高中数学第一轮复习 三角函数学案
高三数学一轮复习教学案:三角函数

三角函数1.了解任意角的概念、弧度的意义、正确进行弧度与角度的换算;理解任意角的正弦、余弦、正切的定义;了解余切、正割、余割的定义;会利用单位圆中的三角函数线表示正弦、余弦、正切.2.掌握三角函数的公式(同角三角函数基本关系式、诱导公式、和、差角及倍角公式)及运用.3.能正确运用三角公式进行简单的三角函数式的化简、求值和条件等式及恒等式的证明.4.掌握正弦函数、余弦函数、正切函数的图象和性质;会用单位圆中的三角函数线画出正弦函数、正切函数的图象、并在此基础上由诱导公式画出余弦函数的图象.会用“五点法”画出正弦函数、余弦函数和)(sin ϕω+=x A y 的简图,理解ϕω、A 、的物理意义.5.会由已知三角函数值求角,并会用符号arcsinx ,arccosx ,arctanx 表示角.6.掌握正弦定理、余弦定理,并能初步运用它们解斜三角形,能利用计算器解决解三角形的计算问题.三角部分的知识是每年高考中必考的内容,近几年的高考对这部分知识的命题有如下特点:1.降低了对三角函数恒等变形的要求,加强了对三角函数图象和性质的考查.尤其是三角函数的最大值与最小值、周期.2.以小题为主.一般以选择题、填空题的形式出现,多数为基础题,难度属中档偏易.其次在解答题中多数是三角函数式的恒等变形,如运用三角公式进行化简、求值解决简单的综合题等.3.更加强调三角函数的工具性,加强了三角函数与其它知识的综合,如在解三角形、立体几何、平面解析几何中考查三角函数的知识.第1课时 任意角的三角函数一、角的概念的推广1.与角α终边相同的角的集合为 .2.与角α终边互为反向延长线的角的集合为 .3.轴线角(终边在坐标轴上的角)终边在x 轴上的角的集合为 ,终边在y 轴上的角的集合为 ,终边在坐标轴上的角的集合为 .4.象限角是指: .5.区间角是指: .6.弧度制的意义:圆周上弧长等于半径长的弧所对的圆心角的大小为1弧度的角,它将任意角的集合与实数集合之间建立了一一对应关系.7.弧度与角度互化:180º= 弧度,1º= 弧度,1弧度= ≈ º.8.弧长公式:l = ;扇形面积公式:S = .二、任意角的三角函数9.定义:设P(x, y)是角α终边上任意一点,且 |PO| =r ,则sin α= ; cos α= ;tan α= ;10.三角函数的符号与角所在象限的关系:1213的正弦线、余弦线、正切线.- + -+cos x , + + --sin x ,- + +-tan x ,x y O xy O x y O2α,2α ,3α的终边所在位置.解: ∵α是第二象限的角,∴k·360°+90°<α<k·360°+180°(k ∈Z ).(1)∵2k·360°+180°<2α<2k·360°+360°(k ∈Z ),∴2α是第三或第四象限的角,或角的终边在y 轴的非正半轴上.(2)∵k·180°+45°<2α<k·180°+90°(k ∈Z ),当k=2n (n ∈Z )时,n·360°+45°<2α<n·360°+90°;当k=2n+1(n ∈Z )时,n·360°+225°<2α<n·360°+270°.∴2α是第一或第三象限的角.(3)∵k·120°+30°<3α<k·120°+60°(k ∈Z ),当k=3n (n ∈Z )时,n·360°+30°<3α<n·360°+60°;当k=3n+1(n ∈Z )时,n·360°+150°<3α<n·360°+180°;当k=3n+2(n ∈Z )时,n·360°+270°<3α<n·360°+300°.∴3α是第一或第二或第四象限的角.变式训练1:已知α是第三象限角,问3α是哪个象限的角?解: ∵α是第三象限角,∴180°+k·360°<α<270°+k·360°(k ∈Z ),60°+k·120°<3α<90°+k·120°.①当k=3m(m ∈Z )时,可得60°+m·360°<3α<90°+m·360°(m ∈Z ).故3α的终边在第一象限.②当k=3m+1 (m ∈Z )时,可得180°+m·360°<3α<210°+m·360°(m ∈Z ).故3α的终边在第三象限.③当k=3m+2 (m ∈Z )时,可得300°+m·360°<3α<330°+m·360°(m ∈Z ).故3α的终边在第四象限.综上可知,3α是第一、第三或第四象限的角. 例2. 在单位圆中画出适合下列条件的角α的终边的范围,并由此写出角α的集合:(1)sin α≥23;(2)cos α≤21-.解:(1)作直线y=23交单位圆于A 、B 两点,连结OA 、OB ,则OA 与OB 围成的区域即为角α的终边的范围,故满足条件的角α的集合为α|2k π+3π≤α≤2k π+32π,k ∈Z .(2)作直线x=21-交单位圆于C 、D 两点,连结OC 、OD ,则OC 与OD 围成的区域(图中阴影部分)即为角α终边的范围.故满足条件的角α的集合为⎭⎬⎫⎩⎨⎧∈+≤≤+Z k k k ,342322|ππαππα.变式训练2:求下列函数的定义域:(1)y=1cos 2-x ;(2)y=lg(3-4sin 2x ).解:(1)∵2cosx-1≥0,∴cosx≥21.由三角函数线画出x 满足条件的终边范围(如图阴影所示).∴x ∈⎥⎦⎤⎢⎣⎡+-32,32ππππk k (k ∈Z ).(2)∵3-4sin 2x >0,∴sin 2x <43,∴-23<sinx <23.利用三角函数线画出x 满足条件的终边范围(如右图阴影),∴x ∈(k π-3π,k π+3π)(k ∈Z ).例3. 已知角α的终边在直线3x+4y=0上,求sin α,cos α,tan α的值.解:∵角α的终边在直线3x+4y=0上,∴在角α的终边上任取一点P(4t,-3t) (t≠0),则x=4t,y=-3t,r=5)3()4(2222=-+=+t t y x |t|,当t >0时,r=5t, sin α=5353-=-=t t r y ,cos α=5454==t t r x , tan α=4343-=-=t t x y ; 当t <0时,r=-5t,sin α=5353=--=t t r y , cos α=5454-=-=t t rx , tan α=4343-=-=t t x y . 综上可知,t >0时,sin α=53-,cos α=54,tan α=43-; t <0时,sin α=53,cos α=-54,tan α=43-.变式训练3:已知角θ的终边经过点P ()(0),sin m m m θ≠=且,试判断角θ所在的象限,并求cos tan θθ和的值.解:由题意,得0,4r m m ==≠∴= 故角θ是第二或第三象限角.当m =,r =P 的坐标为(,cos tan x y r x θθ∴======当m =,r =P 的坐标为(,cos tan x y r x θθ∴======例4. 已知一扇形中心角为α,所在圆半径为R . (1) 若α3π=,R =2cm ,求扇形的弧长及该弧所在弓形面积;(2) 若扇形周长为一定值C(C>0),当α为何值时,该扇形面积最大,并求此最大值.解:(1)设弧长为l ,弓形面积为S 弓。
《一轮复习教学案第三章三角函数解三角形第六节解三角形》优秀教案

第六节解三角形☆☆☆2021考纲考题考情☆☆☆1.正弦定理错误!=错误!=错误!=2R其中2R为△ABC外接圆直径。
变式:a=2R in A,b=2R in B,c=2R in C。
a∶b∶c=in A∶in B∶in C。
2.余弦定理a2=b2+c2-2bc co A;b2=a2+c2-2ac co B;c2=a2+b2-2ab co C。
变式:co A=错误!;co B=错误!;co C=错误!。
in2A=in2B+in2C-2in B in C co A。
3.解三角形1已知三边a,b,c。
运用余弦定理可求三角A,B,C。
2已知两边a,b及夹角C。
运用余弦定理可求第三边c。
3已知两边a,b及一边对角A。
先用正弦定理,求in B,in B=错误!。
①A为锐角时,若ab,一解。
4已知一边a及两角A,B或B,C用正弦定理,先求出一边,后求另一边。
4.三角形常用面积公式1S=错误!a·h a h a表示a边上的高。
2S=错误!ab in C=错误!ac in B=错误!bc in A=错误!。
3S=错误!ra+b+cr为内切圆半径。
微点提醒1.在一个三角形中,边和角共有6个量,已知三个量其中至少有一边就可解三角形。
2.判断三角形形状的两种思路:一是化边为角;二是化角为边,并用正弦定理余弦定理实施边、角转换。
3.当a2+b2<c2时判断三角形的形状,由co C=错误!<0,得∠C为钝角,则三角形为钝角三角形。
小|题|快|练一、走进教材1.必修510A2A2A2A20A32A2A2A a A A A A2a c a c2A2C2A2A22A2a3a2a2a2如图,两座相距60 m的建筑物AB,CD的高度分别为20 m、50 m,BD为水平面,则从建筑物AB的顶端A看建筑物CD的张角∠CAD等于________。
32021·湖北高考如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D在西偏北30°的方向上,行驶600m后到达B处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD=________ m。
高三数学一轮复习24.三角函数的性质学案

高三数学一轮复习 24.三角函数的性质学案【学习目标】1.了解周期函数与最小正周期的意义,会求一些简单三角函数的周期. 2.了解三角函数的奇偶性、单调性、对称性,并会运用这些性质解决问题. 预 习 案2. y =A sin(ωx +φ)的最小正周期T =2π|ω|. y =A tan(ωx +φ)的最小正周期T =π|ω|. 3. (1)求三角函数的最小正周期,应先化简为只含一个三角函数一次式的形式. (2)形如y =A sin(ωx +φ)形式的函数单调性,应利用复合函数单调性研究. (3)注意各性质应从图像上去认识,充分利用数形结合解决问题. 【预习自测】1.若函数y =cos(ωx -π6)(w >0)的最小正周期为π5,则w =________.2.比较下列两数的大小.(1)sin125°________sin152°;(2)cos(-π5)________cos 3π5;(3)tan(-3π5)________tan 2π5.3.(1)函数y =sin(x +π4)的单调递增区间是________ ;函数 y =sin x y =cos x y =tan x对称性对称轴x =π2+k πx =k π无 对称中心(k π,0)(π2+k π,0) (k π2,0)(2)函数y=tan(12x-π4)的单调递增区间是________ .4.若y=cos x在区间[-π,α]上为增函数,则α的取值范围是________.5.函数f(x)=sin x cos x+32cos2x的最小正周期和振幅分别是 ( )A.π,1 B.π,2、 C.2π,1 D.2π,2探究案题型一:三角函数的周期性例1. 求下列函数的周期.(1)y=2|sin(4x-π3)|; (2)y=(a sin x+cos x)2(a∈R);(3)y=2cos x sin(x+π3)-3sin2x+sin x cos x.拓展1. (1)f(x)=|sin x-cos x|的最小正周期为________.(2)若f(x)=sinωx(ω>0)在[0,1]上至少存在50个最小值点,则ω的取值范围是_____.题型二:三角函数的奇偶性例2.判断下列函数的奇偶性.(1)f(x)=cos(π2+2x)c os(π+x); (2)f(x)=x sin(5π-x) (3)f(x)=sin(2x-3)+sin(2x+3);(4)f(x)=cos x-sin x1-sin x;(5)y=sin(2x+π2);(6)y=tan(x-3π)拓展2:将函数y=sin(2x+φ)的图像沿x轴向左平移π8个单位后,得到一个偶函数的图像,则φ的一个可能取值为 ( )A.3π4B.π4C.0 D.-π4题型三:三角函数的对称性例3.(1)函数f(x)=sin(2x-π6)的对称中心为 .对称轴方程为.(2)设函数y=sin2x+a cos2x的图像关于直线x=-π6对称,a= .(3)函数y=tan(x2+π3)的图像的对称中心为__________.拓展3. (1)函数y=sin(2x+π3)的图像的对称轴方程可能是 ( )A.x=-π6B.x=-π12C.x=π6D.x=π12(2)函数y=2cos x(sin x+cos x)的图像的一个对称中心的坐标是 ( )A.(3π8,0) B.(3π8,1) C.(π8,1) D.(-π8,-1)题型四:三角函数的单调性例4 (1)求函数y=cos(-2x+π3)的单调递减区间;(2)求函数y=sin(π3-2x)的单调递减区间;(3)求y=3tan(π6-x4)的最小正周期及单调递减区间;(4)求函数y=-|sin(x+π4)|的单调递减区间.拓展4:(1)已知ω>0,函数f(x)=sin(ωx+π4)在(π2,π)上单调递减,则ω的取值范围是A.[12,54] B.[12,34] C.(0,12] D.(0,2] ( )(2)求函数f(x)=2sin x cos x-2cos2x+2的单调区间.我的学习总结:(1)我对知识的总结 .(2)我对数学思想及方法的总结。
2025版高考数学一轮总复习第4章三角函数第2节同角三角函数的基本关系与诱导公式教师用书

其次节同角三角函数的基本关系与诱导公式考试要求:1.理解同角三角函数的基本关系式:sin2α+cos2α=1,tan α.2.借助单位圆的对称性推导出±α,π±α的正弦、余弦、正切的诱导公式.一、教材概念·结论·性质重现1.同角三角函数的基本关系(1)平方关系:sin2α+cos2α=1.(2)商数关系:=tan α.(3)常见变形:sin α=±;cos α=±;(sinα±cos α)2=1±2sin αcos α;sin α=tan α·cos α.利用同角三角函数的基本关系可以实现正弦、余弦、正切值的转化,但肯定要留意确定角的终边所在的象限.“同角”有两层含义:一是角相同,二是随意一个角(在有意义的前提下).2.三角函数的诱导公式公式一二三四五六角απ+α-απ-α-α+α正弦sin α-sin α-sin αsin αcos αcos α余弦cos α-cos αcos α-cos αsin α-sin α正切tan αtan α-tan α-tan α口诀函数名不变,符号看象限函数名变更,符号看象限诱导公式的记忆口诀:“奇变偶不变,符号看象限.”其含义理解为:(1)全部诱导公式均可看作k·±α(k∈Z)和α的三角函数值之间的关系,口诀中的奇、偶指的是此处的k是奇数还是偶数,变与不变是指三角函数名称的变更.(2)结果的符号与把α当成锐角时角k·±α(k∈Z)的三角函数值的符号相同.二、基本技能·思想·活动阅历1.推断下列说法的正误,对的画“√”,错的画“×”.(1)对随意角α,sin23α+cos23α=1都成立.( √)(2)若cos(nπ-θ)=(n∈Z),则cos θ=.( ×)(3)已知sin θ=,cos θ=,其中θ∈,则m<-5或m≥3.(×) 2.若α是第四象限角,tan α=-,则sin α等于( )A.B.-C.D.-D解析:因为tan α==-,sin2α+cos2α=1,所以sinα=±.因为α是第四象限角,所以sin α=-.3.已知sin =,则cos =( )A.C.-D.-C解析:因为sin =,所以cos =cos =-sin =-.故选C.4.若α是第三象限角且cos α=-,则sin α=_______,tan α=_________.-解析:因为α是第三象限角且cos α=-,所以sin α=-=-,所以tanα==.5.已知sin α=,则·sin (α-π)·cos (2π-α)的值为_________.-解析:原式=·(-sin α)·cos (-α)=·(-sin α)·cos α=·(-sin α)·cos α=-sin2α=-.考点1 同角三角函数关系的基本应用——应用性考向1 知弦求弦、切或知切求弦(1)(2024·济南一模)已知α∈(0,π),若cosα=-,则tan α的值为( ) A.B.-C.D.-D解析:因为α∈(0,π),cos α=-,所以sin α=,则tan α=-.(2)已知3sin +sin (θ+π)=0,θ∈(-π,0),则sin θ=( )A.-B.-C.A解析:由3sin +sin (θ+π)=0,可得3cos θ=sin θ,可得tan θ=3. 而θ∈(-π,0),可得sin θ=-=-.本例(2)条件不变,求cos θ的值.解:由3sin +sin (θ+π)=0,可得3cos θ=sin θ,可得tan θ=3.而θ∈(-π,0),可得sin θ<0.又tan θ=3>0,所以cos θ<0,所以cos θ=-=-.1.利用sin 2α+cos2α=1可以实现正弦、余弦的互化,利用tanα=可以实现弦切互化.2.由一个角的随意一个三角函数值可以求出这个角的另外两个三角函数值,求值时要留意角所在的象限,以免出现符号错误.考向2 弦切互化求值(1)已知cos θ=,则sin θ·的值为( )A.B.-C.3 D.-3C解析:原式=sin θ=sin θ·=3.(2)(2024·新高考全国Ⅰ卷)若tan θ=-2,则=( )A.-B.-C.C解析:将式子进行齐次化处理,得=in θ(sin θ+cos θ)====.本例(2)条件不变,求cos2θ-sin2θ的值.解:cos2θ-sin2θ===1.1.弦化切的常见结构(1)形如“a sin2α+b sin αcos α+c cos2α”的二次式,分母看作1,利用1=sin2α+cos2α将原式转化为齐次式求值.(2)形如“次分式.2.切化弦当要化简的式子中同时出现正弦、余弦、正切时,一般利用公式tan α=,把式中的正切化为弦.考向3 sin α±cos α,sin αcos α之间的关系(1)已知sin α+cos α=,且α∈(0,π),则sin α-cos α=( )A.±B.-C.C解析:把sin α+cos α=,两边平方得(sin α+cos α)2=1+2sin αcos α=,即2sin αcos α=-<0.因为0<α<π,故sin α>0,cos α<0.所以sin α-cos α====.(2)已知sin x+cos x=,x∈(0,π),则tan x等于( )A.-C.D.-D解析:由题意可知sin x+cos x=,x∈(0,π),则(sin x+cos x)2=.因为sin2x+cos2x=1,所以2sin x cos x=-,即==-,得tan x=-或tan x=-. 当tan x=-时,sin x+cos x<0,不合题意,舍去.所以tan x=-.留意方程思想的应用:对于sin α+cos α,sin α·cos α,sin α-cos α这三个式子,利用(sin α±cos α)2=1±2sin αcos α,可以知一求二.1.已知tan θ+=4,则sin4θ+cos4θ=( )A.C.D解析:由tanθ+===4,得sin θcos θ=,所以sin4θ+cos4θ=(sin2θ+cos2θ)2-2sin2θcos2θ=1-2×=.2.若sinα+cos α=,α∈(0,π),则=( )A.B.-C.D.-B解析:因为sin α+cos α=,α∈(0,π),所以两边平方,可得1+2sin αcos α=,可得2sin αcos α=-<0,所以sin α>0,cos α<0,可得cos α-sin α=-==-=-,所以==-=-.考点2 诱导公式的应用——综合性(1)sin ·cos ·tan 的值是_________.-解析:原式=sin ·cos ·tan=··=×(-)=-.(2)(2024·北京卷)若P(cos θ,sin θ)与Q关于y轴对称,写出一个符合题意的θ值:_________.(答案不唯一)解析:因为P(cos θ,sin θ)与Q关于y轴对称,故其横坐标相反,纵坐标相等,即sin θ=sin 且cos θ=-cos ,由诱导公式sin θ=sin (π-θ),cos θ=-cos (π-θ),所以θ+=π-θ,解得θ=,则符合题意的θ值可以为.1.诱导公式的两个应用口诀(1)求值:负化正,大化小,化到锐角就终了.(2)化简:统一角,统一名,同角名少目的到.2.角的变更的通式特别角±已知角=所求角.1.下列各选项中与sin 2 022°最接近的是( )A.C.-D.-D解析:sin 2 022°=sin (1 800°+222°)=sin 222°=sin(180°+42°)=-sin 42°≈-.2.已知sin =-,则cos =( )A.C.-D.-B解析:cos =cos =-cos =-sin =.已知3cos x+4sin x=5,求tan x的值.[四字程序]读想算思求tan x的值1.同角的正弦、余弦和正切有什么关系?2.3cos x+4sin x 的最大值是多少?3.由已知条件联想点A(cosx,sin x)在哪条直线上1.求sin x和cos x.2.协助角公式1.方程思想.2.数形结合.3.转化与化归3cos x +4sinx=51.sin2x+cos2x=1,tan x=.2.3cos x +4sin x的最大值为5.3.点A(cos x,sin x)在直线3x+4y=5上1.联立3cos x+4sinx=5与sin2x+cos2x=1.2.3cos x+4sin x=5sin (x+φ)1.tan x可看作直线的斜率.2.将已知条件变为cos x+sinx=1思路参考:解方程组解:由消去cos x,整理得(5sin x-4)2=0,解得sin x=,cos x=.故tan x==.思路参考:留意到3cos x+4sin x的最大值为5,利用协助角公式推出x与协助角的关系.解:3cos x+4sin x=5=5sin (x+φ)=5,其中cos φ=,sin φ=,所以tan φ=,所以x+φ=2kπ+(k∈Z).于是tan x=tan ==.思路参考:令tan x=t,借助已知条件用t表示sin x和cos x.解:令tan x=t,即t cos x=sin x,代入3cos x+4sin x=5,得3cos x+4t cos x=5,所以cos x=,sin x=.再代入sin2x+cos2x=1,得+=1,解得t=,即tan x=.思路参考:设P(m,n)为角x终边上随意一点,r=,利用三角函数的定义求解.解:设P(m,n)为角x终边上随意一点,点P到原点O的距离为r,则r=.把sin x=,cos x=代入已知等式得3·+4·=5,即(3m+4n)2=(5r)2=25(m2+n2),整理得(4m-3n)2=0,所以4m=3n.明显m≠0,故tan x==.思路参考:设点A(cos x,sin x)是直线3x+4y=5与单位圆x2+y2=1的切点,而tan x =k OA.解:由3cos x+4sin x=5可知点A(cos x,sin x)在直线3x+4y=5上,同时也在单位圆x2+y2=1上,所以点A为直线3x+4y=5与单位圆的切点.由于直线3x+4y=5的斜率为-,所以OA的斜率为,即tan x=.思路参考:m=(cos x,sin x),n=,证明m∥n.解:因为cos x+sin x=1,不妨令m=(cos x,sin x),n=,可知|m|=1,|n|=1,所以m,n均为单位向量,且m·n=1.由|m||n|≥|m·n|,等号成立的条件为m∥n,则有cos x=sin x,即tan x=.1.本题考查同角三角函数基本关系的应用,基本解题方法是构建方程(组)、数形结合等.在求解过程中,应留意同角三角函数的基本关系本身是恒等式,也可以看作是方程.2.基于课程标准,解答本题一般须要有良好的运算求解实力、转化与化归的实力.本题的解答体现了数学运算的核心素养.3.基于高考数学评价体系,本题的多种解法中涉及同角三角函数基本关系式、方程、协助角公式、直线与圆、向量等学问,渗透着函数与方程、等价转换、数形结合等思想方法,对提升思维的敏捷性起到了主动的作用.已知θ是第一象限角,若sin θ-2cos θ=-,求sin θ+cos θ的值.解:因为sin θ-2cos θ=-,所以sin θ=2cos θ-,所以+cos2θ=1,所以5cos2θ-cosθ-=0,即=0.又因为θ为第一象限角,所以cos θ=,所以sin θ=,所以sin θ+cos θ=.课时质量评价(二十二)A组全考点巩固练1.已知sin α=,α∈,则tan α=( )A.B.-C.D.-D解析:因为sin α=,α∈,所以cos α=-=-,则tanα==-.2.已知α是其次象限角,sin (π-α)=,则cos (π+α)=( )A.-B.-C.D解析:因为α是其次象限角,sin (π-α)=,可得sin α=,所以cos α=-=-,则cos(π+α)=-cos α=.3.已知tan α=3,则=( )A.-C.±D解析:因为tanα=3,所以===.4.(2024·安徽模拟)已知cos+cos (π+α)=,则tan α+=( ) A.2 B.-2C.D.3A解析:因为cos +cos (π+α)=,所以-sin α-cos α=,即sin α+cos α=-,两边平方,可得1+2sin αcos α=2,所以sin αcos α=,所以tan α+===2.5.已知cos =,则cos =______,sin=_________.-解析:cos =cos =-cos =-.sin =sin =cos =.6.已知函数f(x)=a sin (πx+α)+b cos (πx+β),且f(4)=3,则f(2 021)=_________.-3解析:因为f(4)=a sin (4π+α)+b cos (4π+β)=a sin α+b cos β=3,所以f(2 021)=a sin (2 021π+α)+b cos (2 021π+β)=a sin (π+α)+b cos (π+β)=-(a sin α+b cos β)=-3.B组新高考培优练7.(多选题)已知α是三角形内角,若sin α+cos α=,则sin α-cos α的值可能为( )A.-B.-C.BC解析:因为α是三角形内角,所以α∈(0,π),又因为(sin α+cos α)2=sin2α+cos2α+2sinαcos α=1+2sin αcos α=,解得2sin αcos α=.因为sin αcos α>0且α∈(0,π),所以sin α>0,cos α>0,所以sin α-cos α符号不确定,所以(sin α-cos α)2=1-2sin αcos α=1-=,所以sin α-cos α=±.8.(2024·聊城模拟)已知α,β∈,且满意sin αcos β-2cos αsin β=0,则tan (2π+α)+tan 的最小值为( )A.2 B.C.1 D.2D解析:因为sin αcos β-2cos αsin β=0,α,β∈,所以tan α>0,tan β>0,tan α=2tan β,所以tan (2π+α)+tan =tan α+=2tan β+≥2,当且仅当tan β=时等号成立.9.(2024·承德二模)若α∈,2sin α+cos α=,则tan α=( )A.-2 B.2C.D.-A解析:由2sin α+cos α=,两边平方,可得(2sin α+cos α)2=,即4sin2α+4sinαcos α+cos2α=.所以,所以,则11tan2α+20tanα-4=0.解得tan α=-2或tan α=.因为α∈,所以tan α=-2.10.(2024·浙江卷)若3sin α-sin β=,α+β=,则sin α=________,cos 2β=_________.解析:因为3sin α-sin β=,α+β=,所以3sin α-cos α=,所以cos α=3sin α-.因为sin2α+cos2α=1,所以sin2α+(3sinα-)2=1,解得sin α=,cos β=sin α=,cos 2β=2cos2β-1=2×-1=.11.已知cos+sin =1,则cos2+cosβ-1的取值范围为_________.解析:由已知得cos β=1-sin α.因为-1≤cos β≤1,所以-1≤1-sin α≤1.又-1≤sin α≤1,可得0≤sin α≤1,所以cos2+cosβ-1=sin2α+1-sinα-1=sin2α-sinα=-.(*) 又0≤sin α≤1,所以当sin α=时,(*)式取得最小值-,当sin α=0或sin α=1时,(*)式取得最大值0,故所求范围是.12.已知-<α<0,且函数f(α)=cos -sin α·-1.(1)化简f(α);(2)若f(α)=,求sin αcos α和sin α-cos α的值.解:(1)因为-<α<0,所以sin α<0,所以f(α)=sin α-sin α·-1=sinα+sin α·-1=sin α+cos α.(2)法一:由f(α)=sin α+cos α=,平方可得sin2α+2sinα·cos α+cos2α=,即2sinαcos α=-.所以sin αcos α=-.又-<α<0,所以sin α<0,cos α>0,所以sin α-cos α<0,因为(sin α-cos α)2=1-2sin αcos α=,所以sin α-cos α=-.法二:联立方程解得或因为-<α<0,所以所以sin αcos α=-,sin α-cos α=-.。
高考数学一轮复习 第三章 三角函数、解三角形 第一节 任意角、弧度制及任意角的三角函数学案 文(含解

第一节 任意角、弧度制及任意角的三角函数2019考纲考题考情1.角的有关概念(1)从运动的角度看,角可分为正角、负角和零角。
(2)从终边位置来看,角可分为象限角与轴线角。
(3)若β与α是终边相同的角,则β用α表示为β=2k π+α,k ∈Z 。
2.弧度与角度的互化 (1)1弧度的角长度等于半径长的弧所对的圆心角叫做1弧度的角。
(2)角α的弧度数如果半径为r 的圆的圆心角α所对弧的长为l ,那么角α的弧度数的绝对值是|α|=l r。
(3)角度与弧度的换算①1°=π180rad ;②1 rad = ⎛⎪⎫180π°。
(4)弧长、扇形面积的公式设扇形的弧长为l ,圆心角大小为α(rad),半径为r ,则l =|α|r ,扇形的面积为S =12lr =12|α|·r 2。
3.任意角的三角函数(1)定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么sin α=y ,cos α=x ,tan α=yx(x ≠0)。
(2)几何表示:三角函数线可以看作是三角函数的几何表示。
正弦线的起点都在x 轴上,余弦线的起点都是原点,正切线的起点都是点(1,0)。
如图中有向线段MP ,OM ,AT 分别叫做角α的正弦线,余弦线和正切线。
1.区分两个概念(1)第一象限角未必是锐角,但锐角一定是第一象限角。
(2)不相等的角未必终边不相同,终边相同的角也未必相等。
2.一个口诀三角函数值在各象限的符号:一全正、二正弦、三正切、四余弦。
3.三角函数定义的推广设点P (x ,y )是角α终边上任意一点且不与原点重合,r =|OP |,则sin α=y r,cos α=x r ,tan α=y x。
一、走进教材1.(必修4P 10A 组T 7改编)角-225°=________弧度,这个角在第________象限。
答案 -5π4二2.(必修4P 15练习T 2改编)设角θ的终边经过点P (4,-3),那么2cos θ-sin θ=________。
数学一轮复习第四章三角函数解三角形4.2同角三角函数的基本关系及诱导公式学案理

4。
2同角三角函数的基本关系及诱导公式必备知识预案自诊知识梳理1。
同角三角函数的基本关系(1)平方关系:sin2α+cos2α=。
(2)商数关系:sinαcosα=(α≠π2+kπ,k∈Z)。
2.三角函数的诱导公式公式一二三四五六角2kπ+α(k∈Z)π+α-απ-απ2-απ2+α正弦sin α余弦cos α正切tan α续表公式一二三四五六口诀函数名不变,符号看象限函数名改变,符号看象限1。
特殊角的三角函数值2.同角三角函数基本关系式的常用变形(1)(sin α±cos α)2=1±2sin αcos α;(2)sin α=tan αcos αα≠π2+kπ,k∈Z;(3)sin2α=sin2αsin2α+cos2α=tan2αtan2α+1;(4)cos 2α=cos 2αsin 2α+cos 2α=1tan 2α+1。
考点自诊1.判断下列结论是否正确,正确的画“√”,错误的画“×”。
(1)对任意的角α,β有sin 2α+cos 2β=1。
( ) (2)若α∈R ,则tan α=sinαcosα恒成立.( )(3)sin (π+α)=-sin α成立的条件是α为锐角。
( )(4)若cos(n π—θ)=13(n ∈Z ),则cos θ=13.( )2。
(2020河北衡水中学模拟一,理3)已知cos α-π2=-2√55,α∈π,3π2,则tan α=( )A 。
2B 。
32C.1D.123。
(2020河北唐山模拟,理4)已知角α的顶点在原点,始边与x 轴的正半轴重合,终边上一点A (2sin α,3)(sin α≠0),则cos α=( )A.12B 。
-12C 。
√32D.-√324。
函数f (x )=15sin x+π3+cos x —π6的最大值为( ) A.65B.1C.35D.15关键能力学案突破考点同角三角函数基本关系式的应用【例1】(1)若tan(α-π)=12,则sin 2α+1cos 2α-sin 2α=( )A。
高考数学一轮复习 第3章 三角函数、解三角形 3.1 任意角和弧度制及任意角的三角函数学案 文

3.1 任意角和弧度制及任意角的三角函数[知识梳理]1.任意角的概念(1)定义:角可以看成平面内的一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(2)角的分类(3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z}.(4)相关结论①象限角②轴线角2.弧度制的定义和公式(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角.正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0.(2)公式3.任意角的三角函数[诊断自测] 1.概念思辨(1)锐角是第一象限的角,第一象限的角也都是锐角.( )(2)一弧度是长度等于半径长的弧所对的圆心角的大小,它是角的一种度量单位.( )(3)α∈⎝⎛⎭⎪⎫0,π2,则tan α>α>sin α.( )(4)α为第一象限角,则sin α+cos α>1.( ) 答案 (1)× (2)√ (3)√ (4)√ 2.教材衍化(1)(必修A4P 9T 5)直径为4的圆中,36°的圆心角所对的弧长是( ) A.4π5 B.2π5 C.π3 D.π2答案 B解析 ∵36°=36×π180 rad =π5 rad ,∴36°的圆心角所对的弧长为l =π5×2=2π5.故选B.(2)(必修A4P 21T 9)设θ是第三象限角,且⎪⎪⎪⎪⎪⎪cos θ2=-cos θ2,则θ2是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角答案 B解析 由θ在第三象限,所以2k π+π<θ<2k π+3π2(k ∈Z ),所以k π+π2<θ2<k π+3π4(k ∈Z ).又cos θ2≤0,故选B. 3.小题热身(1)(2017·石家庄模拟)已知角α的终边在直线y =-x 上,且cos α<0,则tan α=________.答案 -1解析 如图,由题意知,角α的终边在第二象限,在其上任取一点P (x ,y ),则y =-x ,由三角函数的定义得tan α=y x =-xx=-1.(2)(2018·黄浦模拟)如图,已知扇形OAB 和OA 1B 1,A 1为OA 的中点,若扇形OA 1B 1的面积为1,则扇形OAB 的面积为________.答案 4解析 设∠AOB =α,则S 扇形OA 1B 1=12OA 21·α=1,S 扇形OAB =12OA 2·α,OA =2OA 1,∴S 扇形OAB =12·(2OA 1)2·α=4.题型1 象限角及终边相同的角典例1设集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k 2·180°+45°,k ∈Z ,N = ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k4·180°+45°,k ∈Z,判断两集合的关系( ) A .M =N B .M N C .N MD .M ∩N =∅将描述法表示的集合变为列举法表示.答案 B解析 由于M =⎩⎪⎨⎪⎧x ⎪⎪⎪ x =k2·180°+45°,k ∈Z } ={…,-45°,45°,135°,225°,…},N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k4·180°+45°,k ∈Z={…,-45°,0°,45°,90°,135°,180°,225°,…},显然有M N .典例2 已知角α=2k π-π5(k ∈Z ),若角θ与角α终边相同,则y =sin θ|sin θ|+|cos θ|cos θ+tan θ|tan θ|的值为________.找α的终边,利用终边定号法.答案 -1解析 由α=2k π-π5(k ∈Z )及终边相同角的概念知,α的终边在第四象限,又θ与α的终边相同,所以角θ是第四象限角,所以sin θ<0,cos θ>0,tan θ<0.因此,y =-1+1-1=-1.方法技巧象限角的两种判断方法1.图象法:在平面直角坐标系中,作出已知角并根据象限角的定义直接判断已知角是第几象限角.2.转化法:先将已知角化为k ·360°+α(0°≤α<360°,k ∈Z )的形式,即找出与已知角终边相同的角α,再由角α终边所在的象限判断已知角是第几象限角.提醒:注意“顺转减,逆转加”的应用,如角α的终边逆时针旋转180°可得角α+180°的终边,类推可知α+k ·180°(k ∈Z )表示终边落在角α的终边所在直线上的角.冲关针对训练1.(2017·潍坊模拟)集合{|αk π+π4≤α≤k π+π2,k ∈Z}中的角所表示的范围(阴影部分)是( )答案 C解析 当k =2n (n ∈Z )时,2n π+π4≤α≤2n π+π2, 此时α表示的范围与π4≤α≤π2表示的范围一样;当k =2n +1(n ∈Z )时,2n π+π+π4≤α≤2n π+π+π2,此时α表示的范围与π+π4≤α≤π+π2表示的范围一样.故选C.2.若sin θ2=45,且sin θ<0,则θ所在象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 答案 C解析 ∵sin θ<0,∴2sin θ2cos θ2<0.又∵sin θ2=45,∴cos θ2<0.故θ2在第二象限,且2k π+π2<θ2<2k π+34π(k ∈Z ). ∴4k π+π<θ<4k π+32π,∴θ在第三象限.故选C.题型2 弧度制及扇形面积公式的应用典例 已知一扇形的圆心角为α,半径为R ,弧长为l . (1)若α=60°,R =10 cm ,求扇形的弧长l ;(2)已知扇形的周长为10 cm ,面积是4 cm 2,求扇形的圆心角;(3)若扇形周长为20 cm ,当扇形的圆心角α为多少弧度时,这个扇形的面积最大?利用方程组法、二次函数求最值.解 (1)α=60°=π3 rad ,∴l =α ·R =π3×10=10π3 (cm).(2)由题意得⎩⎪⎨⎪⎧ 2R +R α=10,12α·R 2=4,解得⎩⎪⎨⎪⎧R =1,α=8(舍去),⎩⎪⎨⎪⎧R =4,α=12.故扇形圆心角为12.(3)由已知得,l +2R =20,所以S =12lR =12(20-2R )R =10R -R 2=-(R -5)2+25,所以当R =5时,S 取得最大值25,此时l =10,α=2.[条件探究] 将典例中的第(3)问推广为“若扇形的周长是一定值C (C >0),当α为多少弧度时,该扇形有最大面积?”解 扇形周长C =2R +l =2R +αR , ∴R =C2+α,∴S 扇=12α·R 2=12α·⎝ ⎛⎭⎪⎫C 2+α2=C 2α2·14+4α+α2=C 22·14α+4+α≤C 216. 当且仅当α2=4,即α=2时,扇形面积有最大值C 216.方法技巧应用弧度制解决问题的方法1.利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.见典例(1). 2.求扇形面积最大值的问题时,常转化为二次函数的最值问题,利用配方法使问题得到解决.见典例(3).3.在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形. 提醒:弧度制下l =|α|·r ,S =12lr ,此时α为弧度.在角度制下,弧长l =n πr180,扇形面积S =n πr 2360,此时n 为角度,它们之间有着必然的联系.冲关针对训练(2018·大连模拟)一个半径为R 的扇形,它的周长为4R ,则这个扇形所含弓形的面积是( )A.R 22B.12R 2sin1·cos1 C.12R 2(2-sin1·cos1) D .R 2(1-sin1·cos1)答案 D解析 设圆心角为θ,由题知2R +R ·θ=4R ,得θ=2, 所以S 弓=S 扇-S三角形=12×2R ·R -12R 2·sin2=R 2-12R 2·sin2=R 2·⎝ ⎛⎭⎪⎫1-12sin2=R 2(1-sin1·cos1).故选D.题型3 任意角三角函数的定义及应用角度1 利用三角函数定义求值典例 已知角α的顶点在原点,始边为x 轴的非负半轴.若角α终边经过点P (-3,y ),且sin α=34y (y ≠0),则判断角α所在的象限,并求cos α和tan α的值.定义法.解 依题意,P 到原点O 的距离为 |PO |= (-3)2+y 2,∴sin α=y r=y3+y2=34y . ∵y ≠0,∴9+3y 2=16,∴y 2=73,∴y =±213.∴点P 在第二或第三象限. 当P 在第二象限时,y =213,cos α=x r =-34,tan α=-73. 当P 在第三象限时,y =-213,cos α=x r =-34,tan α=73. 角度2 利用三角函数线比较大小,解不等式典例 sin1,cos1,tan1的大小关系是( ) A .sin1>cos1>tan1 B .sin1>tan1>cos1 C .tan1>sin1>cos1D .tan1>cos1>sin1单位圆定义法.答案 C解析 作单位圆,作出锐角1弧度的正弦线BP ,余弦线OB ,正切线AT ,可得tan1>sin1>cos1.故选C.方法技巧三角函数定义问题的常见类型及解题策略1.已知角α终边上一点P 的坐标,可求角α的三角函数值.先求P 到原点的距离,再用三角函数的定义求解.2.利用单位圆解三角不等式的步骤 (1)确定区域的边界(注意边界的虚实); (2)确定区域; (3)写出解集.3.三角函数值的符号及角的位置的判断.已知一角的三角函数值(sin α,cos α,tan α)中任意两个的符号,可分别确定出角终边所在的可能位置,二者的交集即为该角的终边位置.注意终边在坐标轴上的特殊情况.提醒:若题目中已知角的终边在一条直线上,此时注意在终边上任取一点有两种情况(点所在象限不同).冲关针对训练1.设π2<x <3π4,a =sin x ,b =cos x ,c =tan x ,则( )A .a <b <cB .c <b <aC .b <c <aD .b <a <c 答案 B解析 ∵π2<x <3π4,∴22<sin x <1,-22<cos x <0,tan x <-1. ∴c <b <a .故选B.2.(2017·兴庆区校级期中)已知角α的终边经过点P (x ,-2)(x >0),且cos α=36x, 求sin α+1tan α的值. 解 角α的终边经过点P (x ,-2)(x >0) ∵r =x 2+2,∵cos α=x r =36x , 可得x =10. 则r =2 3.sin α=y r =-223=-66,tan α=y x =-210=-55.那么sin α+1tan α=-66-5=-6+656.1.(2017·商丘期末)已知点P (-3,y )为角β的终边上的一点,且sin β=1313,则y 的值为( )A .±12 B.12 C .-12 D .±2答案 B解析 由题意可得:|OP |=y 2+3,所以sin β=y y 2+3=1313,所以y =±12,又因为sin β=1313,所以y >0,所以y =12.故选B. 2.(2018·东莞月考)角β的终边上有一点P (-m ,m ),其中m ≠0,则sin β+cos β的值为( )A. 2 B .- 2 C .0 D.2或- 2 答案 C解析 角β的终边上有一点P (-m ,m ),其中m ≠0, ∴r =|OP |=2|m |, 当m >0时,cos β=-m2|m |=-22,sin β=m2|m |=22,∴sin β+cos β=0; 当m <0时,cos β=-m2|m |=22,sin β=m 2|m |=-22,∴sin β+cos β=0.综上,sin β+cos β的值为0.故选C.3.(2017·连云港质检)已知角α的终边上一点的坐标为⎝⎛⎭⎪⎫sin 2π3,cos 2π3,则角α的最小正值为( )A.5π6 B.2π3 C.5π4 D.11π6答案 D解析 ∵⎝ ⎛⎭⎪⎫sin 2π3,cos 2π3=⎝ ⎛⎭⎪⎫32,-12,∴角α为第四象限角,且sin α=-12,cos α=32.∴角α的最小正值为11π6.故选D. 4.(2017·河南八市联考)已知角α的顶点在原点,始边与x 轴非负半轴重合,点P (-4m,3m )(m >0)是角α终边上的一点,则2sin α+cos α=________.答案 25解析 ∵|OP |= (-4m )2+(3m )2=5|m |=5m (m >0), ∴sin α=3m 5m =35,cos α=-4m 5m =-45,∴2sin α+cos α=2×35-45=25.[基础送分 提速狂刷练]一、选择题1.给出下列四个命题:①-3π4是第二象限角;②4π3是第三象限角;③-400°是第四象限角;④-315°是第一象限角.其中正确命题的个数为( )A .1B .2C .3D .4 答案 C解析 ①中-3π4是第三象限角,故①错.②中4π3=π+π3,从而4π3是第三象限角,故②正确.③中-400°=-360°-40°,从而③正确.④中-315°=-360°+45°,从而④正确.故选C.2.sin2·cos3·tan4的值( ) A .小于0 B .大于0 C .等于0 D .不存在答案 A解析 ∵π2<2<3<π<4<3π2,∴sin2>0,cos3<0,tan4>0.∴sin2·cos3·tan4<0.故选A.3.已知扇形的周长是6 cm ,面积是2 cm 2,则扇形的圆心角的弧度数是( ) A .1 B .4 C .1或4 D .2或4答案 C解析 设此扇形的半径为r ,弧长是l ,则⎩⎪⎨⎪⎧2r +l =6,12rl =2,解得⎩⎪⎨⎪⎧r =1,l =4或⎩⎪⎨⎪⎧r =2,l =2.从而α=l r =41=4或α=l r =22=1.故选C.4.若π4<θ<π2,则下列不等式成立的是( )A .sin θ>cos θ>tan θB .cos θ>tan θ>sin θC .sin θ>tan θ>cos θD .tan θ>sin θ>cos θ答案 D解析 ∵π4<θ<π2,∴tan θ>1,sin θ-cos θ=2sin ⎝ ⎛⎭⎪⎫θ-π4.∵π4<θ<π2,∴0<θ-π4<π4,∴sin ⎝⎛⎭⎪⎫θ-π4>0,∴sin θ>cos θ.故选D.5.在△ABC 中,若sin A ·cos B ·tan C <0,则△ABC 的形状是( ) A .锐角三角形 B .钝角三角形 C .直角三角形 D .不能确定答案 B解析 ∵△ABC 中每个角都在(0,π)内,∴sin A >0. ∵sin A ·cos B ·tan C <0,∴cos B ·tan C <0. 若B ,C 同为锐角,则cos B ·tan C >0. ∴B ,C 中必定有一个钝角. ∴△ABC 是钝角三角形.故选B.6.(2018·永昌县期末)已知角α的终边经过点(3a,4a )(a ≠0),则sin α+cos α的值为( )A.75 B .-75 C .±75 D .±34 答案 C解析 ∵角α的终边经过点(3a,4a )(a ≠0),当a >0时,r =5a ,sin α=y r =45,cos α=x r =35,sin α+cos α=75; 当a <0时,r =|5a |=-5a ,sin α=y r =-45,cos α=x r =-35,sin α+cos α=-75.综上可得,sin α+cos α=±75.故选C.7.已知sin α>sin β,那么下列命题成立的是( ) A .若α,β是第一象限的角,则cos α>cos β B .若α,β是第二象限的角,则tan α>tan βC .若α,β是第三象限的角,则cos α>cos βD .若α,β是第四象限的角,则tan α>tan β 答案 D解析 由三角函数线可知,选D.8.已知2弧度的圆心角所对的弦长为2,那么这个圆心角所对的弧长是( ) A .2 B .sin2 C.2sin1 D .2sin1答案 C解析 如图,∠AOB =2弧度,过O 点作OC ⊥AB 于C ,并延长OC 交弧AB 于D .则∠AOD =∠BOD =1弧度,且AC =12AB =1,在Rt △AOC 中,AO =ACsin ∠AOC =1sin1,即r =1sin1,从而弧AB 的长为l =|α|·r =2sin1.故选C. 9.若α是第三象限角,则下列各式中不成立的是( ) A .sin α+cos α<0 B .tan α-sin α<0 C .cos α-tan α<0 D .tan αsin α<0 答案 B解析 ∵α是第三象限角,∴sin α<0,cos α<0,tan α>0,则可排除A ,C ,D.故选B.10.(2018·江西模拟)已知角α的终边经过点(m ,3m ),若α= 7π3,则m 的值为( ) A .27 B.127 C .9 D.19答案 B解析 角α的终边经过点(m ,3m ),若α=7π3,则tan 7π3=tan π3=3=3mm=m- 16,则m =127.故选B.二、填空题11.(2017·广州模拟)若角θ的终边经过点P (-3,m )(m ≠0)且 sin θ=24m ,则cos θ的值为________. 答案 -64解析 点P (-3,m )是角θ终边上一点,由三角函数定义可知sin θ=m3+m2.又sin θ=24m , ∴m3+m2=24m . 又m ≠0,∴m 2=5,∴cos θ=-33+m2=-64. 12.(2018·济南校级期末)已知1|sin α|=-1sin α,且lg cos α有意义,则α所在象限为第________象限.答案 四解析 由1|sin α|=-1sin α可知,sin α<0,∴α是第三或第四象限角或终边在y 轴的非正半轴上的角. 由lg cos α有意义可知cos α>0,∴α是第一或第四象限角或终边在x 轴的非负半轴上的角,综上可知角α是第四象限角.13.若角α的终边在直线y =-3x 上,则10sin α+3cos α=________.答案 0解析 设角α终边上任一点为P (k ,-3k )(k ≠0),则r =x 2+y 2=k 2+(-3k 2)=10|k |.当k >0时,r =10k . ∴sin α=-3k 10k =-310,1cos α=10kk =10.∴10sin α+3cos α=-310+310=0.当k <0时,r =-10k .∴sin α=-3k -10k =310,1cos α=-10kk =-10.∴10sin α+3cos α=310-310=0.综上,10sin α+3cos α=0.14.如图所示,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正方向滚动.当圆滚动到圆心位于(2,1)时,OP →的坐标为________.答案 (2-sin2,1-cos2)解析 因为圆心由(0,1)平移到了(2,1),所以在此过程中P 点所经过的弧长为2,其所对圆心角为2.如图所示,过P 点作x 轴的垂线,垂足为A ,圆心为C ,与x 轴相切于点B ,过C 作PA 的垂线,垂足为D ,则∠PCD =2-π2,|PD |=sin ⎝ ⎛⎭⎪⎫2-π2=-cos2,|CD |=cos ⎝ ⎛⎭⎪⎫2-π2=sin2,所以P 点坐标为(2-sin2,1-cos2), 即OP →的坐标为(2-sin2,1-cos2).三、解答题15.已知扇形AOB 的周长为8.(1)若这个扇形的面积为3,求圆心角的大小;(2)求这个扇形的面积取得最大值时圆心角的大小和弦长AB . 解 设扇形AOB 的半径为r ,弧长为l ,圆心角为α, (1)由题意可得⎩⎪⎨⎪⎧2r +l =8,12lr =3,解得⎩⎪⎨⎪⎧r =3,l =2或⎩⎪⎨⎪⎧r =1,l =6,∴α=l r =23或α=lr=6.(2)∵2r +l =8,∴S 扇=12lr =12r (8-2r )=r (4-r )=-(r -2)2+4≤4,当且仅当r =2,即α=lr=2时,扇形面积取得最大值4. ∴弦长AB =2sin1×2=4sin1. 16.已知sin α<0,tan α>0. (1)求α角的集合; (2)求α2终边所在的象限;(3)试判断tan α2sin α2cos α2的符号.解 (1)由sin α<0,知α在第三、四象限或y 轴的负半轴上; 由tan α>0,知α在第一、三象限,故α角在第三象限,其集合为{α⎪⎪⎪⎭⎬⎫2k π+π<α<2k π+3π2,k ∈Z .(2)由2k π+π<α<2k π+3π2,k ∈Z , 得k π+π2<α2<k π+3π4,k ∈Z ,故α2终边在第二、四象限. (3)当α2在第二象限时,tan α2<0,sin α2>0,cos α2<0,所以tan α2sin α2cos α2取正号;当α2在第四象限时,tan α2<0,sin α2<0,cos α2>0,所以tan α2sin α2cos α2也取正号.因此,tan α2sin α2cos α2取正号.。
高三数学一轮复习第1课时三角函数的基本概念学案

高三数学一轮复习第1课时三角函数的基本概念学案【学习目标】1.了解任意角的概念.2.了解弧度制的概念,能进行角度与弧度的互化.3.借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义.4.理解三角函数线(正弦线、余弦线、正切线)的概念及意义.预习案【课本导读】1.角的概念(1)象限角:角α的终边落在就称α为第几象限的角,终边落在坐标轴上的角不属于任何象限.(2)终边相同的角:.(3)与α终边相同的角的集合为(4)各象限角的集合为,,,2.弧度制(1)什么叫1度的角:(2)什么叫1弧度的角:(3)1°=弧度;1弧度=度.(4)扇形的半径为r,圆心角的弧度数为α,则此扇形的弧长l=,面积S== .3.任意角的三角函数定义(1)设α是一个任意角,α的终边上任意一点(非顶点)P的坐标是(x,y),它与原点的距离为r,则sinα=,cosα=,tanα= .(2)三角函数在各象限的符号是:sinαcosαtanαⅠⅡⅢⅣ4.三角函数线如图所示,正弦线为 ;余弦线为 ;正切线为 .【教材回归】1.下列命题为真命题的是( ) A .角α=k π+π3(k ∈Z )是第一象限角 B .若sin α=sin π7,则α=π7C .-300°角与60°角的终边相同D .若A ={α|α=2k π,k ∈Z },B ={α|α=4k π,k ∈Z },则A =B2.若600°角的终边上有一点P (-4,a ),则a 的值为( ) A .4 3 B .-4 3 C .±4 3 D. 3 3.已知锐角α终边上一点A 的坐标是(2sin π3,2cos π3),则α弧度数是( ) A .2 B.π3 C.π6 D.2π34.已知圆中一段弧长正好等于该圆的外切正三角形边长,则这段弧所对圆心角的弧度数为______.5.已知角θ的顶点为坐标原点,始边为x 轴的正半轴.若P (4,y )是角θ终边上一点,且sin θ=-255,则y =________. 探 究 案 题型一: 角的有关概念例1 设角α1=-350°,α2=860°,β1=35π,β2=-73π.(1)将α1,α2用弧度制表示出来,并指出它们各自所在的象限;(2)将β1,β2用角度制表示出来,并在-720°~0°之间找出与它们有相同终边的所有角.思考题1 (1)在区间[-720°,0°]内找出所有与45°角终边相同的角β;(2)设集合M ={x |x =k 2³180°+45°,k ∈Z },N ={x |x =k4³180°+45°,k ∈Z },那么两集合的关系是什么?例2 已知角 α是第三象限角,试判断①π-α是第几象限角?②α2是第几象限角?③2α是第几象限角?思考题2 (1)如果α为第一象限角,那么①sin2α,②cos2α;③sin α2;④cos α2中必定为正值的是________.(2)若sinθ2=45,且sin θ<0,则θ所在象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 题型二:三角函数的定义例3 已知角α的终边经过点P (x ,-2)(x ≠0),且cos α=36x ,则sin α+1tan α的值为________.思考题3 (1)若角θ的终边与函数y =-2|x |的图像重合,求θ的各三角函数值. (2)如图所示,质点P 在半径为2的圆周上逆时针运动,其初始位置为P 0(2,-2),角速度为1,那么点P 到x 轴的距离d 关于时间t 的函数图像大致为( )题型三:利用三角函数线解三角不等式例4 (1)不等式sin x ≥32的解集为__________ . (2)不等式cos x ≥-12的解集为__________.(3)函数f (x )=2sin x +1+lg(2cos x -2)的定义域为_____.思考题4 (1)求函数y =lg(3-4sin 2x )的定义域 .(2)已知sin α>sin β,那么下列命题成立的是( )A.若α、β是第一象限的角,则cosα>cosβ B.若α、β是第二象限的角,则tanα>tanβC.若α、β是第三象限的角,则cosα>cosβD.若α、β是第四象限的角,则tanα>tanβ题型四:弧度制的应用例5已知一扇形的圆心角是α,所在圆的半径是R.(1)若α=60°,R=10 cm,求扇形的弧长及该弧所在的弓形面积;(2)若扇形的周长是一定值c(c>0),当α为多少弧度时,该扇形有最大面积?思考题5若扇形的面积为定值,当扇形的圆心角为多少弧度时,该扇形的周长取到最小值?训练案1.有下列命题:①终边相同的角的同名三角函数的值相等;②终边不同的角的同名三角函数的值不等;③若sinα>0,则α是第一、二象限的角;④若α是第二象限的角,且P(x,y)是其终边上一点,则cosα=-xx2+y2.其中正确的命题的个数是( ) A.1 B.2 C.3 D.42.sin 2²cos 3²tan 4的值( )A.小于0 B.大于0 C.等于0 D.不存在3.已知点P(tanα,cosα)在第三象限,则角α的终边在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限4.已知锐角α终边上一点P的坐标是(2sin2,-2cos2),则α等于( )A.2 B.-2 C.2-π2D.π2-25.若π4<θ<π2,则下列不等式成立的是( )A.sinθ>cosθ>tanθB.cosθ>tanθ>sinθC.sinθ>tanθ>cosθD.tanθ>sinθ>cosθ。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一轮复习 三角函数学案6
知识要点:
成一个整体,先令ππ
ππϕω2,2
3,,2,0=+x 列表求出对应的x 的值与y 的值,
用平滑曲线连结各点,即可得到其在一个周期内的图象。
3.研究函数R x x A y ∈+=),sin(ϕω(其中0,0>>ωA )的单调性、对称轴、对称中心仍然是
将ϕω+x 看成整体并与基本正弦函数加以对照而得出。
它的最小正周期|
|2ωπ
=T
典型例题:
例1、(1)函数2
161sin lg x
x y -+
=的定义域是 .
(2)当x ∈⎥⎦
⎤
⎢⎣⎡-2,2ππ时,函数f (x )=sinx+3cosx 的值域是
A. [-1,2]
B. [-2
1
,1] C. [-2,2] D. [-1,2]
1.1、函数)cos(sin x y =的定义域是 。
1.2、函数y =1-2sin 2x +2cos x 的最大值是 最小值是 。
例2、下列函数中,既为偶函数又在(0,π)上单调递增的是
A .y=tan|x |.
B .y=cos(-x ).
C .).2sin(π
-=x y D .|2
cot |x
y = 2.1、在下列给定的区间中,使函数y=sin(x+4
π
)单调递增的区间是
A .[0,
4
π
] B .[
4π,2
π] C .[2
π
,π] D .[-π,0]
2.2、函数y =sin(
6
π
-2x )的单调递减区间是 。
例3、.函数R x y 是)0)(sin(πϕϕ≤≤+=上的偶函数,则ϕ=
A .0
B .
4π C .2
π
D .π 3.1、使)2cos(3)2sin()(θθ+++=x x x f 是奇函数,且在[4
,
0π
]上是减函数的θ的一个值
A .
3
π B .32π C .34π D .35π
例4、函数y=sinx+cosx 的最小正周期是 ,图象的相邻两条对称轴之间的距离是 .
4.1、函数y =sin (3
π
-2x )+sin2x 的最小正周期是( )
A.2π
B.π
C.
2π D.4π 4.2、已知函数x x x x x f 4
4sin cos sin 2cos )(--=,则 )(x f 的最小正周期是 、最
大值是 、最小值是 。
4.3、函数y =tan x -cot x 的最小正周期为____________。
例5、求函数⎪⎭
⎫
⎝
⎛-
=62tan 3πx y 的定义域、值域,并指出它的周期性、奇偶性、单调性,再说明函数的图象可以由函数x y tan =的图象通过怎样的变换得到。
5.1、(2006年上海春卷)已知函数⎥⎦
⎤⎢⎣⎡∈-⎪⎭⎫ ⎝
⎛
+=πππ,2,
cos 26sin 2)(x x x x f . (1)若5
4
sin =x ,求函数)(x f 的值; (2)求函数)(x f 的值域.
三角函数作业6
1.如果4
π
≤
x ,那么函数f(x)=cos 2
x+sinx 的最小值是( )
A.
212- B. 221- C. -2
1
2+ D. -1 2.(2004年北京海淀区二模题)f (x )=2cos 2x +3sin2x +a (a 为实常数)在区间[0,
2
π
]上的最小值为-4,那么a 的值等于 A.4 B.-6 C.-4 D.-3 3. 命题甲:“X 是第一象限的角”,命题乙:“sinX 是增函数”,则命题甲是命题乙的( )
A. 充分但不必要条件
B.必要但不充分条件
C. 充要条件
D.即不充分也不必要条件 4.ω是正实数,函数f(x)=2sin ωx 在[-4
,
3π
π]上递增,那么 ( ) A.0<ω≤
2
3 B.0<ω≤2
C.0<ω≤
7
24 D.ω≥2
5.(04福建)定义在R 上的函数满足f (x )=f (x +2),当x ∈[3,5]时,f (x )=2-|x -4|,则
A.f (sin 6π)<f (cos 6π
) B.f (sin1)>f (cos1)
C.f (cos 3π2)<f (sin 3
π
2) D.f (cos2)>f (sin2)
6.(2004年全国Ⅱ)函数y =x cos x -sin x 在下面哪个区间内是增函数 ( )
A.(2π,2π
3) B.(π,2π)
C.(2π3,2
π5) D.(2π,3π)
7、函数f(x)=sin(ωx+φ)·cos(ωx+φ)(ω>0)以2为最小正周期,且能在x =2时取得最大值,则φ的一个值是 ( )
A.4
3π-
B.-
4
5π C.
4
7π D.
2
π 8.(04天津)定义在R 上的函数f (x )既是偶函数又是周期函数.若f (x )的最小正周期是π,
且当x ∈[0,2π]时,f (x )=sin x ,则f (3
π
5)的值为 ( )
A.-21
B.2
1
C.-23
D.23
9.(2004年全国Ⅱ)函数y =sin 4x +cos 2x 的最小正周期为 ( )
A.4π
B.2
π C.π D.2π 10.函数y=sin 2 (ωx)-cos 2
(ωx)的周期T=4π,那么常数ω为( )
A.
21 B. 2 C. 4
1
D. 4 11.(2003年)关于函数f (x )=sin 2x -(
32)|x |+2
1
,有下面四个结论,其中正确结论的个数为
①f (x )是奇函数 ②当x >2003时,f (x )>
2
1
恒成立 ③f (x )的最大值是
23 ④f (x )的最小值是-2
1 A.1 B.
2 C.
3 D.4
12.函数y =lg (cos x -sin x )的定义域是_______.
13..函数y =3
sin
x
-的定义域是_________. 14.若y =a +b sin x 的值域是[-
21, 2
3
],则此函数的表达式是 。
15.方程2sin2x =x -3的解的个数为_______. 16.给出下列命题:
①正切函数的图象的对称中心是唯一的;
②y =|sin x |、y =|tan x |的周期分别为π、2
π
;
③若x 1>x 2,则sin x 1>sin x 2;
④若f (x )是R 上的奇函数,它的最小正周期为T ,则f (-
2
T
)=0. 其中正确命题的序号是____________.
17.(2004年全国Ⅰ)求函数f (x )=x
x
x x x 2sin 2cos sin cos sin 2244-++的定义域、最小正周期、最大
值和最小值.
18.f (x )是定义在[-2π,2π]上的偶函数,当x ∈[0,π]时,y =f (x )=cos x , 当x ∈(π,2π)时,f (x )的图象是斜率为π
2
,在y 轴上截距为-2的直线在相应区间上的部分.(1)求f (-2π),f (-3
π); (2)求f (x ),并作出图象,写出其单调区间.
参考答案
例1、(1)()()ππ,0,4 --∈x ;(2)A 。
1.1、R x ∈。
1.2、3;2
3
-。
例2、C .
2.1、A .
2.2、.,3,6
Z k k k x ∈⎥⎦
⎤
⎢⎣
⎡+
-
∈πππ
π
例3、C .
3.1、B .
例4、π2=T ;π=d 。
4.1、π=T 。
4.2、π=T ;2;2-。
4.3、2
π
=
T 。
例5、Z k k x ∈+⋅≠,32ππ;R y ∈;2π=T ;非奇非偶;在⎪⎭⎫ ⎝⎛+⋅-⋅32,6
2πππ
πk k 增;
右移6
π
;横缩21;纵伸3。
5.1、()⎪⎭
⎫ ⎝⎛
-=6sin 2πx x f ;(1)()5334+=x f ;(2)[]2,1∈y 。
作业: BCDA DBAD BCA
⎪⎭⎫ ⎝
⎛
+-42,432ππππk k ; ()[]ππk k 6,123-; 21sin +=x y ; 3; ④;
()21
2sin 41+=x x f ;
()[)[](]⎪⎪⎩⎪⎪⎨⎧∈--∈--∈--=πππ
πππππ
2,,22
,,cos ,2,
22x x x x x x x f。