多普勒雷达测速
雷达测速原理

雷达测速原理
雷达测速是一种利用电磁波进行测速的技术,它通过测量电磁波的频率变化来
实现对目标运动速度的测量。
雷达测速原理基于多普勒效应,即当发射器和接收器相对于目标运动时,接收到的电磁波频率会发生变化。
下面我们将详细介绍雷达测速的原理及其应用。
首先,雷达测速的原理是基于电磁波的多普勒效应。
当一个物体相对于观察者
运动时,它所发出或反射的波的频率会发生变化。
对于雷达测速来说,发射的电磁波会被目标反射回来,接收器接收到的电磁波频率与发射的频率之间的差值就是多普勒频移,通过多普勒频移我们可以计算出目标的运动速度。
其次,雷达测速原理的关键在于测量电磁波的频率变化。
雷达系统会发射一束
电磁波,当这束电磁波遇到运动的目标时,部分电磁波会被目标反射回来,接收器会接收到这些反射波。
通过比较接收到的电磁波频率与发射的频率之间的差值,我们就可以计算出目标的运动速度。
最后,雷达测速原理在实际应用中有着广泛的应用。
雷达测速被广泛应用于交
通领域,例如测速摄像头就是利用雷达测速原理来实现对车辆速度的测量。
此外,雷达测速也被应用于气象领域,用于测量大气运动的速度;在军事领域,雷达测速也被用于目标追踪和导航。
总结一下,雷达测速原理是基于电磁波的多普勒效应,通过测量电磁波的频率
变化来实现对目标运动速度的测量。
它在交通、气象、军事等领域有着广泛的应用。
通过了解雷达测速原理,我们可以更好地理解这一技术在现实生活中的应用,以及它的重要性和意义。
交警测速仪的物理原理

交警测速仪的物理原理交警测速仪的物理原理1. 介绍交警测速仪被广泛用于监测和记录车辆的速度,帮助交警部门维持交通秩序和监察道路安全。
它利用一种称为多普勒雷达(Doppler radar)的技术来实现测速。
2. Doppler雷达多普勒效应多普勒效应是指当观察者和发射源相对运动时,会出现一种频率变化。
在交通领域,当车辆靠近或远离测速仪时,其接收到的返回信号频率也相应变化。
原理Doppler雷达的原理基于多普勒效应。
它发射一束射频波(无线电波),然后通过接收返回的射频波来测量频率变化。
当车辆靠近时,返回的射频波具有高于发射频率的频率;当车辆远离时,返回的射频波具有低于发射频率的频率。
3. 速度测量原理频率偏移多普勒效应中的频率变化与目标物体相对于接收器的速度成正比。
根据这个原理,交警测速仪可以通过测量返回信号的频率偏移来计算目标车辆的速度。
公式车辆速度与频率偏移之间的关系可以使用以下公式表示:速度 = (频率偏移 * 速度光速) / (频率 * 2)其中,速度光速是光速的值,频率是测得的频率变化。
4. Doppler雷达的优势远距离测速交警测速仪利用Doppler雷达技术,可以在较远距离内测量车辆的速度。
这使得交警能够在恰当的位置设置测速点,提前掌握车辆的行驶速度。
多车辆测速Doppler雷达可以同时监测和记录多辆车辆的速度。
它能够准确地识别和跟踪每辆车辆,并记录其速度信息,从而提高交通管制的效率。
适用于各种天气条件交警测速仪的Doppler雷达技术不受天气条件的影响。
无论是晴天、雨天还是雪天,都能可靠地测量车辆的速度,确保交通秩序和道路安全。
总结交警测速仪利用Doppler雷达技术,通过测量频率偏移来计算车辆的速度。
它的优势包括适用于远距离测速、多车辆测速和各种天气条件下的可靠性。
交警借助这种创新技术,能够更加高效地监控交通,维护公共安全。
5. Doppler雷达的限制尽管交警测速仪的Doppler雷达技术具有许多优点,但也存在一些限制。
多普勒测速公式

多普勒测速公式
多普勒测速公式:v= fxλ (f为声波频率,λ为声波波长) 为此我们需要测得 f和λ原因一:利用谐振现象,当发射换能器处于谐振状态时,其谐振频率即声波频率,由此定出f 原因二:实验装置采用柱波测距原理,相邻两波幅间距=相邻两波节间距=λ/2,为观测准确以减小实验误差,选取测量波幅间距,对应相邻谐振距离的间距
当雷达探测的目标运动,由于物体辐射波长随波源与观测者的相对运动而变化,因此,雷达本身的回波信号频率和主波发射信号的频率,这两个频率会存在频率差,这个频率差被成为多普勒频率,fd = fr - ft (fd:多普勒频率,fr : 接收机接收到频率, ft:发射频率)。
其中,若发射与接收信号在目标不动的情况下,fd = 0,因此,只有目标移动的过程中,才会发生多普勒效应。
•。
radar 测速原理

radar 测速原理雷达是一种利用电磁波测量距离和速度的技术装置,广泛应用于军事、民用航空、气象等领域。
雷达测速原理是基于多普勒效应和时间测量的原理。
雷达测速原理主要包括以下几个方面:1.多普勒效应:多普勒效应是由于波源(或接收器)和接收器(或波源)相对运动,导致波的频率发生变化的现象。
在雷达测速中,当发射的电磁波遇到运动的物体时,被反射回来的波的频率会发生变化。
当物体远离雷达时,回波频率会降低;当物体靠近雷达时,回波频率会增加。
通过测量频率的变化,可以得到物体的速度。
2.时间测量原理:雷达发射器发送一个电磁波脉冲,随后接收到波的反射回波。
通过测量发射脉冲到达物体并返回的时间,可以计算出物体与雷达的距离。
距离计算公式为:距离=时间×光速/2。
其中光速为常数。
3.频率测量原理:通过测量发射脉冲信号与反射回波的频率,可以得到物体对雷达的速度信息。
根据多普勒效应,当物体远离雷达时,回波频率会降低;当物体靠近雷达时,回波频率会增加。
通过测量频率的变化,可以计算出物体的速度。
频率测量主要应用于测速雷达,比如交通巡逻车上用于测量车辆的速度。
4.脉冲雷达和连续波雷达:雷达有两种工作方式:脉冲雷达和连续波雷达。
脉冲雷达是通过发射脉冲信号来测量距离和速度;连续波雷达则是通过发射连续波信号并测量频率的变化来测量速度。
脉冲雷达可以精确地测量目标物体的距离和速度,但需要较长的时间来做一个测量。
连续波雷达能够实时获取目标物体的速度,但无法准确测量距离。
综上所述,雷达测速原理是基于多普勒效应和时间测量的原理。
通过测量频率的变化和发射脉冲到达物体并返回的时间,可以计算出物体的速度和距离。
雷达测速技术被广泛应用于交通巡逻、空中交通管制以及气象预报等领域,为人们提供了重要的测量和监测手段。
雷达测速原理

雷达测速原理
雷达测速是一种常见的交通工具超速检测方法,通过使用雷达技术测量车辆的速度。
雷达测速是基于多普勒效应的原理进行的。
多普勒效应是一个物理现象,它描述了当源头和接收器之间有相对运动时,频率会发生变化的现象。
在雷达测速中,雷达设备发射出一束微波信号,这些信号会被发射速度固定的车辆接收并返回。
当车辆靠近雷达设备时,信号的频率会增加,而车辆远离时,信号的频率会减少。
基于多普勒效应,雷达设备可以通过测量频率的变化来计算出车辆的速度。
雷达测速原理基于以下几个重要的概念:
1.多普勒效应:多普勒效应描述了当源头和接收器相对运动时,波的
频率会发生变化。
在雷达测速中,多普勒效应用于测量车辆的速度。
2.雷达测量:雷达设备通过发射微波信号,并接收返回的信号来测量
车辆的速度。
当车辆靠近雷达设备时,接收到的信号频率增加;而当车辆远离时,接收到的信号频率减少。
3.速度计算:根据接收到的信号频率变化量,雷达设备可以计算出车
辆的速度。
这种计算通常是基于雷达设备与车辆之间的距离和时间来实现的。
雷达测速在交通管理和执法中扮演着重要角色。
通过了解雷达测速原理,我们可以更好地理解这一技术在超速检测中的应用。
同时,对于驾驶人员来说,遵守交通规则是减少被雷达测速抓到的有效方法。
雷达测速原理

雷达测速原理引言雷达测速原理是一种常见的用于测量目标的速度的技术,广泛应用于交通管理、气象预报以及军事领域等。
本文将介绍雷达测速的基本原理和工作过程。
雷达测速基本原理雷达测速利用的是多普勒效应。
多普勒效应是指当波源和接收器相对于彼此运动时,波的频率发生变化的现象。
在雷达测速中,雷达发出的电磁波将会与目标物体相互作用,通过接收回波并计算频率差异,可以得到目标物体的速度。
雷达测速工作过程1. 发射信号雷达系统首先会发射一定频率的电磁波,这些电磁波以一定的速度传播到目标物体。
2. 与目标物体相互作用当电磁波与目标物体相遇时,一部分电磁波会被目标物体吸收,而另一部分则会被反射回来,形成回波。
3. 接收回波雷达系统的接收器会接收到目标物体反射回来的电磁波信号,以便后续处理。
4. 计算频率差异接收到的回波信号经过分析后,可以计算出发送信号与接收信号之间的频率差异。
根据多普勒效应,当目标物体靠近发射器时,频率会上升;当目标物体远离发射器时,频率会下降。
5. 推导速度通过测量频率差异,可以推导出目标物体的速度。
利用多普勒公式,可以计算得到目标物体的速度。
雷达测速器的应用雷达测速器是一种常用的交通管理工具,用于检测车辆的速度,以确保道路上的交通安全。
此外,雷达测速器还在气象领域广泛应用,用于测量风速和降水等气象要素。
在军事领域,雷达测速技术可以用于探测和追踪敌方飞行器。
结论雷达测速原理利用多普勒效应,通过计算发送信号与接收信号之间的频率差异,可以推导出目标物体的速度。
雷达测速器在交通管理、气象预报和军事领域有着广泛的应用,对于提高交通安全和实现其他重要任务起着至关重要的作用。
参考文献:[1] H. Ward Silver. (2011). Radar and ARPA Manual: Radar, AIS and Target Tracking for Marine Radar Users. Elsevier Science.。
多普勒雷达测速原理

多普勒雷达测速原理多普勒雷达是一种利用多普勒效应测量速度的无线电信号探测设备。
这种设备最早用于军事领域,用于测量飞机或导弹的速度和方向,现在也广泛应用于民用领域,如测量车辆、船只等的速度。
多普勒效应是一种物理现象,当射向运动物体的信号被反弹回来时,由于物体的运动会导致信号的频率发生变化。
具体来说,当物体向前运动时,信号的频率会变高,反之亦然。
这种变化的现象称为多普勒效应。
多普勒雷达使用这种效应来测量物体的速度。
多普勒雷达的工作原理是,向运动的物体发射一束电磁波,这个电磁波会反弹回来并被接收器接收。
接收器会检测到反弹回来的电磁波的频率,然后根据多普勒效应计算出物体的速度。
多普勒雷达的精度受到一些因素的影响,其中最明显的就是多普勒频移的大小。
这个频移的大小取决于物体的速度、雷达和物体之间的距离、以及电磁波的频率。
如果距离太远或者电磁波的频率太高,可能会导致多普勒频移过小,从而影响速度的测量精度。
另一个影响多普勒雷达精度的因素是多径效应。
当电磁波碰到物体后,它可能会反弹多次,导致接收器接收到多个信号。
这些信号可能会产生干扰,从而影响速度的测量精度。
为了解决这些问题,多普勒雷达通常会采用一些技术来提高测量精度。
可以使用更高精度的频率合成器来发射电磁波,或者使用数字信号处理技术来滤除多径效应。
除了测量速度,多普勒雷达还可以用于其他的应用,如测量距离、探测气象现象、探测海洋生物等。
测量距离是多普勒雷达最常见的应用之一。
它通过测量电磁波从雷达发射器到物体再返回到接收器的时间来计算距离。
多普勒雷达还可以用于探测气象现象,如暴风雨、雷暴等。
在这种情况下,雷达会发射电磁波,然后接收反弹回来的信号。
气象现象会导致反射信号的强度、频率和相位发生变化,从而使雷达可以识别出不同的气象现象。
多普勒雷达还可以用于探测海洋生物,如鱼类和海豚等。
在这种应用中,雷达会发射电磁波,然后监听反弹回来的信号。
当电磁波碰到鱼类或海豚等生物时,会反弹回来,产生一个信号。
雷达测速仪原理

雷达测速仪原理
雷达测速仪是一种用来测量车辆行驶速度的设备。
它原理基于多普勒效应,通过向目标发射无线电波,然后测量波的反射时间和频率变化来计算目标的速度。
具体而言,雷达测速仪中的发射器会发射一束无线电波,通常是微波或者激光波。
这束波会朝着正在行驶的车辆传播。
当波遇到车辆表面时,一部分会被反射回雷达测速仪中的接收器。
雷达测速仪中的接收器会测量反射回来的波的频率,通过比较波源发射的频率与接收到的反射波的频率差异,可以计算出车辆相对于雷达测速仪的速度。
这个差异就是多普勒频移,它是由于车辆与雷达之间的相对运动而导致的。
测速仪会将多普勒频移转化为速度值,并显示在仪器上供操作员观察。
因为雷达测速仪可以在较长的距离范围内进行测量,所以它可以被广泛应用于道路交通监控和执法。
需要注意的是,雷达测速仪在测量过程中可能会受到一些干扰。
例如,当有多辆车同时通过时,测速仪可能会受到多个反射波的影响,导致测量结果不准确。
此外,天气条件也可能对测速仪的性能产生一定影响,例如雨雪等天气情况。
总的来说,雷达测速仪利用多普勒效应原理来测量车辆速度。
通过发射和接收无线电波,并计算波的频率变化,测速仪可以准确地测量车辆的行驶速度,以提供道路交通监控和执法的需求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(一)无源电磁踏板
在一块永久磁铁外绕制 一个绕组构成。车轮通过时, 磁路磁阻的变化导致磁通的 变化,产生感应电动势,其 大小与车速有关。
结构简单,不需电源,维 修工作量小,工作可靠。 但低速时感应电压小,造 成丢轴事故。
(二)有源电磁踏板
变耦合式和变衰耗式两类 1、变耦合式
在一次测加上激励电源,二次侧差动连接 的两绕组感生电动势正好互相抵消,输出为零。 当有车轮经过时,破坏了磁路平衡,两绕组感 生电动势不再相等,有信号输出。
三公分发生 混 f环2器频定 将隔频电形向 振产率离器磁器耦 荡器生为:波:合 器:将混一器 输收只f频个1出:,和 输 勒 (发时发59的的 波 传 部允 率 向 播0出 信3合,隔H大 向 播 分电许 沿 的 ,7差 号z5用完离~部 天 , 送微 箭 方 避磁频M5天成作分 线 将 至0波 头 向 免fH波d0电 方 一 混z线收用功 指 传 反H多。z磁 向 小 频普)
器射,波作对为振混荡频 器的工本作振的输干入。 扰。
三公分发生器:产生一个频率为9375MHz的电磁波。
微型隔离器:只允许微波功率沿箭头指向的方向传播, 避免反射波对振荡器工作的干扰。
定向耦合器:将振荡器输出的大部分电磁波向天线方 向传播,将一小部分送至混频器,作为混频器的本 振输入。
环形器:收发合用天线时,完成收发隔离作用。
雷达天线向运动车辆发射频率为f1的超高频电磁波, 当遇到运动的车辆时反射回的频率变成f2 。
当车辆迎着天线作趋近运动时,f2>f1,反之,f2<f1
定义:多普勒频率fd=| f1- f2|
fd 车辆运动速度之间的关系如下:
fd
2f1v c
cos
式中: f1 雷达天线发射电磁波的频率,
(二)有源电磁踏板
2、变衰耗式
振荡器产生交变电流, 在其周围产生交变电磁场。
当踏板上有车辆通过 时,该交变磁场在车轮中 产生涡流使其发热,振荡 器的能量被消耗而停振, 故没有信号输出。
(二)有源电磁踏板
3、相位调制传感器
接收电路的核心 是同步晶相体敏振解荡调器电产路。 调号时平号无有生频将波圈解号整解相的。车车的、频信。。调接调位相经经正整率号它电收器发位由过弦形为送还路差信 输 生时传信 、 至 作的5号 出 变在K感,号 功 发 为基H与 端 化反器接经 放 送 相准z基 呈 ,相的时收分 后 线 位信高,准 解方信,,电此信 调 电路输出低电平。
点式自动化调速对测速设备的要求: 1、测速距离不小于调速位的长度 2、能连续测量车辆在整个调速位的走行速度。 3、测速精度 4、稳定可靠 5、现场安装满足铁路限界要求。
测速方法:
踏板测速:测量精度与设备数量有关,还与计 时精度有关。调速位区段不便安装,未能推广 应用。
刻槽钢轨测速:在钢轨踏面上等距离地刻一系 列槽,车辆通过时,车轮对槽的撞击产生的噪 声频率与车速成正比。这种测速方法设备简单, 但会损坏钢轨踏面,还会出现其它噪声干扰, 未能推广应用。
当采用3cm雷达时, f1为9375MHz
c 电磁波在空气中传播的速度,即3*108 m / s
v 车辆速度
电磁波与溜放方向夹角, 当很小时,cos 1
v fd / k
k 62.5 / m
DR-50 RADAR
二、雷达测速设备总体结构
雷达测速设备由高频和低频两部分组成。
第六章 驼峰调车自动控制系统的基础设备
计轴、测阻、测重、测速、测长 第一节 车轮传感器
简称踏板,用于检知车辆到达、计轴、判 断车辆运行方向、取代传统轨道电路的作用等。
踏板技术从机械的、光电的、无源永磁发 展到有源电子的。目前使用最多的是电磁踏板。
电磁踏板分为无源电磁踏板和有源电磁踏 板。踏板通常安装在钢轨的一侧。
t1 车轮从TP1到TP2的时间 t2 车轮从TP3到TP4的时间 T 车轮从TP2到TP4的时间
第三节 测重设备
车组重量作为走行阻力的辅助参数。 一、应变电阻测量
两片相互垂直的应变片紧贴 于金属圆片上,粘贴的角度与钢 轨纵轴线成45度角。
圆片装在特制的钢套筒内, 套筒安装于钢轨轨腰的孔中。车 轮压在其上时,剪切应力使应变 片电阻值变化,通过对此变化的 测量求取车辆重量。
W总 i W风 W基
假设测阻区段上,车辆作匀加速运动。测 阻踏板安装如图:
V均1
l t1
V均2
l t2
a V均1 V均2 V均1 V均2
T
L
V均1 V均2
2
V均2 2 V均21 2L
W总
l t2
2
l t1
2g'L
2
激光测速、超声波测速:易受天气影响。
多普勒雷达测速:测速精度高,能连续测量瞬 时速度,受工频干扰小,便于维护,得到广泛 应用。
一、多普勒雷达测速原理
当声源和听觉器官有相对运动时,听觉器官感受 到的声音频率会发生变化,这种现象称为多普勒效应。 频率的变化量与相对运动的速度成正比。
多普勒效应同样也存在于超高频电滋波的传播中, 多普勒雷达就是利用多普勒效应测速的。
混频器:将f1和f2电磁波混频,输出差频fd多普勒信号 (50Hz~500Hz)。
8mm(35.1GM)多普勒测速雷达设备框图
二、压磁传感器测重
压磁重力传感器 是一只特殊的变压器,铁心用冷轧硅钢片粘合构
成。在变压器铁心上开四个与铁心中心对称的穿线孔, 在对角线上的两个孔分别绕制激磁线圈和测量线圈。 当车轮压在传感器上时,垂直方向导磁率下降,磁阻 增加,磁力线发生形变,在二次线圈中感生出与压力 成正比的电动势。
第四节 测速设备
第二节 测阻设备
通过测量车辆加速度的方法实现测阻。
由列车牵引计算得车辆运行阻力W与运动
加速度a成正比。
WБайду номын сангаас
a g'
我国计算g '的通用公式为:
g'
g
1 420n
Q
其中, g 重力加速度,以9.81m / s2
n 计算车辆的轴数
Q 计算车辆的总重量。
直线测阻区段的总阻力包括基本阻力,风阻 力,和坡度的当量阻力i