所以函数t 在(-∞,-1]上单调递减,在[3,+∞)上单调递增.所以函数f (x )的单调递增区间为[3,+∞). 3.函数f (x )=x1-x在( ) A .(-∞,1)∪(1,+∞)上是增函数 B .(-∞,1)∪(1,+∞)上是减函数 C .(-∞,1)和(1,+∞)上是增函数 D .(-∞,1)和(1,+∞)上是减函数解析:选C 函数f (x )的定义域为{x |x ≠1}.f (x )=x 1-x =11-x-1,根据函数y =-1x 的单调性及有关性质,可知f (x )在(-∞,1)和(1,+∞)上是增函数.4.定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( )A .-1B .1C .6D .12解析:选C 由已知得当-2≤x ≤1时,f (x )=x -2, 当1<x ≤2时,f (x )=x 3-2.∵f (x )=x -2,f (x )=x 3-2在定义域内都为增函数. ∴f (x )的最大值为f (2)=23-2=6.5.已知f (x )=⎩⎪⎨⎪⎧(3a -1)x +4a ,x <1,log ax ,x ≥1是(-∞,+∞)上的减函数,那么a 的取值范围是( )A .(0,1) B.⎝⎛⎭⎫0,13 C.⎣⎡⎭⎫17,13D.⎣⎡⎭⎫17,1解析:选C 当x =1时,log a 1=0,若f (x )为R 上的减函数,则(3a -1)x +4a >0在x <1时恒成立,令g (x )=(3a -1)x +4a ,则必有⎩⎪⎨⎪⎧ 3a -1<0,g (1)≥0,即⎩⎪⎨⎪⎧3a -1<0,3a -1+4a ≥0⇒17≤a <13.此时,log a x 是减函数,符合题意.6.函数y =x -x (x ≥0)的最大值为________.解析:令t =x ,则t ≥0,所以y =t -t 2=-⎝⎛⎭⎫t -122+14,结合图象知,当t =12,即x =14时,y max =14. 答案:147.已知函数f (x )为(0,+∞)上的增函数,若f (a 2-a )>f (a +3),则实数a 的取值范围为________.解析:由已知可得⎩⎪⎨⎪⎧a 2-a >0,a +3>0,a 2-a >a +3,解得-3<a <-1或a >3.所以实数a 的取值范围为(-3,-1)∪(3,+∞).答案:(-3,-1)∪(3,+∞)8.设函数f (x )=⎩⎪⎨⎪⎧ 1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),则函数g (x )的递减区间是________.解析:由题意知g (x )=⎩⎪⎨⎪⎧ x 2,x >1,0,x =1,-x 2,x <1.函数图象如图所示,其递减区间是[0,1).答案:[0,1)9.已知函数f (x )=1a -1x(a >0,x >0), (1)求证:f (x )在(0,+∞)上是增函数;(2)若f (x )在 ⎣⎡⎦⎤12,2上的值域是⎣⎡⎦⎤12,2,求a 的值. 解:(1)证明:任取x 1>x 2>0,则f (x 1)-f (x 2)=1a -1x 1-1a +1x 2=x 1-x 2x 1x 2, ∵x 1>x 2>0,∴x 1-x 2>0,x 1x 2>0,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),∴f (x )在(0,+∞)上是增函数.(2)由(1)可知f (x )在⎣⎡⎦⎤12,2上为增函数,∴f ⎝⎛⎭⎫12=1a -2=12,f (2)=1a -12=2, 解得a =25. 10.已知f (x )=x x -a(x ≠a ). (1)若a =-2,试证明f (x )在(-∞,-2)内单调递增;(2)若a >0且f (x )在(1,+∞)上单调递减,求a 的取值范围.解:(1)证明:任设x 1<x 2<-2,则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2). ∵(x 1+2)(x 2+2)>0,x 1-x 2<0,∴f (x 1)<f (x 2),∴f (x )在(-∞,-2)上单调递增.(2)任设1<x 1<x 2,则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a (x 2-x 1)(x 1-a )(x 2-a ). ∵a >0,x 2-x 1>0,∴要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0在(1,+∞)上恒成立,∴a ≤1.综上所述知a 的取值范围是(0,1].三上台阶,自主选做志在冲刺名校1.如果函数y =f (x )在区间I 上是增函数,且函数y =f (x )x 在区间I 上是减函数,那么称函数y =f (x )是区间I 上的“缓增函数”,区间I 叫做“缓增区间”.若函数f (x )=12x 2-x +32是区间I 上的“缓增函数”,则“缓增区间”I 为( ) A .[1,+∞)B .[0, 3 ]C .[0,1]D .[1, 3 ]解析:选D 因为函数f (x )=12x 2-x +32的对称轴为x =1,所以函数y =f (x )在区间[1,+∞)上是增函数,又当x ≥1时,f (x )x =12x -1+32x ,令g (x )=12x -1+32x(x ≥1),则g ′(x )=12-32x 2=x 2-32x 2,由g ′(x )≤0得1≤x ≤3,即函数f (x )x =12x -1+32x在区间[1,3]上单调递减,故“缓增区间”I 为[1, 3 ].2.已知定义在区间(0,+∞)上的函数f (x )满足f ⎝⎛⎭⎫x 1x 2=f (x 1)-f (x 2),且当x >1时,f (x )<0. (1)求f (1)的值;(2)证明:f (x )为单调递减函数;(3)若f (3)=-1,求f (x )在[2,9]上的最小值.解:(1)令x 1=x 2>0,代入得f (1)=f (x 1)-f (x 1)=0,故f (1)=0.(2)证明:任取x 1,x 2∈(0,+∞),且x 1>x 2,则x 1x 2>1,由于当x >1时,f (x )<0, 所以f ⎝⎛⎭⎫x 1x 2<0,即f (x 1)-f (x 2)<0, 因此f (x 1)<f (x 2),所以函数f (x )在区间(0,+∞)上是单调递减函数.(3)∵f (x )在(0,+∞)上是单调递减函数. ∴f (x )在[2,9]上的最小值为f (9).由f ⎝⎛⎭⎫x 1x 2=f (x 1)-f (x 2)得,f ⎝⎛⎭⎫93=f (9)-f (3),而f (3)=-1,所以f (9)=-2.∴f (x )在[2,9]上的最小值为-2.。
函数的最值与单调性

函数的最值与单调性函数的最值与单调性对于数学领域来说是非常重要和常见的概念。
在本文中,我将详细介绍函数的最值和单调性,并讨论它们在数学问题中的应用。
一、函数的最值函数的最值是指函数在定义域内取得的最大值和最小值。
一个函数可能有多个最大值和最小值,也可能没有最大值或最小值。
在求解一个函数的最值时,我们可以通过以下步骤进行:1. 找到函数的定义域。
2. 求解函数的导数,并找到导数为零的点和导数不存在的点。
3. 将这些点代入函数中,得到对应的函数值。
4. 比较这些函数值,找到最大值和最小值。
举例来说,考虑函数 f(x) = 2x^2 - 3x + 1。
首先,我们需要找到函数的定义域。
由于这是一个二次函数,它的定义域是整个实数集。
然后,我们求解 f(x) 的导数 f'(x) = 4x - 3,并找到导数为零的点 x = 3/4。
将这个点代入原函数,得到 f(3/4) = 1/8。
由于这个函数是一个开口向上的抛物线,它的最小值就是 f(3/4) = 1/8。
因此,这个函数的最值是 f(3/4) = 1/8。
另外一个例子是函数 g(x) = sin(x)。
对于这个函数,它的定义域是整个实数集。
由于正弦函数的取值范围在 [-1, 1] 之间,所以 g(x) 的最大值是 1,最小值是 -1。
函数的最值在数学中经常用来确定问题的极限、最优解和最不利情况等。
二、函数的单调性函数的单调性是指函数的增减性质。
一个函数可以是递增的、递减的或是既递增又递减。
要判断一个函数的单调性,我们可以通过以下方法:1. 求解函数的导数。
2. 研究导数的符号。
如果导数在定义域内始终大于零,那么函数是递增的;如果导数在定义域内始终小于零,那么函数是递减的。
如果导数既大于零又小于零,那么函数既递增又递减。
比如考虑函数 h(x) = x^2 - 3x + 2。
我们求解 h(x) 的导数 h'(x) = 2x - 3。
通过分析导数的符号,我们可以发现当 x < 3/2 时,导数为负,说明函数 h(x) 在这个区间上是递减的;当 x > 3/2 时,导数为正,说明函数h(x) 在这个区间上是递增的。
函数的单调性与最值

1.函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数y=f(x)的定义域为A,区间I⊆A,如果对于区间I内的任意两个值x1,x2当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间I上是增函数当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间I上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义如果函数y=f(x)在区间I上是单调增函数或单调减函数,那么就说函数y=f(x)在区间I上具有单调性,区间I叫做y=f(x)的单调区间.2.函数的最值前提设函数y=f(x)的定义域为A,如果存在x0∈A,使得条件对于任意的x∈A,都有f(x)≤f(x0)对于任意的x∈A,都有f(x)≥f(x0)结论f(x0)为最大值f(x0)为最小值【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)在增函数与减函数的定义中,可以把“任意两个值x1,x2”改为“存在两个值x1,x2”.()(2)对于函数f(x),x∈D,若x1,x2∈D且(x1-x2)·[f(x1)-f(x2)]>0,则函数f(x)在D上是增函数.()(3)函数y =f (x )在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).( ) (4)函数y =1x 的单调递减区间是(-∞,0)∪(0,+∞).( )(5)所有的单调函数都有最值.( )(6)对于函数y =f (x ),若f (1)<f (3),则f (x )为增函数.( )1.下列函数中,①y =1x -x ;②y =x 2-x ;③y =ln x -x ;④y =e x -x ,在区间(0,+∞)内单调递减的是__________.2.若函数f (x )=|2x +a |的单调递增区间是[3,+∞),则a 的值为________. 3.设函数y =x 2-2x ,x ∈[-2,a ],若函数的最小值为g (a ),则g (a )=________. 4.(教材改编)已知函数f (x )=2x -1,x ∈[2,6],则f (x )的最大值为________,最小值为________. 5.(教材改编)已知函数f (x )=x 2-2ax -3在区间[1,2]上具有单调性,则实数a 的取值范围为_____________.题型一 确定函数的单调性(区间)命题点1 给出具体解析式的函数的单调性例1 (1)下列函数中,①y =ln(x +2);②y =-x +1;③y =(12)x ;④y =x +1x ,在区间(0,+∞)上为增函数的是________.(2)函数f (x )=log 12(x 2-4)的单调递增区间是____________.(3)函数y =-x 2+2|x |+3的单调增区间为_________________________.命题点2 解析式含参函数的单调性例2 试讨论函数f (x )=axx -1(a ≠0)在(-1,1)上的单调性.引申探究若本题中的函数变为f (x )=axx 2-1 (a >0),则f (x )在(-1,1)上的单调性如何?思维升华 确定函数单调性的方法:(1)定义法和导数法,证明函数单调性只能用定义法和导数法;(2)复合函数法,复合函数单调性的规律是“同增异减”;(3)图象法,图象不连续的单调区间不能用“∪”连结.已知a >0,函数f (x )=x +ax(x >0),证明:函数f (x )在(0,a ]上是减函数,在[a ,+∞)上是增函数.题型二 函数的最值例3 已知函数f (x )=x 2+2x +ax ,x ∈[1,+∞),a ∈(-∞,1].(1)当a =12时,求函数f (x )的最小值;(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.思维升华 求函数最值的常用方法:(1)单调性法:先确定函数的单调性,再由单调性求最值;(2)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值;(3)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值.(1)函数f (x )=⎩⎪⎨⎪⎧1x ,x ≥1,-x 2+2,x <1的最大值为________.(2)已知函数f (x )=1a -1x (a >0,x >0),若f (x )在[12,2]上的值域为[12,2],则a =________.题型三 函数单调性的应用命题点1 比较大小 例4 已知函数f (x )=log 2x +11-x,若x 1∈(1,2),x 2∈(2,+∞),则f (x 1)________0,f (x 2)________0.(判断大小关系)命题点2 解不等式例5 已知函数f (x )为R 上的减函数,则满足f ⎪⎪⎭⎫ ⎝⎛x 1<f (1)的实数x 的取值范围是______________.命题点3 求参数范围例6 (1)如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是__________. (2)已知⎩⎨⎧≥<+-=1,1,1)2()(x a x x a x f x满足对任意x 1≠x 2,都有0)()(2121>--x x x f x f 成立,那么a 的取值范围是________.思维升华 函数单调性应用问题的常见类型及解题策略(1)比较大小.比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决. (2)解不等式.在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f ”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域. (3)利用单调性求参数.①视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数;②需注意若函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子集上也是单调的; ③分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.(1)f (x )是定义在(0,+∞)上的单调增函数,满足f (xy )=f (x )+f (y ),f (3)=1,当f (x )+f (x -8)≤2时,x的取值范围是__________.(2)若f(x)=-x2+2ax与g(x)=ax+1在区间[1,2]上都是减函数,则a的取值范围是__________.1.确定抽象函数单调性解函数不等式典例(14分)函数f(x)对任意的m、n∈R,都有f(m+n)=f(m)+f(n)-1,并且x>0时,恒有f(x)>1.(1)求证:f(x)在R上是增函数;(2)若f(3)=4,解不等式f(a2+a-5)<2.思维点拨(1)对于抽象函数的单调性的证明,只能用定义.应该构造出f(x2)-f(x1)并与0比较大小.(2)将函数不等式中的抽象函数符号“f”运用单调性“去掉”是本题的切入点.要构造出f(M)<f(N)的形式.解函数不等式问题的一般步骤:第一步:(定性)确定函数f(x)在给定区间上的单调性;第二步:(转化)将函数不等式转化为f(M)<f(N)的形式;第三步:(去f)运用函数的单调性“去掉”函数的符号“f”,转化成一般的不等式或不等式组;第四步:(求解)解不等式或不等式组确定解集;第五步:(反思)反思回顾.查看关键点,易错点及解题规范.温馨提醒本题对函数的单调性的判断是一个关键点.不会运用条件x>0时,f(x)>1,构造不出f(x2)-f(x1)=f(x2-x1)-1的形式,便找不到问题的突破口.第二个关键应该是将不等式化为f(M)<f(N)的形式.解决此类问题的易错点:忽视了M、N的取值范围,即忽视了f(x)所在单调区间的约束.[方法与技巧]1.利用定义证明或判断函数单调性的步骤 (1)取值;(2)作差;(3)定量;(4)判断.2.确定函数单调性有四种常用方法:定义法、导数法、复合函数法、图象法,也可利用单调函数的和差确定单调性.3.求函数最值的常用求法:单调性法、图象法、换元法. [失误与防范]1.分段函数单调性不仅要考虑各段的单调性,还要注意衔接点.2.函数在两个不同的区间上单调性相同,一般要分开写,用“,”或“和”连结,不要用“∪”.A 组 专项基础训练 (时间:40分钟)1.下列函数f (x )中,①f (x )=1x ;②f (x )=(x -1)2;③f (x )=e x ;④f (x )=ln(x +1),满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”的是________.(填序号)2.已知函数y =log 2(ax -1)在(1,2)上单调递增,则实数a 的取值范围是__________.3.已知函数y =f (x )的图象关于x =1对称,且在(1,+∞)上单调递增,设a =f ⎪⎭⎫⎝⎛-21,b =f (2),c =f (3),则a ,b ,c 的大小关系为______________.4.若函数f (x )=x 2-2x +m 在 [3,+∞)上的最小值为1,则实数m 的值为________.5.已知函数f (x )=2ax 2+4(a -3)x +5在区间(-∞,3)上是减函数,则a 的取值范围是__________.6.函数f (x )=⎪⎩⎪⎨⎧<≥1,21,log 21x x x x的值域为________.7.已知函数f (x )=⎩⎪⎨⎪⎧x 2+12a -2,x ≤1,a x -a ,x >1,若f (x )在(0,+∞)上单调递增,则实数a 的取值范围为________.8.函数f (x )=x⎪⎭⎫⎝⎛31-log 2(x +2)在区间[-1,1]上的最大值为________.9.已知f (x )=xx -a(x ≠a ).(1)若a =-2,试证明f (x )在(-∞,-2)内单调递增; (2)若a >0且f (x )在(1,+∞)上单调递减,求a 的取值范围.10.设函数y =f (x )是定义在(0,+∞)上的函数,并且满足下面三个条件:①对任意正数x ,y ,都有f (xy )=f (x )+f (y );②当x >1时,f (x )<0;③f (3)=-1. (1)求f (1),f (19)的值;(2)如果不等式f (x )+f (2-x )<2成立,求x 的取值范围.B 组 专项能力提升(时间:20分钟)11.对于任意实数a ,b ,定义min{a ,b }=⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b .设函数f (x )=-x +3,g (x )=log 2x ,则函数h (x )=min{f (x ),g (x )}的最大值是________.12.定义新运算:当a ≥b 时,a b =a ;当a <b 时,a b =b 2,则函数f (x )=(1x )x -(2x ),x ∈[-2,2]的最大值等于________.13.已知函数f (x )为(0,+∞)上的增函数,若f (a 2-a )>f (a +3),则实数a 的取值范围为_________.14.已知函数f (x )=lg(x +ax -2),其中a 是大于0的常数.(1)求函数f (x )的定义域;(2)当a ∈(1,4)时,求函数f (x )在[2,+∞)上的最小值; (3)若对任意x ∈[2,+∞)恒有f (x )>0,试确定a 的取值范围.。
-函数的单调性、极值与最值

(
2 , 0) 2
+ ↑
( 0, 2 2 )
不存在 无
2 2
+ ↑
0
极大
-
↓
( 1 , )
-
(
2 2
,1 )
1
不存在
+ ↑
0
-
极小
极大
↓
无
↓
所以,f(x)的极大值为 f (
2 3 2 3 ) 4 , f ( ) 4 . 2 2 0 )1 . f(x)的极小值为 f(
练习
求下列函数的极值.
注2:Th1中的“>”和“<”号也可改为“≥ ”和“≤ ” 号,
2、分段单调函数: Def 1:若函数在某些子区间上单调递增,而在另一些子
区间上单调递减,则称该函数为分段单调函数.
结论同样成立.
3、驻点: 导数 f '(x)在区间内部的零点称为 f (x)驻点 . Def 2:
即: f ' ( x ) 0 ,则 x 为驻点 . 0 0
2 2 例3:证明 1 x ln( x 1 x ) 1 x ( x 0 ).
2 2 证:令 f ( x ) 1 x ln( x 1 x ) 1 x
2 则 f ' ( x ) ln( x 1 x ) 0
( x 0)
当 x ( 0 , )时, f( x ) 为严格单调递
a
x0
0
b
x
2、极值的必要条件 定理 2 设函数 f(x) 在 I 内连续,点 x0 不是 I 的断点 ,若函数在 x0 处取得极值,则 x0 或是函数的不可导 点,或是可导点;当 x0 是 f(x) 的可导点,那么 x0 必 是函数的驻点,即 f ( x0 ) = 0. 推论:设函数 f(x)在点 x0可导,则函数 f(x)在点 x0 取得极值的必要条件是 f ( x0 ) = 0 . 注1:极值点有可能是可导点,也有可能是极值点.
函数的单调性与最值

1、函数单调性定义:设函数()x f 在区间I 上有定义,如果对于这个区间上任意两个点和 ,当21x x <时,恒有()()21x f x f <,则称函数()x f 在区间I 上单调递增;如果对于这个区间上任意两个点和 ,当21x x <时,恒有()()21x f x f >,则称函数()x f 在区间I 上单调递减;单调递增函数和单调递减函数统称为单调函数.2、最值:对于任意的I x ∈,都有()M x f ≤或者()N x f ≥,这个N M 和便是函数()x f 在区间I 上的最大值和最小值.☆平时在做题的过程中,求函数单调区间的时候,各位同学一定要注意区间不要轻易“并”起来,例如对勾函数,如果将它的单调递减区间写成⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-a ba b ,,00 就是错误的,而应该写成⎪⎪⎭⎫ ⎝⎛-0,a b 和⎪⎪⎭⎫ ⎝⎛a b ,0或者写⎪⎪⎭⎫ ⎝⎛-0,a b ,⎪⎪⎭⎫⎝⎛a b ,0都是可以的. 一、函数单调性的判别方法1. 定义法:取值,作差,变形,定号,下结论.2. 图像法:如果函数图形能够画出,直接从图像上得到函数的单调性;3. 复合法:复合函数的单调性:“同增异减”;4. 导数法:设函数()x f 在定义域内可导,则:(1) 单调递增,()x f 单调递增()0≥'⇒x f ; (2) 单调递减,()x f 单调递增()0≤'⇒x f ;5. 多个函数在公共定义域上单调性运算规律如下:增函数+增函数=增函数;增函数-减函数=增函数;增函数⨯增函数=增函数(都大于0);减函数+减函数=减函数;减函数-增函数=减函数;=增函数1减函数,=减函数1增函数.2x 1x 1x 2x ()()x f x f ⇒>'0()()x f x f ⇒<'0恒正或恒负二、分段函数的单调性☆分段函数单调递增(递减)意味着每个分段的区间上函数单调递增(递减)并且在分段点处函数值的大小关系也满足递增(递减). 三、单调性的等价定义对于定义在D 上的函数()x f ,设1x ,D x ∈2,21x x <,则有: (1)()()()x f x x x f x f ⇔>--02121是D 上的单调递增函数; (2)()()[]()()x f x x x f x f ⇔>-⋅-02121是D 上的单调递增函数; (3)()()()x f x x x f x f ⇔<--02121是D 上的单调递减函数; (4)()()[]()()x f x x x f x f ⇔<-⋅-02121是D 上的单调递减函数.例题1:(2017北京)已知函数()xxx f ⎪⎭⎫⎝⎛-=313,则()x f ( )A.是偶函数,且在R 上是增函数;B.是奇函数,且在R 上是增函数;C.是偶函数,且在R 上是减函数;D.是奇函数,且在R 上是减函数;例题2:下列函数中,在区间()∞+,0上为增函数的是 ( ) A.1+=x y B.()21-=x y C.x y -=2 D.()15.0log +=x y 例题3:判断函数12++=x x y 在()+∞-,1上的单调性.例题4:判断函数()12-=x axx f (其中0>a )在()1,1-上的单调性.例题5:若实数a 满足21--->y y a ()R y ∈恒成立,则函数()()65log 2+-=x x x f a 的单调递减区间为( )A.⎪⎭⎫ ⎝⎛+∞,25 B. ()+∞,3 C.⎪⎭⎫ ⎝⎛∞-25, D.()2,∞-例题6:函数12+-=x xy ,(]1,+∈m m x 的最小值为0,则m 的取值范围是 ( ) A.()2,1 B.()2,1- C.[)2,1 D.[)2,1-例题7:已知函数,若()()⎩⎨⎧-=x a xa x f log 12 在()∞+,0上单调递减,则a 的取值范围为( ).A.⎪⎭⎫ ⎝⎛21,0 B.⎥⎦⎤ ⎝⎛31,0 C.⎪⎭⎫⎢⎣⎡21,31 D.⎪⎭⎫⎝⎛1,211≥x 1<x例题8:设()()⎩⎨⎧+-=a x a a x f x 43 对任意的21x x ≠,都有()()02121<--x x x f x f 成立,则a 的取值范围是( ).A. ⎥⎦⎤ ⎝⎛41,0B.()1,0C.⎪⎭⎫⎢⎣⎡1,41 D.()3,0例题9:函数()⎪⎩⎪⎨⎧+-=x aax x x f log 3822,在R 上单调,则a 的取值范围是( ).B. ⎥⎦⎤ ⎝⎛21,0 B.⎪⎭⎫⎢⎣⎡1,21C.⎥⎦⎤⎢⎣⎡8521,D.⎪⎭⎫⎢⎣⎡185,四、函数单调性的应用(1) 已知()x f 是单调函数,若()()21x f x f =,则21x x =.(2) ()x f 是单调递增函数(递减函数),若()()()212121x x x x x f x f ><⇒<.(3) 若函数()x f 的图像关于直线a x =对称,则其对称轴两侧单调性相反;如果函数()x f 的图像关于()0,a 对称,则其对称点两侧单调性相同.0<x 0≥x 1≤x 1>x。
函数的单调性与最值问题

函数的单调性与最值问题函数在数学中是一个非常重要的概念,它被广泛应用于各个领域中。
其中特别重要的是函数的单调性和最值问题。
这两个概念对于分析函数的性质和解决实际问题都有着重要的意义。
一、单调性单调性是指函数在某一区间上的增减性质。
具体来说,如果函数在一个区间上逐渐减少或逐渐增加,那么我们就说这个函数在这个区间上是单调的。
对于单调递增的函数,其随着自变量的增加,函数值也随着增加;对于单调递减的函数,其随着自变量的增加,函数值则随之减少。
而如果函数在某一区间内保持不变,则称该函数在该区间上是常数函数,因为函数的值一直不变。
为了更好地理解单调性的概念,我们可以举一个例子:假设一个人每天都要跑步,他的时间和距离之间的关系可以表示为一个函数。
如果他跑步的速度一直不变,则这个函数就是单调的。
在实际应用中,单调性常常被用来研究函数的特性及其变化趋势。
例如,在某些优化问题中,我们需要找到某一函数的最大值或最小值,而单调性正是解决这类问题的重要工具。
二、最值问题最值问题是指在某一函数区间内,求函数在该区间上的最大值或最小值。
这类问题是数学中的一个重要问题,也是各种应用问题的基础。
在解决最值问题时,我们需要找到所有可能的解。
这些解通常是函数在区间端点或者函数趋近于无穷时的解。
然后,我们需要对这些解进行比较,得出最值。
对于一些比较简单的函数,比如二次函数、三次函数等,我们可以直接对函数求导来求最值点。
而对于复杂的函数,我们可以利用单调性来简化求解过程。
例如,如果一个函数在某一区间上单调递增,则该函数的最大值一定在该区间的右端点处取到;同样地,如果该函数在某一区间上单调递减,则该函数的最大值一定在该区间的左端点处取到。
在实际应用中,最值问题的解法非常灵活,根据问题的不同,我们可以采用各种方法来解决这一问题。
三、归纳思考单调性和最值问题虽然看似是两个互不关联的问题,但它们实际上存在着密切的联系。
可以说,单调性是解决最值问题的基础,而最值问题又可以用来检验函数的单调性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单调性与最值
1.已知()y f x =在定义域(1,1)-上是减函数,且(1)(21)f a f a -<-,则a 的取值范围是 .
2.若f(x)为R 上的增函数,则满足f(2-m)<f(m 2)的实数m 的取值范围是________.
3.已知函数f (x )=2,0,0
x x x x ≥⎧⎨<⎩,则关于x 的不等式f (x 2)>f (3-2x )的解集是_______________.
4.若⎩⎨
⎧>-≤-=0 , 20 , )(2x x x x x x f ,则)(x f 的最小值是 .
5.3y x x =+的单调增区间是 .
6.函数45)(2+-=x x x f 的单调递增区间是 .
7.函数312)(x x x f -=在区间]3,3[-上的最小值为 .
8.函数2()2f x x x =-的单调增区间是 .
9.已知函数2()23f x x mx =-+在[)2,x ∈-+∞上是增函数,则m 范围是 .
10.已知函数f(x)= 4x 2-kx-8在[4,10]上具有单调性,实数k 的取值范围是_________
11.如果函数2
()23f x ax x =+-在区间(),4-∞上是单调递增的,则实数a 的取值范围是__________
12.已知函数2
()21f x x ax a =-++- ,
(1)若=2a ,求()f x 在区间[]0,3上的最小值;
(2)若()f x 在区间[]0,1上有最大值3,求实数a 的值.
13.已知[]2,1,4329)(-∈+⨯-=x x f x x (1)设[]2,1,3-∈=x t x
,求t 的最大值与最小值; (2)求)(x f 的最大值与最小值;
参考答案
1.)32,0(.
【解析】
试题分析:因为()y f x =在定义域(1,1)-上是减函数,且(1)(21)f a f a -<-,所以⎪⎩
⎪⎨⎧->-<-<-<-<-1211121111a a a a , 即⎪⎪⎩
⎪⎪⎨⎧<<<<<321020a a a ,解得320<<a ,即a 的取值范围是)32,0(. 考点:抽象不等式的解法.
2.21-<>m m 或
【解析】
试题分析:)(x f 为R 上的增函数,且)()2(2
m f m f <-,22m m <-∴,即022>-+m m ,
21-<>∴m m 或.
考点:函数的单调性.
3.(-∞,-3)∪(1,3)
【解析】
试题分析:显然,x 2≥0,
①当3-2x ≥0,即x ≤
32
时,由f (x 2)>f (3-2x ),且f (x )=x (x ≥0),有x 2>3-2x ,解得x <-3或x >1 于是x ∈(1,
32
]∪(-∞,-3)为所求; ②当3-2x <0,即x >32时,由f (x 2)>f (3-2x ),得x 2>(3-2x )2,展开化简得:x 2-4x +3<0,
得1<x <3,即(32
,3)为所求. 综合①②得,不等式的解集为(-∞,-3)∪(1,3)
考点:分段函数,不等式解集
4.1-
【解析】
试题分析:当0x ≤时,)(x f 即为()f x x =-其最小值为0,当0x >时,)(x f 即为
()2
2
()211
f x x x x
=-=--其最小值为1-,综上,)(x
f的最小值是1-
考点:分段函数
5.R
【解析】
试题分析:
2
2
3,0
3
3,0
x x
y x x
x x
⎧+≥
⎪
=+=⎨
-+<
⎪⎩,当0
x≥时,23
y x
=+,他的单调增区间为[0,)
+∞。
当x<0时,23
y x
=-+,他的单调增区间是(,0)
-∞,所以原函数的增区间为R 考点:本题考查分段函数的单调区间
点评:将含有绝对值的函数写成分段函数,分别求出每一段的增区间,
6.
5
(1],[4)
2
+∞
,,
【解析】
试题分析:作出函数2
f x|x5x4|
=-+
()的图象如下:
它的图象是把2
y x5x4
=-+的图象位于x轴上方的保留不变,把位于x轴下方的部分以x 轴为对称轴对称到x轴的上方得到的.而2
y x5x4
=-+的图象的对称轴为
5
2
x=,所以函数f(x)的增区间为:
5
(1],[4)
2
+∞
,,,
故答案为:
5
(1],[4)
2
+∞
,,.
考点:函数的单调性.
7.16
-
【解析】
试题分析:()
'2
123
f x x
=-,当()
'0
f x>时22
x
-<<,所以增区间为()
2,2
-,减区间为[][]
3,2,2,3
--
()()216,39f f -=-=,所以最小值为16-
考点:函数导数与最值
8.[1,)+∞(也可填()1,+∞)
【解析】
试题分析:函数()f x 为二次函数,且开口向上,其对称轴为1x =,所以其单调递增区间为:[1,)+∞(也可填()1,+∞).
考点:1.二次函数;2.函数的单调区间.
9.(],8-∞-
【解析】
试题分析:二次函数322+-=mx x y 的图象是开口向上,对称轴为4m x =
的抛物线,若数2()23f x x mx =-+在[)2,x ∈-+∞上是增函数,则只需
824-≤⇒-≤m m 考点:1.二次函数的图象与性质;2.函数的单调性;
10.32≤k 或80≥k
【解析】
试题分析:已知函数f(x)= 4x 2-kx-8的对称轴为8
k x =,在[4,10]上单调,只需48≤k 或108
≥k 即:32≤k 或80≥k
考点:二次函数的图象与单调性
11.1[,0]4
- 【解析】
试题分析:当0a =时,()23f x x =-为(),-∞+∞上的增函数,显然在(),4-∞上也是单调递增的;当0a ≠时,函数()f x 的对称轴为1x a =-
,要使函数()f x 在区间(),4-∞上单调递增,则有0a <且14a -≥,解得104
a -≤<. 考点:函数单调性;求函数中参数的取值范围.
12.(1)-1;(2)2-=a 或3a =.
【解析】
试题分析:(1)通过2=a ,求出函数()x f 的对称轴,然后求解在区间[]0,3上的最小值;
(2)函数的对称轴x a =,讨论对称轴是否在区间内,利用()x f 在区间[]0,1上有
最大值3,求实数a 的值.
试题解析:(1)若2a =,则22
()41(2)3f x x x x =-+-=--+
函数图像开口向下函数的对称轴为2x =,
所以函数()f x 在区间[0,2]上是增函数,在区间[2,3]上是减函数,
有又(0)1f =-,(3)2f = min ()(0)1f x f ∴==-
(2)由题意得:函数的对称轴为x a =
当0a ≤时,函数在()f x 在区间[0,1]上是减少的,则
max ()(0)13f x f a ==-=,即2a =-;
当01a <<时,函数()f x 在区间[0,]a 上是增加的,在区间[,1]a 上是减少加的,则 2max ()()13f x f a a a ==-+=,解得21a =-或,不符合;
当1a ≥时,函数()f x 在区间[0,1]上是增加的,则
max ()(1)1213f x f a a ==-++-=,解得3a =;
所以2-=a 或3a =.
考点:函数的最值及其应用.
13.(1)9max =t ,31min =
t ;(2)3)(min =x f ,67)(max =x f . 【解析】
试题分析:(1)当[]2,1-∈x 时,判断函数的单调性得出函数的最值;
(2)令x t 3=时,转化函数为二次函数,讨论函数在区间⎥⎦
⎤
⎢⎣⎡9,31上的单调性进而确定函数的最大值和最小值;
试题解析:(1)x t 3= 在[]2,1-是单调增函数, ∴ 932max ==t ,3
131min ==-t (2)令x t 3=,[]2,1-∈x ,⎥⎦⎤
⎢⎣⎡∈∴9,3
1t 原式变为:42)(2+-=t t x f ,3)1()(2
+-=∴t x f ,
⎥⎦
⎤⎢⎣⎡∈9,31t ,∴当1=t 时,此时1=x ,3)(min =x f ,当9=t 时,此时2=x ,67)(max =x f .
考点:函数性质的应用.。