陕西省高中数学必修四(北师大版)第一章学案 函数y=asin(ωx+φ)的图像与性质(二)

合集下载

北师大版数学高一(北师大)必修4学案 1.8函数y=Asin(ωxφ)的图象

北师大版数学高一(北师大)必修4学案 1.8函数y=Asin(ωxφ)的图象

第一章三角函数函数y=Asin(ωx+φ)的图象一教学目标:知识与技能(1)熟练掌握五点作图法的实质;(2)理解表达式y=Asin(ωx+φ),掌握A、φ、ωx +φ的含义;(3)理解振幅变换和周期变换的规律,会对函数y=sinx进行振幅和周期的变换;(4)会利用平移、伸缩变换方法,作函数y=Asin(ωx+φ)的图像;(5)能利用相位变换画出函数的图像。

过程与方法通过学生自己动手画图像,使他们知道列表、描点、连线是作图的基本要求;通过在同一个坐标平面内对比相关的几个函数图像,发现规律,总结提练,加以应用;要求学生能利用五点作图法,正确作出函数y=Asin(ωx+φ)的图像;讲解例题,总结方法,巩固练习。

情感态度与价值观通过本节的学习,渗透数形结合的思想;树立运动变化观点,学会运用运动变化的观点认识事物;通过学生的亲身实践,引发学生学习兴趣;创设问题情景,激发学生分析、探求的学习态度;让学生感受图形的对称美、运动美,培养学生对美的追求。

二、教学重、难点重点: 相位变换的有关概念,五点法作函数y=Asin(ωx+φ)的图像难点: 相位变换画函数图像,用图像变换的方法画y=Asin(ωx+φ)的图像三、学法与教学用具在前面,我们知道精确度要求不高时,可以用五点作图法,是哪五个关键点;首先请同学们回忆,然后通过物理学中的几个情境引入课题;主要让学生动手实践,两节课尽可能多地让他们画图,教师只是加以点拨;可以从几个具体的、简单的例子开始,在适当的时候加以推广;先分解各个小知识点,再综合在一起,上升更高一层。

教学用具:投影机、三角板自主讲练一、教学思路【创设情境,揭示课题】在物理和工程技术的许多问题中,经常会遇到形如y =Asin(ωx +φ)的函数,例如:在简谐振动中位移与时间表的函数关系就是形如y =Asin(ωx +φ)的函数。

正因为此,我们要研究它的图像与性质,今天先来学习它的图像。

【探究新知】例1.画出函数y=2sinx x ∈R ;y=21sinx x ∈R 的图象(简图)。

高中数学 第一章 三角函数 1.8 函数y=Asin(ωx+φ)的图像学案 北师大版必修4

高中数学 第一章 三角函数 1.8 函数y=Asin(ωx+φ)的图像学案 北师大版必修4

1.8 函数y =Asin(ωx +φ)的图像1.“五点法”画函数y =A sin(ωx +φ)的图像利用“五点法”作函数y =A sin(ωx +φ),x ∈R (其中A >0,ω>0)的简图,先分别令ωx +φ=____________,列表求出长度为一个周期的闭区间上的五个关键点的坐标,再描点,并用平滑的曲线连接作出一个周期上的图像,最后向左、右分别扩展,即可得到函数y =A sin(ωx +φ),x ∈R 的简图.2.A 、ω、φ的意义函数y =A sin(ωx +φ),x ∈R (其中A >0,ω>0),在这里常数A 叫____,T =2πω叫____,f =1T =ω2π叫____,ωx +φ叫____,φ叫____. 函数y =A sin(ωx +φ)+b (其中ω>0,A >0)的最大值为____,最小值为____,周期为__.预习交流1函数y =15sin ⎝ ⎛⎭⎪⎫3x -π3,x ∈R 的值域是________,周期是________,振幅是________,初相是________.3.A ,ω,φ对函数y =A sin(ωx +φ)图像的影响 (1)φ对函数y =sin(x +φ)图像的影响(2)ω对函数y =sin(ωx +φ)图像的影响(ω>0且ω≠1)(3)A 对函数y =A sin(ωx +φ)图像的影响(A >0)准确认识理解“图像变换法”由y =sin x 到y =sin(x +φ)的图像变换称为相位变换;由y =sin x 到y =sin ωx 的图像变换称为周期变换;由y =sin x 到y =A sin x 的图像变换称为振幅变换.预习交流2将函数y =sin x 的图像向左平移π4个单位,再向上平移2个单位,所得图像的函数解析式是( ).A .y =sin ⎝ ⎛⎭⎪⎫x -π4+2B .y =sin ⎝ ⎛⎭⎪⎫x +π4-2C .y =sin ⎝⎛⎭⎪⎫x -π4-2D .y =sin ⎝⎛⎭⎪⎫x +π4+2 4.函数=sin(ω+φ)(>0)的性质预习交流3函数y =A sin(ωx +φ)的对称中心和对称轴各有什么特点?答案:1.0,π2,π,3π2,2π2.振幅 周期 频率 相位 初相 A +b -A +b 2πω预习交流1:⎣⎢⎡⎦⎥⎤-15,152π3 15-π3预习交流2:D4.R [-A ,A ]2π|ω| k π+π2,k ∈Z k π+π2-φωk π,k ∈Z ⎝ ⎛⎭⎪⎫k π-φω,0 2k π-π2 2k π+π2 2k π+π2 2k π+3π2预习交流3:提示:对称中心为图像与x 轴的交点坐标,在对称轴处图像位于最高点或最低点,也可以说函数在对称轴处取得最大值或最小值.1.用“五点法”作正弦函数y =A sin(ωx +φ)的图像用“五点法”作出函数y =2sin ⎝ ⎛⎭⎪⎫2x +π3的简图,并指出这个函数的振幅、周期、频率、初相和单调区间.用“五点法”作出函数y =3sin ⎝ ⎛⎭⎪⎫12x -π4的图像,并指出它的振幅、周期、频率、初相、相位.“五点法”作图,要抓住要害,即要抓住五个关键点,使函数式中的ωx+φ分别取0,π2,π,3π2,2π,然后求出相应的x ,y 值,作出图像.2.图像变换用两种方法将函数y =sin x 的图像变换为y =2sin ⎝ ⎛⎭⎪⎫3x +π4的图像.思路分析:变换过程可以先平移后伸缩,也可以先伸缩后平移.将函数y =f (x )的图像上每一点的纵坐标变为原来的12,再将横坐标变为原来的12,最后将整个图像向左平移π3个单位,可得y =sin x 的图像,求函数f (x )的解析式.思路分析:逆向思考解答此问题.函数y =12sin ⎝ ⎛⎭⎪⎫2x -π4的图像可以看作把函数y =12sin 2x 的图像向__________平移__________个单位得到.由y =sin x 的图像,通过变换可得到函数y =A sin(ωx +φ)(ω>0)的图像,其变化途径有两条:(1)y =sin x ――→相位变换y =sin(x +φ)――→周期变换y =sin(ωx +φ)――→振幅变换y =A sin(ωx +φ).(2)y =sin x ――→周期变换y =sin ωx ――→相位变换y =sin(ωx +φ)――→振幅变换y =A sin(ωx +φ).3.根据图像确定函数解析式如图,它是函数y =A sin(ωx +φ)(A >0,ω>0,|φ|<π)的图像,由图中条件写出该函数的解析式.1.函数f (x )=A sin(ωx +φ)(0<φ<2π,A >0,ω>0)的部分图像如图所示,则f (0)的值是__________.2.函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2,x ∈R )的部分图像如图所示,求函数表达式.由图像确定函数y =A sin(ωx +φ)的解析式,主要从以下三个方面来考虑:(1)A 的确定:根据图像的“最高点,最低点”确定A ;(2)ω的确定:结合图像先求周期T ,然后由T =2πω(ω>0)确定ω;(3)φ的确定:常用的方法有: ①代入法:把图像上的一个已知点或图像与x 轴的交点代入(此时,A ,ω已知)求解.(此时要注意交点在上升区间还是在下降区间上)②五点法:确定φ的值时,往往以寻找“五点”中的第一个“零点”⎝ ⎛⎭⎪⎫-φω,0作为突破口.“五点”中的ωx +φ的值具体如下:“第一点”(即图像上升时与x 轴的交点)为ωx +φ=0;“第二点”(即图像的“峰点”)为ωx +φ=π2;“第三点”(即图像下降时与x 轴的交点)为ωx +φ=π; “第四点”(即图像的“谷点”)为ωx +φ=3π2;“第五点”为ωx +φ=2π.4.y =A sin(ωx +φ)+b 的性质及综合应用已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫ωx +φ-π6+1(0<φ<π,ω>0)为偶函数,且函数y =f (x )图像的两相邻对称轴间的距离为π2.(1)求f ⎝ ⎛⎭⎪⎫π8的值; (2)将函数y =f (x )的图像向右平移π6个单位后,再将得到的图像上各点的横坐标伸长为原来的4倍,纵坐标不变,得到函数y =g (x )的图像,求g (x )的单调递减区间.思路分析:(1)首先求出ω,φ的值,再求出f ⎝ ⎛⎭⎪⎫π8的值;(2)求出y =g (x )的解析式,再确定单调递减区间.设函数f (x )=sin(2x +φ)(-π<φ<0),y =f (x )图像的一条对称轴是直线x =π8.(1)求φ;(2)求函数f (x )的单调递增区间.(1)函数y =A sin(ωx +φ)(A >0,ω>0)为偶函数⇔φ=k π+π2(k ∈Z );为奇函数⇔φ=k π(k ∈Z ).同理,函数y =A cos(ωx +φ)(A >0,ω>0)为偶函数⇔φ=k π(k ∈Z );为奇函数⇔φ=k π+π2(k ∈Z ).(2)求y =A sin(ωx +φ)或y =A cos(ωx +φ)的单调区间时,首先把x 的系数化为正的,再利用整体代换,即把ωx +φ代入相应不等式中,求解相应的变量x 的范围.答案:活动与探究1:解:(1)列表:列表时2x +π3取值分别为0,π2,π,3π2,2π,再求出相应的x 值和y 值.(2)描点:在直角坐标系中描出点⎝ ⎛⎭⎪⎫-6,0,⎝ ⎛⎭⎪⎫12,2,⎝ ⎛⎭⎪⎫3,0,⎝ ⎛⎭⎪⎫12,-2,⎝ ⎛⎭⎪⎫5π6,0.(3)连线:用平滑的曲线顺次连接各点所得图像如下图所示.利用这类函数的周期性,我们可以把上面所得到的简图向左、右扩展,得到y =2sin ⎝⎛⎭⎪⎫2x +π3,x ∈R 的简图(图略). 这个函数的振幅是2,周期是T =2π2=π,频率是f =1T =1π,初相是π3.函数的递减区间为⎣⎢⎡⎦⎥⎤k π+π12,k π+7π12(k ∈Z ). 同理,递增区间为⎣⎢⎡⎦⎥⎤k π-5π12,k π+π12(k ∈Z ).(2)描点:在直角坐标系中描出点⎝ ⎛⎭⎪⎫2,0,⎝ ⎛⎭⎪⎫2,3,⎝ ⎛⎭⎪⎫2,0,⎝ ⎛⎭⎪⎫7π2,-3,⎝ ⎛⎭⎪⎫9π2,0, (3)连线:将所得五点用光滑的曲线连起来,如图所示.这样就得到了函数y =3sin ⎝ ⎛⎭⎪⎫12x -π4在一个周期内的图像,再将这部分图像向左或向右扩展就得到函数y =3sin ⎝ ⎛⎭⎪⎫12x -π4,x ∈R 的图像.这个函数的振幅为3,周期是T =2π12=4π,频率f =1T =14π,初相为-π4,相位是12x -π4.活动与探究2:解:方法一:(先平移后伸缩)y =sin x 的图像y=sin ⎝⎛⎭⎪⎫x +π4的图像y =sin ⎝⎛⎭⎪⎫3x +π4的图像――――――――――→横坐标不变纵坐标伸长为原来的2倍y =2sin ⎝⎛⎭⎪⎫3x +π4的图像. 方法二:(先伸缩后平移)y =sin x 的图像y =sin 3x 的图像y =sin ⎝⎛⎭⎪⎫3x +π4的图像―――――――――→纵坐标伸长为原来的2倍横坐标不变y =2sin ⎝ ⎛⎭⎪⎫3x +π4的图像.活动与探究3:解:将y =sin x 的图像向右平移π3个单位得到y =sin ⎝⎛⎭⎪⎫x -π3的图像,把所得图像上所有点的横坐标伸长为原来的2倍得到y =sin ⎝ ⎛⎭⎪⎫12x -π3的图像,再把y =sin ⎝ ⎛⎭⎪⎫12x -π3的图像上所有点的纵坐标变为原来的2倍得到y =2sin ⎝ ⎛⎭⎪⎫12x -π3的图像.∴f (x )的解析式为f (x )=2sin ⎝ ⎛⎭⎪⎫12x -π3.迁移与应用:右 π8解析:y =12sin ⎝⎛⎭⎪⎫2x -π4=12sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π8, ∴由y =12sin 2x 的图像向右平移π8个单位便得到y =12sin ⎝⎛⎭⎪⎫2x -π4的图像.活动与探究4:解:由图像知,A =3. ∵T 2=5π6-π3=π2,∴T =π. ∴ω=2πT=2.∴y =3sin(2x +φ).下面求φ.方法一:(单调性法)∵点⎝ ⎛⎭⎪⎫π3,0在递减的区间上,∴2π3+φ∈⎣⎢⎡⎦⎥⎤π2+2k π,3π2+2k π,k ∈Z . 由sin ⎝ ⎛⎭⎪⎫2π3+φ=0,得2π3+φ=π+2k π,k ∈Z , ∴φ=2k π+π3,k ∈Z .又∵|φ|<π,∴φ=π3.方法二:(最值点法)将最高点坐标⎝ ⎛⎭⎪⎫π12,3代入y =3sin(2x +φ),得3sin ⎝ ⎛⎭⎪⎫2×π12+φ=3.∴φ+π6=π2+2k π,k ∈Z .∴φ=2k π+π3,k ∈Z .又∵|φ|<π,∴φ=π3.方法三:(起始点法)函数y =A sin(ωx +φ)的图像一般由“五点法”作出,而起始点的横坐标x 正是由ωx +φ=0解得的,故只要找出起始点的横坐标x ,就可以迅速求得初相φ.由图像求得x 0=-π6.故φ=-ωx 0=-2×⎝ ⎛⎭⎪⎫-π6=π3.方法四:(平移法)由图像知,将y =3sin 2x 的图像沿x 轴向左平移π6个单位,就得到本题图像,故φ=2×π6=π3.综上,所求函数的解析式为y =3sin ⎝⎛⎭⎪⎫2x +π3. 迁移与应用:1.62 解析:由题图知A =2,T 4=7π12-π3=π4, ∴T =π,ω=2ππ=2.∴2×π3+φ=2k π+π,k ∈Z .∴φ=2k π+π3,k ∈Z .∵0<φ<2π,令k =0,得φ=π3.∴函数解析式为f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3. ∴f (0)=2sin π3=62.2.解:由图像知A =4,T2=6-(-2)=8,∴T =16.从而2πω=16,∴ω=π8.由π8×6+φ=k π,k ∈Z 得φ=k π-3π4,k ∈Z . ∵|φ|<π2,令k =1,得φ=π4.∴函数f (x )=4sin ⎝ ⎛⎭⎪⎫π8x +π4.活动与探究5:解:(1)∵f (x )为偶函数,∴φ-π6=k π+π2(k ∈Z ),∴φ=k π+2π3,k ∈Z .又∵0<φ<π,∴φ=2π3,∴f (x )=2sin ⎝⎛⎭⎪⎫ωx +π2+1=2cos ωx +1. 又函数y =f (x )的图像的两相邻对称轴间的距离为π2,∴2πω=2×π2,∴ω=2. 故f (x )=2cos 2x +1,因此f ⎝ ⎛⎭⎪⎫π8=2cos ⎝⎛⎭⎪⎫2×π8+1=2+1.(2)将f (x )的图像向右平移π6个单位后,得到f ⎝⎛⎭⎪⎫x -π6的图像,再将所得图像上各点的横坐标伸长为原来的4倍,纵坐标不变,得到f ⎝ ⎛⎭⎪⎫x 4-π6的图像. 所以g (x )=f ⎝ ⎛⎭⎪⎫x 4-π6=2cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x 4-π6+1=2cos ⎝ ⎛⎭⎪⎫x 2-π3+1. 当2k π≤x 2-π3≤2k π+π(k ∈Z ),即4k π+2π3≤x ≤4k π+8π3(k ∈Z )时,g (x )单调递减.因此g (x )的单调递减区间是⎣⎢⎡⎦⎥⎤4k π+2π3,4k π+8π3(k ∈Z ). 迁移与应用:解:(1)由2×π8+φ=k π+π2,k ∈Z ,得φ=k π+π4,k ∈Z ,∵-π<φ<0,令k =-1得φ=-3π4.∴f (x )=sin ⎝ ⎛⎭⎪⎫2x -3π4. (2)由2k π-π2≤2x -3π4≤2k π+π2,k ∈Z ,得k π+π8≤x ≤k π+5π8,k ∈Z .∴函数的单调递增区间是⎣⎢⎡⎦⎥⎤k π+π8,k π+5π8(k ∈Z ).1.函数y =2sin ⎝ ⎛⎭⎪⎫x 2+π5的周期、振幅各是( ).A .4π,-2B .4π,2C .π,2D .π,-22.要得到函数y =sin ⎝ ⎛⎭⎪⎫2x +2π3的图像,只需将y =sin 2x 的图像( ). A .向左平移π6个单位B .向右平移π6个单位C .向右平移π3个单位D .向左平移π3个单位3.已知函数f (x )=sin ⎝⎛⎭⎪⎫ωx +π3(ω>0)的最小正周期为π,则该函数图像( ).A .关于直线x =π3对称B .关于直线x =π4对称C .关于点⎝ ⎛⎭⎪⎫π4,0对称D .关于点⎝ ⎛⎭⎪⎫π3,0对称4.函数y =2sin ⎝⎛⎭⎪⎫2x +π3在[0,π]上的单调减区间是__________.5.已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)上的最高点为(2,2),该最高点到相邻的最低点间曲线与x 轴交于一点(6,0),求函数解析式,并求函数在x ∈[-6,0]上的值域.答案:1.B 2.D3.D 解析:由题意知ω=2,所以f (x )=sin ⎝⎛⎭⎪⎫2x +π3. 当x =π3时,f (x )=0,所以f (x )关于点⎝ ⎛⎭⎪⎫π3,0对称. 当x =π4时,f (x )=sin ⎝ ⎛⎭⎪⎫π2+π3=cos π3=12, 所以f (x )不关于点⎝ ⎛⎭⎪⎫π4,0对称,也不关于直线x =π4对称. 4.⎣⎢⎡⎦⎥⎤π12,7π12 解析:由2k π+π2≤2x +π3≤2k π+3π2,k ∈Z ,得k π+π12≤x ≤k π+7π12,k ∈Z , ∵x ∈[0,π],∴函数y =2sin ⎝ ⎛⎭⎪⎫2x +π3在[0,π]上的递减区间是⎣⎢⎡⎦⎥⎤π12,7π12. 5.解:由题意知A =2,T4=6-2=4,∴T =16. 又2πω=16,∴ω=π8. 又π8×6+φ=π+2k π,k ∈Z , ∴φ=2k π+π4,k ∈Z .∵|φ|<π2,令k =0,得φ=π4,∴f (x )=2sin ⎝ ⎛⎭⎪⎫π8x +π4.∵x ∈[-6,0],∴π8x +π4∈⎣⎢⎡⎦⎥⎤-π2,π4.∴f (x )∈[-2,1].∴函数在x ∈[-6,0]上的值域是[-2,1].。

1.7函数y=Asin(ωx+φ)的图像(一) 课件高中数学必修4(北师大版)

1.7函数y=Asin(ωx+φ)的图像(一) 课件高中数学必修4(北师大版)
向左平移 个单位 12 1 横坐标缩短为原来的 ,纵坐标不变 3
【例】将函数y=f(x)的图像上每一点的纵坐标不变,而横
个单位,最后保持图 3 1 像上每一点的横坐标不变,纵坐标缩短为原来的 倍,得 2
坐标伸长为原来的2倍,再向右平移
到的曲线与y=cosx相同,试求y=f(x)的解析式.
【审题指导】解答本题的关键是确定好变换的方向,同时
点.
(2)用“五点法”画函数 y Asin(x ) 的图像关键是点的
3 ,2π 即可得出所画图 ,π , 选取,一般令 x 0, 2 2
像的关键点坐标.
【例1】作函数 y 2sin( 1 x ) 在长度为一个周期的闭区间
3 6
上的简图. 【审题指导】函数 y 2sin( 1 x ) 的周期T=6π,画出 x 取 0, , , 3 , 2 时的五个关键点,是解答本题的关键.
(3)图像法 类比正弦曲线的画法可知:周期函数的图像可由长度为一 个周期的区间上的图像,向右、向左依次平移 T个单位得到, 据此可由图像求函数的周期.
y=|sinx|的最小正周期是y=sinx的最小正周 期的一半,而y=|tanx|的最小正周期与y=tanx的最小正周 期却相同.
【例3】求下列函数的最小正周期. (1) y cos(3x )
(2)用“变换法”画函数图像,要注意统一函数名称,恰当
变换解析式的形式,弄清楚是平移变换、伸缩变换还是对
称变换,明确变换方向.
(3)利用图像的变换作图像时,提倡先平移后伸缩,若先伸
缩后平移时要特别注意平移量的确定. 对于三角函数图像的变换要记住每一个变换 总是对字母x而言,即图像变换要看“变量”起多大变化, 而不是“角变化”多少.

高中数学第一章三角函数1.8函数y=Asin(ωx+φ)的图像例题与探究(含解析)北师大版必修4

高中数学第一章三角函数1.8函数y=Asin(ωx+φ)的图像例题与探究(含解析)北师大版必修4

1.8 函数y=Asin (ωx+φ)的图像典题精讲1.由函数y =sinx 的图像经过怎样的变换得到函数y =sin(ωx+φ)(ω>0)的图像? 剖析:由y =sinx 的图像变换出y =sin(ωx+φ)的图像一般有两个途径. 途径一:先相位变换,再周期变换先将y =sinx 的图像向左(φ>0)或向右(φ<0)平移|φ|个单位;再将得到的图像上各点的横坐标变为原来的ω1倍(纵坐标不变),得y =sin(ωx+φ)的图像. 途径二:先周期变换,再相位变换先将y =sinx 的图像上各点的横坐标变为原来的ω1倍(纵坐标不变);再将得到的图像沿x 轴向左(φ>0)或向右(φ<0)平移ωϕ||个单位,便得y =sin(ωx+φ)的图像.疑点是这两种途径在平移变换中,为什么沿x 轴平移的单位长度不同?其突破口是化归到由函数y=f(x)的图像经过怎样的变换得到函数y=f(ωx+φ)的图像.只有区别开这两个途径,才能灵活进行图像变换.若按途径一有:先将y=f(x)的图像向左(φ>0)或向右(φ<0)平移|φ|个单位,得函数y=f(x+φ)的图像;再将函数y=f(ωx)的图像上各点纵坐标不变,横坐标变为原来的ω1倍,得y=f(ωx+φ)的图像. 若按途径二有:先将y=f(x)的图像上各点纵坐标不变,横坐标变为原来的ω1倍,得函数y=f(ωx)的图像;再将函数y=f(ωx)的图像上各点沿x 轴向左(φ>0)或向右(φ<0)平移ωϕ||个单位,得y=f(ωx+φ)的图像.若将y=f(x)的图像上各点纵坐标不变,横坐标变为原来的ω1倍(ω>0),得函数y=f(ωx)的图像;再将函数y=f(ωx)的图像上各点沿x 轴向左(φ>0)或向右(φ<0)平移|φ|个单位,得到y=f [ω(x+φ)]的图像,即函数y=f(ωx+ωφ)的图像,而不是函数y=f(ωx+φ)的图像.例如:由函数y =sinx 的图像经过怎样的变换得到函数y =sin(2x +3π)的图像? 方法1:(先相位变换,再周期变换)先将y =sinx 的图像向左平移3π个单位得函数y =sin(x +3π);再将函数y =sin(x +3π)图像上各点的纵坐标不变,横坐标变为原来的21倍,得y=sin(2x +3π)的图像.方法2:(先周期变换,再相位变换)先将f(x)=sinx 的图像上各点纵坐标不变,横坐标变为原来的21倍,得函数f(x)=sin2x 的图像;再将函数f(2x)=sin2x 的图像上各点沿x 轴向左平移6π个单位,得f [2(x+6π)]=sin2(x+6π)的图像,即函数y=sin(2x+3π)的图像.在方法2中,得到函数f(2x)=sin2x 的图像后,如果把f(2x)=sin2x 图像沿x 轴向左平移3π个单位,得f [2(x+3π)]=sin2(x+3π)的图像,即函数y=sin(2x+32π)的图像,而不是函数y =sin(2x +3π)的图像. 由以上可见,利用变换法作y =Asin(ωx+φ)的图像时,通常先进行相位变换,后进行周期变换,这样可避免出错.由于容易出错,因此是高考题和模拟题的热点之一. 例如:(2006江苏高考卷,4)为了得到函数y=2sin(3x +6π),x∈R 的图像,只需把函数y=2sinx,x∈R 的图像上所有的点( )A.向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变)B.向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变)C.向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)D.向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)思路解析:先将y=2sinx,x∈R 的图像向左平移6π个单位长度,得到函数y=2sin(x+6π),x∈R的图像,再把所得图像上各点的横坐标伸长到原来的3倍(纵坐标不变)得到函数y=2sin(3x +6π),x∈R 的图像. 答案:C2.如何求型如y=Asin(ωx+φ)+b(ω<0)函数的单调递增区间?以y=2sin(3π-2x)+1为例说明.剖析:复合函数的单调性的复合规律为:若函数y=f(u)与u=g(x)的增减性相同(相反),则y=f\[g(x)\]是增(减)函数,可概括为“同增异减”.函数y=2sin(3π-2x)+1的定义域是R. 函数y=2sin(3π-2x)+1是复合函数,y=f(u)=2u+1,u=sin(3π-2x).则要求函数y=2sin(3π-2x)+1的单调递增区间,需求u=sin(3π-2x)的单调递增区间.函数u=sin(3π-2x)又是复合函数,u=sint ,t=3π-2x.则要求函数u=sin(3π-2x)的单调递增区间,需求函数u=sint 的单调递减区间.则正确的解法是:令2kπ+2π≤3π-2x≤2kπ+23π(k∈Z ),∴2kπ+2π-3π≤-2x≤2kπ+23π-3π (k∈Z ).∴2672262-+≥≥-+ππππk x k .∴2672-+ππk ≤x≤2672-+ππk , 即-kπ-127π≤x≤-kπ-12π.∴函数的单调递增区间是[-kπ-127π,-k π-12π](k∈Z ). 由此可见原解法求出的区间是函数的单调递减区间.原解法的错误是求复合函数的单调区间时,错误地判断了构成复合函数的内层函数的单调性.综上所得,在求函数y=Asin(ωx+φ)+b 的单调区间时,一定注意其中的参数A 和ω的符号,特别是当A 和ω是负数时,容易出错,其突破口是化归到如何求复合函数的单调区间,这样才不会出错,进而避免:看起来题会,做起来不对,出考场后悔. 典题精讲例1已知函数y=3sin (21x-4π), (1)用“五点法”画函数的图像;(2)说出此图像是由y=sinx 的图像经过怎样的变换得到的; (3)求此函数的周期、振幅、初相;(4)求此函数的对称轴、对称中心、单调递增区间. 思路分析:五点法画函数y=3sin (21x-4π)的图像时,应先找出五个关键点,这五个点应该是使函数取得最大值、最小值以及曲线与x 轴相交的点,找出它们的方法是利用整体思想,由ωx+φ=0,2π,π,23π,2π来确定对应x 的值.求函数的对称轴、对称中心、单调递增区间也是应用整体策略来解决.解:(1)列表21x-4π2π π23π 2πx 2π 23π 25π 27π 29π y3-3描点:在直角坐标系中描出下列各点(2π,0),(23π,3),(25π,0),(27π,-1),(29π,0);连线:将所得五点用光滑的曲线连接起来,得到的所求函数的图像如图1-7-1所示.图1-7-1这样就得到了函数y=3sin (21x-4π)在一个周期内的图像,再将这部分向左或向右平移4kπ(k∈Z ),得到函数y=3sin (21x-4π)的图像.(2)方法一:(相位变换在周期变换的前面) ①把y=sinx 的图像上所有的点向右平移4π个单位,得到y=sin (x-21)的图像;②把y=sin (x-4π)的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y=sin (2x -4π)的图像; ③将y=sin (21x-4π)的图像上所有点的纵坐标伸长到原来的3倍(横坐标不变),就得到y=3sin (21x-4π)的图像.方法二:(周期变换在平移变换的前面)①把y=sinx 的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y=sin (21x )的图像; ②把y=sin (21x )的图像上所有的点向右平移2π个单位,得到y=sin 21(x-2π)=sin (2x -4π)的图像;③将y=sin (21x-4π)的图像上所有点的纵坐标伸长到原来的3倍(横坐标不变),就得到y=3sin (21x-4π)的图像.(3)周期T=ωπ2=212π=4π,振幅A=3,初相是-4π.(4)令21x-4π=2π+kπ,解得x=23π+2kπ,k∈Z ,即函数的对称轴是直线x=23π+2kπ(k∈Z ).令21x-4π=kπ,解得x=2kπ+2π,k∈Z , 即对称中心为(2π+2kπ,0)(k∈Z ).令-2π+2kπ≤21x-4π≤2π+2kπ,解得-2π+4kπ≤x≤23π+4kπ,k∈Z .即函数的单调递增区间为[-2π+4kπ,23π+4kπ](k∈Z ).绿色通道:(1)对于函数y=Asin (ωx+φ),应明确A 、ω决定“形变”,φ决定“位变”,A 影响值域,ω影响周期,A 、ω、φ影响单调性.当选用“伸缩在前,平移在后”的变换顺序时,一定注意针对x 的变化,向左或向右平移||ωϕ个单位; (2)画y=Asin (ωx+φ)的图像常用五点法和变换法;(3)求三角函数周期的一般方法是:先将函数转化为y=Asin(ωx+φ)的形式,再利用公式T=ωπ2进行求周期,有时还利用图像法求周期;④对于函数y=Asin (ωx+φ)+B 的单调性、对称性的研究,运用整体策略处理,把ωx+φ看作一个整体,化归为正弦函数y=sinx 来讨论,问题自然就迎刃而解. 变式训练1(2006福建高考卷,理9)已知函数f(x)=2sinωx(ω>0)在区间[-3π,4π]上的最小值是-2,则ω的最小值等于( )A.32B.23C.2D.3 思路解析:方法一:根据函数f(x)=2sinωx(ω>0)图像的大致位置,得4T ≤3π,又T=ωπ2,所以有2ω≥3,即ω≥23.方法二:(代入验证法)当ω=32时,f(x)=2sin(32x),画图像得在区间[-3π, 4π]上的最小值是f(-3π)=2sin(94π-)>-2,故排除A ;当ω=23时,f(x)=2sin(23x),画图像得在区间[-3π, 4π]上的最小值是f(-3π)=-2,故排除C 、D.答案:B变式训练2(2005天津高考卷,文8)要得到函数y=2cosx 的图像,只需将函数y=2sin(2x+4π)的图像上所有的点的( ) A.横坐标缩短到原来的21倍(纵坐标不变),再向左平行移动8π个单位长度B.横坐标缩短到原来的21倍(纵坐标不变),再向右平行移动4π个单位长度C.横坐标伸长到原来的2倍(纵坐标不变),再向左平行移动4π个单位长度D.横坐标伸长到原来的2倍(纵坐标不变),再向右平行移动8π个单位长度思路解析:由于y=2cosx=2(x+2π),则将函数y=2sin(2x+4π)的图像上所有的点的横坐标伸长到原来的2倍(纵坐标不变),得到函数y=2sin (x+4π)的图像;再将函数y=2sin (x+4π)的图像向左平行移动4π个单位长度得到函数y=2sin(x+2π),即函数y=2cosx 的图像.答案:C变式训练3(2005全国高考卷Ⅰ,理17)设函数f(x)=sin(2x+φ)(-π<φ<0),y=f(x)图像的一条对称轴是直线x=8π. (1)求φ;(2)求函数y=f(x)的单调增区间;(3)画出函数y=f(x)在区间[0,π]上的图像.思路分析:正弦型函数y=Asin(ωx+φ)的图像与其对称轴交点的纵坐标是函数的最值. 解:(1)∵x=8π是函数y=f(x)的图像的对称轴, ∴sin(2×8π+φ)=±1. ∴4π+φ=kπ+2π,k∈Z . ∴φ=kπ+4π,k∈Z .∵-π<φ<0,∴-π<kπ+4π<0. ∴45-<k <41-.∴k=-1. ∴φ=-43π. (2)由(1)知y=sin(2x-43π). 令2kπ-2π≤2x -43π≤2kπ+2π,k∈Z , ∴kπ+8π≤x≤kπ+85π,k∈Z ,即函数y=sin(2x-43π)的单调递增区间是[kπ+8π,kπ+85π](k∈Z ). (3)由y=sin(2x-43π)知: x 08π83π 85π 87π πy22--1 0 1 022-故函数y=f(x)在区间[0,π]上的图像如图1-7-2所示.图1-7-2例2(2005福建高考卷,理6)函数y=sin(ωx+φ)(x∈R ,ω>0,0≤φ<2π)的部分图像如图1-7-3,则( )图1-7-3A.ω=2π,φ=4π B.ω=3π,φ=6π C.ω=4π,φ=4π D.ω=4π,φ=45π思路解析:由图像得T=4(3-1),∴T=8.∴ω=T π2=4π.点(1,1)在函数图像上,则有1=sin(4π+φ),0≤φ<2π.∴4π+φ=2π.∴φ=4π. 答案:C绿色通道:已知f(x)=Asin(ωx+φ)(A>0,ω>0)的一段图像,求其表达式,其步骤: (1)求A :图像最上方的点的纵坐标为A 的值,或图像最下方的点的纵坐标的相反数为A 的值.(2)求ω:一般由图像可知周期T,如相邻两个对称中心(或对称轴)的距离为半个周期.再由T=ωπ2求出ω.(3)求φ:确定φ时,若能求出离原点最近的右侧图像上升(或下降)的零点的横坐标x 0,则令ωx+φ=0(或ωx+φ=π)即可求出φ.有时还可利用已知点(例如最高点或最低点)确定ω与φ.若对A 、ω的符号或对的范围有所要求,则可利用诱导公式通过变换使其符合要求. 变式训练已知函数y=Asin(ωx+φ)(A >0,ω>0,|φ|<2π)的图像的一个最高点为(2,22),由这个最高点到相邻最低点的图像与x 轴的交点为(6,0),试求这个函数的解析式.思路分析:抓住函数y=Asin(ωx+φ)的图像的特征是解本题的关键.解:已知图像最高点为(2,22),∴A=22.又根据题意知从最高点到相邻最低点的图像与x 轴的交点为(6,0),∴4T =6-2=4,即T=16.∴ω=T π2=8π.将y=22sin(8πx+φ)代入最高点坐标,得22=22sin(8π×2+φ).∴sin(4π+φ)=1.∵|φ|<2π,∴φ=4π.∴函数的解析式为y=22sin(8πx+4π). 问题探究问题试探讨如何求三角函数的周期?导思:思路1:从定义上分析;思路2:从周期函数的图像上分析;思路3:利用常见的结论.探究:确定三角函数的周期有如下方法:(1)定义法:根据周期函数的定义求周期.关键是找到一个实数T ,使得对任意实数x ,总有f(x+T)=f(x)成立. 例如:求函数y=2sin(2x -6π)的周期. 解:f(x+4π)=2sin[21(x+4π)-6π]=2sin(2x +2π-6π)=2sin(2x -6π)=f(x),∴y=2sin(2x -6π)的周期是4π.定义法是求周期的通性通法,带有一定的普遍性.(2)图像法:画出三角函数的图像,如果图像每隔“一段”就重复出现,则这一段就是一个周期.这种求函数周期的方法称为图像法. 例如:求函数y=|sin2x|的周期.解:画函数y=|sin2x|的图像,如图1-7-4所示.图1-7-4函数y=|sin2x|的图像每隔2π就重复出现,则函数y=|sin2x|的周期是2π. 利用图像法可得如下结论:(A >0,ω>0)①函数y=|Asin(ωx+φ)|的周期是ωπ; ②函数y=|Acos(ωx+φ)|的周期是ωπ;③函数y=|Atan(ωx+φ)|的周期是ωπ.(3)公式法:利用常见的公式(结论),求得三角函数的周期.这种求三角函数周期的方法称为公式法.常见的结论:①一般地,函数y=Asin(ωx+φ)(其中A 、ω、φ为常数,A≠0,ω>0)的周期T=ωπ.如y=2sin(2x+65π)的周期T=2π=π. ②一般地,函数y=Acos(ωx+φ)(其中A 、ω、φ为常数,A≠0,ω>0)的周期T=ωπ2.如y=-2cos(3x+6π)周期T=3π.③一般地,函数y=Atan(ωx+φ)(其中A 、ω、φ为常数,A≠0,ω>0)的周期T=ωπ2.如y=-2tan(4x+6π)周期T=4π. 这三种求周期的方法在高考试题中都经常出现,应引起我们的重视.。

2019-2020高中北师版数学必修4第1章 §8 第1课时 函数y=Asin(ωx+φ)的图像课件PPT

2019-2020高中北师版数学必修4第1章 §8 第1课时 函数y=Asin(ωx+φ)的图像课件PPT
作是把 y=sin x 的图像上所有点的横坐标缩短(当 ω>1 时)或伸长(当 0 1
<ω<1 时)到原来的__ω__倍(纵坐标不变)而得到的.
栏目导航
思考 3:对于同一个 x,函数 y=2sin x,y=sin x 和 y=12sin x 的函 数值有何关系?
[提示] 对于同一个 x,y=2sin x 的函数值是 y=sin x 的函数值的 2 倍,而 y=12sin x 的函数值是 y=sin x 的函数值的12.
栏目导航
1.函数 y=2sin2x+π5的周期、振幅依次是(
)
A.4π,-2
B.4π,2
C.π,2
D.π,-2
[答案] B
栏目导航
2.(2019·全国卷Ⅰ)关于函数 f(x)=sin|x|+|sin x|有下述四个结论:
①f(x)是偶函数;②f(x)在区间π2,π单调递增;③f(x)在[ -π,π] 有 4 个零点;④f(x)的最大值为 2.
如图所示,由图可知函数 f(x)在[-π, π]只有 3 个零点,故③不正确;∵y=sin|x| 与 y=|sin x|的最大值都为 1 且可以同时取到, ∴f(x)可以取到最大值 2,故④正确.综上, 正确结论的序号是①④.故选 C.
栏目导航
法二:∵f(-x)=sin|-x|+|sin(-x)|=sin|x|+|sin x|=f(x),∴f(x) 为偶函数,故①正确,排除 B;当π2<x<π 时,f(x)=sin x+sin x=2sin x,∴f(x)在π2,π单调递减,故②不正确,排除 A;∵y=sin |x|与 y= |sin x|的最大值都为 1 且可以同时取到,∴f(x)的最大值为 2,故④正 确.故选 C.]
参数
作用

2017-2018学年高中数学北师大版必修四课件:第一章 §8 第1课时 函数y=Asin(ωx+φ)的图像的画法

2017-2018学年高中数学北师大版必修四课件:第一章 §8 第1课时 函数y=Asin(ωx+φ)的图像的画法

从而56π+φ=π,即 φ=π6. 又点(0,1)在函数图像上,所以 Asin π6=1,得 A=2. 故函数 f(x)的解析式为 f(x)=2sin2x+π6.
由函数图像求解析式的一般解题方法是: (1)先根据图像的最高点和最低点,找到振幅,即求 A 的值;
(2)根据所给关键点确定函数周期,再利用周期公式 T=求出ω的值;
答案:56π
6.已知 f(x)=1+ 2sin(2x-π4),画出 f(x)在 x∈-π2,π2 上的图像.
解 ∵-π2≤x≤π2,∴-π≤2x≤π∴-54π≤2x-π4≤34π (1)列表如下:
x
-π2 -38π -π8
π 8
3π 8
π 2
2x-π4 -54 -π -π2 0
π 2
y=sin x 的图像 各点的纵坐标伸长为原来的 2 倍 y=2sin x 横坐标不变
向右平移 的图象
π 6
个单位长度 y=2sin
x-π 6
的图像
各点的
1 横坐标缩短为原来的 2
y=2sin 2x-π6 的图像 向上平移 1 个
纵坐标不变
单位长度 y=2sin 2x-π6 +1 的图像.
1.利用图像变换的方法画函数的图像,注意左右平移 变换:一是平移的方向,可用“左加右减”来总结;二是平移 量的确定.找自变量本身的变换量是关键.
解析:选 A 变换后的三角函数为 y=cos(x+1),结合 四个选项可得 A 选项正确.
3.(湖南高考改编)已知函数 f(x)=Asin(ωx+φ) x∈R,ω>0,0<φ<π2的部分图像如图所示.求函数 f(x) 的解析式.
[尝试解答] 由题设图像知, 周期 T=21112π-51π2=π,所以 ω=2Tπ=2, 因为点51π2,0在函数图像上, 所以 Asin2×51π2+φ=0,即 sin56π+φ=0. 又因为 0<φ<π2,所以56π<56π+φ<43π.

北师版数学高一北师大版必修4学案 1.8 函数 y=Asin(ωxφ) 图像(二)

北师版数学高一北师大版必修4学案 1.8 函数 y=Asin(ωxφ) 图像(二)

明目标、知重点 1.会用“五点法”画函数y =A sin(ωx +φ)的图像.2.能根据y =A sin(ωx +φ)的部分图像,确定其解析式.3.了解y =A sin(ωx +φ)的图像的物理意义,能指出简谐运动中的振幅、周期、相位、初相.1.简谐振动简谐振动y =A sin(ωx +φ)(A >0,ω>0)中,A 叫作振幅,周期T =2πω,频率f =ω2π,相位是ωx+φ,初相是φ.2.函数y =A sin(ωx +φ)(A >0,ω>0)的性质如下 定义域 R 值域 [-A ,A ] 周期性T =2πω奇偶性φ=k π (k ∈Z )时是奇函数;φ=π2+k π (k ∈Z )时是偶函数;当φ≠k π2(k ∈Z )时是非奇非偶函数.单调性单调增区间可由2k π-π2≤ωx +φ≤2k π+π2 (k ∈Z )得到,单调减区间可由2k π+π2≤ωx +φ≤2k π+3π2(k ∈Z )得到.[情境导学] 做简谐运动的单摆对平衡位置的位移y 与时间x 的关系、交流电的电流y 与时间x 的关系等都是形如y =A sin(ωx +φ)的函数,这种函数我们称为正弦型函数,那么怎样作正弦型函数的图像呢?正弦型函数的性质又是怎样的呢?探究点一 “五点法”作函数y =A sin(ωx +φ) (A >0,ω>0)的图像思考1 物理中,简谐运动的图像就是函数y =A sin(ωx +φ) (A >0,ω>0),x ∈[0,+∞)的图像,其中A >0,ω>0.描述简谐运动的物理量有振幅、周期、频率、相位和初相等,你知道这些物理量分别是指哪些数据以及各自的含义吗?答 A 是振幅,它是指物体离开平衡位置的最大距离;T =2πω是周期,它是指物体往复运动一次所需要的时间;f =1T =ω2π是频率,它是指物体在单位时间内往复运动的次数;ωx +φ称为相位;φ称为初相,即x =0时的相位.思考2 利用“五点法”作出函数y =A sin(ωx +φ) (A >0,ω>0)在一个周期上的图像,要经过“取值、列表、描点、连线”这四个步骤.请完成下面的表格 ωx +φ 0 π2 π 32π 2π x -φω -φω+π2ω-φω+πω -φω+3π2ω -φω+2πωyA-A所以,描点时的五个关键点的坐标依次是⎝⎛⎭⎫-φω,0,⎝⎛⎭⎫-φω+π2ω,A ,⎝⎛⎭⎫-φω+πω,0,⎝⎛⎭⎫-φω+3π2ω,-A ,⎝⎛⎭⎫-φω+2πω,0.例1 画出函数y =2sin ⎝⎛⎭⎫13x -π6的简图.解 方法一 先把正弦曲线上所有点向右平行移动π6个单位长度,得到y =sin ⎝⎛⎭⎫x -π6的图像;再把后者所有点的横坐标伸长到原来的3倍(纵坐标不变),得到y =sin ⎝⎛⎭⎫13x -π6的图像;再把所得图像上所有点的纵坐标伸长到原来的2倍(横坐标不变)而得到函数y =2sin ⎝⎛⎭⎫13x -π6的图像,如图所示.方法二 下面利用“五点法”画函数y =2sin ⎝⎛⎭⎫13x -π6在一个周期T =2π13=6π内的图像. 令X =13x -π6,则x =3⎝⎛⎭⎫X +π6.列表:X 0 π2 π 3π2 2π x π2 2π 7π2 5π 13π2 y2-2描点画图(如图所示):反思与感悟 “五点法”作图时,五点的确定,应先令ωx +φ分别为0、π2、π、3π2、2π,解出x ,从而确定这五点.跟踪训练1 如图是某简谐运动的图像,试根据图像回答下列问题:(1)这个简谐运动的振幅、周期与频率各是多少?(2)从O 点算起,到曲线上的哪一点,表示完成了一次往复运动?如从A 点算起呢? (3)写出这个简谐运动的函数表达式.解 (1)从图像上可以看到,这个简谐运动的振幅为2 cm ;周期为0.8 s ;频率为54.(2)如果从O 点算起,到曲线上的D 点,表示完成了一次往复运动;如果从A 点算起,则到曲线上的E 点,表示完成了一次往复运动. (3)设这个简谐运动的函数表达式为y =A sin(ωx +φ),x ∈[0,+∞),那么,A =2; 由2πω=0.8,得ω=5π2; 由图像知初相φ=0. 于是所求函数表达式是 y =2sin5π2x ,x ∈[0,+∞). 探究点二 由函数y =A sin(ωx +φ)的部分图像求三角函数的解析式 例2 如图为y =A sin(ωx +φ)的图像的一段,求其解析式.解 由图像知A =3,以M ⎝⎛⎭⎫π3,0为第一个零点,P ⎝⎛⎭⎫5π6,0为第二个零点. 列方程组⎩⎨⎧ω·π3+φ=0,ω·5π6+φ=π,解之得⎩⎪⎨⎪⎧ω=2,φ=-2π3.∴所求解析式为y =3sin ⎝⎛⎭⎫2x -2π3. 反思与感悟 (1)在由图像求解析式时,“第一个零点”的确定是关键,一般地可将所给一段图像左、右扩展找离原点最近且穿过x 轴上升的即为“第一零点”(x 1,0).从左到右依次为第二、三、四、五点,分别有ωx 2+φ=π2,ωx 3+φ=π,ωx 4+φ=32π,ωx 5+φ=2π.(2)由图像确定系数ω,φ通常采用两种方法:①如果图像明确指出了周期的大小和初始值x 1(第一个零点的横坐标)或第二,第三(或第四,第五)点横坐标,可以直接解出ω和φ,或由方程(组)求出.②代入点的坐标,通过解最简单的三角函数方程,再结合图像确定ω和φ. (3)A 的求法一般由图像观察法或代入点的坐标通过解A 的方程求出. 跟踪训练2 如图,函数y =A sin(ωx +φ)(A >0,ω>0,|φ|<π)的图像,根据图中条件,写出该函数的解析式. 解 由图像知A =5. 由T 2=5π2-π=3π2, 得T =3π,∴ω=2πT =23.∴y =5sin(23x +φ).下面用两种方法求φ: 方法一 (单调性法)∵点(π,0)在递减的那段曲线上, ∴2π3+φ∈[π2+2k π,32π+2k π](k ∈Z ). 由sin(2π3+φ)=0,得2π3+φ=2k π+π(k ∈Z ),∴φ=2k π+π3(k ∈Z ).∵|φ|<π,∴φ=π3.方法二 (最值点法)将最高点坐标(π4,5)代入y =5sin(23x +φ),得5sin(π6+φ)=5,∴π6+φ=2k π+π2(k ∈Z ), ∴φ=2k π+π3(k ∈Z ).∵|φ|<π,∴φ=π3.∴该函数解析式为y =5sin(23x +π3).探究点三 函数f (x )=A sin(ωx +φ)的奇偶性 思考1 探求函数f (x )=A sin(ωx +φ)的奇偶性.答 ①函数f (x )=A sin(ωx +φ)是奇函数⇔f (x )=A sin(ωx +φ)的图像关于原点对称⇔f (0)=0⇔φ=k π(k ∈Z ).②函数f (x )=A sin(ωx +φ)是偶函数⇔f (x )=A sin(ωx +φ)的图像关于y 轴对称⇔f (0)=A 或f (0)=-A ⇔φ=k π+π2(k ∈Z ).思考2 探求函数f (x )=A sin(ωx +φ)图像的对称性.答 ①函数f (x )=A sin(ωx +φ)的图像关于点(x 0,0)中心对称当且仅当f (x 0)=0.②函数f (x )=A sin(ωx +φ)的图像关于直线x =x 0轴对称当且仅当f (x 0)=A 或f (x 0)=-A . ③对于函数y =A sin(ωx +φ)(A >0,ω>0)的图像,相邻的两个对称中心或两条对称轴相距半个周期;相邻的一个对称中心和一条对称轴相距周期的四分之一. 一般地,函数y =sin(ωx +φ)(ω≠0)的对称中心是⎝⎛⎭⎫k π-φω,0,k ∈Z ,对称轴方程是x =k π+π2-φω,k ∈Z . 例3 已知函数f (x )=a 2sin 2x +(a -2)cos 2x 的图像关于点⎝⎛⎭⎫π2,0中心对称,求a 的值. 解 ∵函数f (x )=a 2sin 2x +(a -2)cos 2x 的图像关于⎝⎛⎭⎫π2,0中心对称,∴f ⎝⎛⎭⎫π2=2-a =0,∴a =2.反思与感悟 对于函数f (x )=A sin(ωx +φ)而言,函数图像与x 轴的交点就是图像的对称中心,注意以下充要条件的应用:函数f (x )=A sin(ωx +φ)关于点(x 0,0)中心对称⇔f (x 0)=0.跟踪训练3 已知函数f (x )=a 2sin 2x +(a -2)cos 2x 的图像关于直线x =-π8对称,求a 的值.解 根据函数图像关于直线x =-π8对称,∴f ⎝⎛⎭⎫-π8+x =f ⎝⎛⎭⎫-π8-x 对一切x ∈R 恒成立. 取x =π8得f (0)=f ⎝⎛⎭⎫-π4. 代入得a -2=-a 2,解得a =1或a =-2.1.要得到函数y =sin ⎝⎛⎭⎫-12x 的图像,只需将函数y =sin ⎝⎛⎭⎫-12x +π6的图像( ) A .向左平移π3个单位B .向右平移π3个单位C .向左平移π6个单位D .向右平移π6个单位答案 A解析 提取x 的系数-12得y =sin ⎣⎡⎦⎤-12⎝⎛⎭⎫x -π3,于是可得,向左平移π3个单位. 2.已知函数f (x )=sin ⎝⎛⎭⎫ωx +π3(ω>0)的最小正周期为π,则该函数的图像( ) A .关于点⎝⎛⎭⎫π3,0对称 B .关于直线x =π4对称C .关于点⎝⎛⎭⎫π4,0对称D .关于直线x =π3对称答案 A3.函数y =sin(ωx +φ)(x ∈R ,ω>0,0≤φ<2π)的部分图像如图,则( )A .ω=π2,φ=π4B .ω=π3,φ=π6C .ω=π4,φ=π4D .ω=π4,φ=5π4答案 C解析 由所给图像可知,T4=2,∴T =8.又∵T =2πω,∴ω=π4.∵图像在x =1处取得最高点, ∴π4+φ=π2+2k π(k ∈Z ), ∴φ=2k π+π4(k ∈Z ),∵0≤φ<2π,∴φ=π4.4.作出y =3sin ⎝⎛⎭⎫12x -π4一个周期上的图像. 解 (1)列表:x π2 32π 52π 72π 92π 12x -π4 0 π2 π 32π 2π 3sin ⎝⎛⎭⎫12x -π43-3[呈重点、现规律]1.由函数y =A sin(ωx +φ)的部分图像确定解析式关键在于确定参数A ,ω,φ的值. (1)一般可由图像上的最大值、最小值来确定|A |.(2)因为T =2πω,所以往往通过求周期T 来确定ω,可通过已知曲线与x 轴的交点从而确定T ,即相邻的最高点与最低点之间的距离为T2;相邻的两个最高点(或最低点)之间的距离为T .(3)从寻找“五点法”中的第一个零点⎝⎛⎭⎫-φω,0(也叫初始点)作为突破口.以y =A sin(ωx +φ)(A >0,ω>0)为例,位于单调递增区间上离y 轴最近的那个零点最适合作为“五点”中的第一个点.2.在研究y =A sin(ωx +φ)(A >0,ω>0)的性质时,注意采用整体代换的思想.例如,它在ωx +φ=π2+2k π (k ∈Z )时取得最大值,在ωx +φ=3π2+2k π (k ∈Z )时取得最小值.一、基础过关1.已知简谐运动f (x )=2sin ⎝⎛⎭⎫π3x +φ(|φ|<π2)的图像经过点(0,1),则该简谐运动的最小正周期T 和初相φ分别为( ) A .T =6,φ=π6B .T =6,φ=π3C .T =6π,φ=π6D .T =6π,φ=π3答案 A解析 T =2πω=2ππ3=6,代入(0,1)点得sin φ=12.∵-π2<φ<π2,∴φ=π6.2.已知a 是实数,则函数f (x )=1+a sin ax 的图像不可能是( )答案 D解析 当a =0时f (x )=1,C 符合,当0<|a |<1时T >2π,且最小值为正数,A 符合, 当|a |>1时T <2π,且最小值为负数,B 符合.D 项中,由振幅得a >1,所以T <2π,而由图像知T >2π,矛盾,故选D. 3.若函数y =sin(ωx +φ)(ω>0)的部分图像如图,则ω等于 ( ) A .5 B .4 C .3 D .2 答案 B解析 根据图像确定函数的最小正周期,再利用T =2πω求ω. 设函数的最小正周期为T ,由函数图像可知T 2=⎝⎛⎭⎫x 0+π4-x 0=π4, 所以T =π2.又因为T =2πω,可解得ω=4.4.下列函数中,图像的一部分如下图所示的是( )A .y =sin ⎝⎛⎭⎫x +π6B .y =sin ⎝⎛⎭⎫2x -π6C .y =cos ⎝⎛⎭⎫4x -π3D .y =cos ⎝⎛⎭⎫2x -π6 答案 D解析 由图知T =4×⎝⎛⎭⎫π12+π6=π,∴ω=2πT=2.又x =π12时,y =1,经验证,可得D 项解析式符合题目要求.5.函数y =12sin ⎝⎛⎭⎫2x -π6与y 轴最近的对称轴方程是 . 答案 x =-π6解析 令2x -π6=k π+π2(k ∈Z ),∴x =k π2+π3(k ∈Z ).由k =0,得x =π3;由k =-1,得x =-π6.6.函数y =cos(2x +φ)(-π≤φ<π)的图像向右平移π2个单位后,与函数y =sin ⎝⎛⎭⎫2x +π3的图像重合,则φ= . 答案5π6解析 函数y =cos(2x +φ)向右平移π2个单位,得到y =sin ⎝⎛⎭⎫2x +π3,即y =sin ⎝⎛⎭⎫2x +π3向左平移π2个单位得到函数y =cos(2x +φ),y =sin ⎝⎛⎭⎫2x +π3向左平移π2个单位,得y =sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π2+π3=sin ⎝⎛⎭⎫2x +π+π3=-sin ⎝⎛⎭⎫2x +π3=cos ⎝⎛⎭⎫π2+2x +π3=cos ⎝⎛⎭⎫2x +5π6,即φ=5π6. 7.已知曲线y =A sin(ωx +φ) (A >0,ω>0)上的一个最高点的坐标为⎝⎛⎭⎫π8,2,此点到相邻最低点间的曲线与x 轴交于点⎝⎛⎭⎫38π,0,若φ∈⎝⎛⎭⎫-π2,π2. (1)试求这条曲线的函数表达式;(2)用“五点法”画出(1)中函数在[0,π]上的图像. 解 (1)由题意知A =2,T =4×⎝⎛⎭⎫38π-π8=π, ω=2πT=2,∴y =2sin(2x +φ).又∵sin ⎝⎛⎭⎫π8×2+φ=1,∴π4+φ=2k π+π2,k ∈Z , ∴φ=2k π+π4,k ∈Z ,又∵φ∈⎝⎛⎭⎫-π2,π2, ∴φ=π4.∴y =2sin ⎝⎛⎭⎫2x +π4.(2)列出x 、y 的对应值表:x -π8 π8 38π 58π 78π 2x +π40 π2 π 32π 2π y2-2描点、连线,如图所示:二、能力提升8.右图是函数y =A sin(ωx +φ)(x ∈R )在区间[-π6,5π6]上的图像.为了得到这个函数的图像,只要将y =sin x (x ∈R )的图像上所有的点( ) A .向左平移π3个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变B .向左平移π3个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变C .向左平移π6个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变D .向左平移π6个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变答案 A解析 由图像可知A =1,T =5π6-(-π6)=π,∴ω=2πT =2.∵图像过点(π3,0),∴sin(2π3+φ)=0,∴2π3+φ=π+2k π,k ∈Z ,∴φ=π3+2k π,k ∈Z .∴y =sin(2x +π3+2k π)=sin(2x +π3).故将函数y =sin x 先向左平移π3个单位长度后,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变,可得原函数的图像.9.函数f (x )=2sin(ωx +φ)(ω>0,-π2<φ<π2)的部分图像如图所示,则ω,φ的值分别是( )A .2,-π3B .2,-π6C .4,-π6D .4,π3答案 A解析 34T =5π12-⎝⎛⎭⎫-π3,T =π,∴ω=2, ∴2×5π12+φ=2k π+π2,k ∈Z ,∴φ=2k π-π3,k ∈Z ,又φ∈⎝⎛⎭⎫-π2,π2,∴φ=-π3,选A. 10.关于f (x )=4sin ⎝⎛⎭⎫2x +π3 (x ∈R ),有下列命题: ①由f (x 1)=f (x 2)=0可得x 1-x 2是π的整数倍; ②y =f (x )的表达式可改写成y =4cos ⎝⎛⎭⎫2x -π6; ③y =f (x )的图像关于⎝⎛⎭⎫-π6,0对称; ④y =f (x )的图像关于x =-π6对称.其中正确命题的序号为 . 答案 ②③解析 对于①,由f (x )=0, 可得2x +π3=k π (k ∈Z ).∴x =k 2π-π6,∴x 1-x 2是π2的整数倍,∴①错;对于②,f (x )=4sin ⎝⎛⎭⎫2x +π3利用公式得:f (x )=4cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫2x +π3=4cos ⎝⎛⎭⎫2x -π6, ∴②对;对于③,f (x )=4sin ⎝⎛⎭⎫2x +π3的对称中心满足2x +π3=k π,k ∈Z ,∴x =k 2π-π6,k ∈Z . ∴⎝⎛⎭⎫-π6,0是函数y =f (x )的一个对称中心,∴③对; 对于④,函数y =f (x )的对称轴满足2x +π3=π2+k π,k ∈Z ,∴x =π12+k π2,k ∈Z .∴④错.11.函数y =A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的最小值为-2,其图像相邻的最高点与最低点横坐标之差是3π,又图像过点(0,1),求函数的解析式. 解 由于最小值为-2,所以A =2. 又相邻的最高点与最低点横坐标之差为3π. 故T =2×3π=6π,从而ω=2πT =2π6π=13, y =2sin ⎝⎛⎭⎫13x +φ.又图像过点(0,1),所以sin φ=12.因为|φ|<π2,所以φ=π6.故所求解析式为y =2sin ⎝⎛⎭⎫13x +π6.12.已知函数y =A sin(ωx +φ),(A >0,ω>0)的图像过点P (π12,0),图像与P 点最近的一个最高点坐标为(π3,5).(1)求函数解析式; (2)指出函数的增区间; (3)求使y ≤0的x 的取值范围.解 (1)∵图像最高点坐标为(π3,5),∴A =5.∵T 4=π3-π12=π4,∴T =π. ∴ω=2πT =2,∴y =5sin(2x +φ).代入点(π3,5),得sin(23π+φ)=1.∴23π+φ=2k π+π2,k ∈Z .令k =0,则φ=-π6,∴y =5sin(2x -π6).(2)∵函数的增区间满足2k π-π2≤2x -π6≤2k π+π2(k ∈Z ),∴2k π-π3≤2x ≤2k π+2π3(k ∈Z ).∴k π-π6≤x ≤k π+π3(k ∈Z ).∴增区间为[k π-π6,k π+π3](k ∈Z ).(3)∵5sin(2x -π6)≤0,∴2k π-π≤2x -π6≤2k π(k ∈Z ),∴k π-512π≤x ≤k π+π12(k ∈Z ).∴x 的取值范围为{x |k π-512π≤x ≤k π+π12}(k ∈Z ). 三、探究与拓展13.已知函数f (x )=sin(ωx +φ) (ω>0,0≤φ≤π)是R 上的偶函数,其图像关于点M ⎝⎛⎭⎫3π4,0对称,且在区间⎣⎡⎦⎤0,π2上是单调函数,求φ和ω的值. 解 ∵f (x )在R 上是偶函数,∴当x =0时,f (x )取得最大值或最小值. 即sin φ=±1,得φ=k π+π2,k ∈Z ,又0≤φ≤π,∴φ=π2.由图像关于点M ⎝⎛⎭⎫3π4,0对称可知, sin ⎝⎛⎭⎫3π4ω+π2=0,解得ω=43k -23,k ∈Z . 又f (x )在⎣⎡⎦⎤0,π2上是单调函数, ∴T ≥π,即2πω≥π,∴ω≤2,又ω>0,2 3;当k=2时,ω=2.∴当k=1时,ω=。

高中数学北师大版必修4学案1.8.1 函数y=Asin(ωx+φ)的图像 Word版含解析

高中数学北师大版必修4学案1.8.1 函数y=Asin(ωx+φ)的图像 Word版含解析

§函数=(ω+φ)的图像与性质第课时函数=(ω+φ)的图像.了解振幅、初相、相位、频率等有关概念,会用“五点法”画出函数=(ω+φ)的图像..理解并掌握函数=(ω+φ)图像的平移与伸缩变换.(重点).掌握,ω,φ对图像形状的影响.(难点)[基础·初探]教材整理函数= (ω+φ)+(>,ω>)的图像阅读教材~“思考交流”以上部分,完成下列问题..参数,φ,ω,的作用()左右平移(相位变换):对于函数=(+φ)(φ≠)的图像,可以看作是把=的图像上所有的点向左(当φ>时)或向右(当φ<时)平行移动φ个单位长度得到的.()上下平移:对于函数=+的图像,可以看作是把=的图像上所有点向上(当>时)或向下(当<时)平行移动个单位长度得到的..伸缩变换()振幅变换:对于函数=(>,≠)的图像可以看作是把=的图像上所有点的纵坐标伸长(当>时)或缩短(当<<时)到原来的倍(横坐标不变)而得到的.()周期变换:对于函数=ω(ω>,ω≠)的图像,可以看作是把=的图像上所有点的横坐标缩短(当ω>时)或伸长(当<ω<时)到原来的倍(纵坐标不变)而得到的.判断(正确的打“√”,错误的打“×”)()的大小决定了函数的振幅.( )()ω的大小与函数的周期有关.( )()φ的大小决定了函数与=的相对位置.( )()的大小决定了函数图像偏离平衡位置的幅度.( )【解析】由,ω,φ,的几何意义知全对.【答案】()√()√()√()√[小组合作型]作出函数=在一个周期内的图像.【精彩点拨】列表时用整体代换的思想,把ω+φ看作一个整体,再用五点列表.【自主解答】用“五点法”作图.列表:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

417【导学案】函数y=Asin (ωx+φ的图像与性质(三)
班级 姓名 组号 编写人:党显武 审核人:王松涛
【学习目标】
1、会用五点法做函数sin()(0,0)y A x A ωϕω=+>>一个周期上的图像;
2、掌握由函数sin y x =的图像得到函数sin()(,0)y A x b A ωϕω=++>的图像的两种方法,体会这两种方法的区别与联系.
【学习重点】由函数sin y x =的图像变换得到函数sin()(,0)y A x b A ωϕω=++>的图像的方法和过程;
【学习难点】区分sin()(,0)y A x b A ωϕω=++>的图像变换的两种路径
【学习过程】一、自学预习(把握基础)
(一)阅读课本第50-52“练习”以上内容总结归纳由函数sin y x =的图像得到3sin(2)16y x π
=++的图像的过程并思考每步变换发生了怎样自变量或函数值的替换?
sin y x = sin 2y x =
sin 2+6
y x π=() 3sin 2+6
y x π=() 3sin 2++6
y x π=()1 (二)由函数sin y x =的图像得到3sin(2)16
y x π=++的图像可否经历下列变换过程?每一步由应怎样进行变换?
sin y x = sin +6y x π
=() sin 2+6
y x π=() 3sin 2+6y x π=() 3sin 2++6
y x π=()1 (三)总结归纳由sin y x =的图像得到sin()(,0)y A x b A ωϕω=++>的图像的过程并思考每步变换发生了怎样自变量或函数值的替换?
路径一:sin y x = sin y x ω= sin +y x ωϕ=() sin +y A x ωϕ=()
sin ++y A x ωϕ=()b
路径二:sin y x = sin +y x ϕ=()
sin +y x ωϕ=()
sin +y A x ωϕ=() sin ++y A x ωϕ=()b
二、课堂探究(深化理解)
问题1:函数3sin(2)16
y x π=++的振幅为 ;初相为 ;最小正周期为 ;频率为 ;利用五点法画出一个周期区间上的简图时的五个关键点的坐标分别是
问题2、用两种变换路径表达如何由函数3sin(2)16
y x π=++的图像得到函数sin y x =的图像?
三、达标检测(巩固提高)
1作函数31sin -233
y x π=()在一个周期区间上的简图的五个关键点是 2、书53页练习第3题:(1) (2)
【我的疑惑】。

相关文档
最新文档