数理方程练习题(1)
数理方程 习题答案

数理方程习题答案数理方程习题答案数理方程是数学中一门重要的学科,它研究的是各种各样的方程。
在学习数理方程的过程中,习题是不可或缺的一部分。
通过解习题,我们可以加深对数理方程的理解,掌握解题的方法和技巧。
在这篇文章中,我将为大家提供一些数理方程习题的答案,希望能对大家的学习有所帮助。
1. 求解方程:2x + 5 = 17。
解:将方程化简,得到2x = 17 - 5,即2x = 12。
再将等式两边同时除以2,得到x = 6。
所以方程的解为x = 6。
2. 求解方程组:2x + y = 73x - 2y = 4解:可以使用消元法来求解这个方程组。
首先,将第一个方程乘以2,得到4x + 2y = 14。
然后将第二个方程与这个结果相加,得到7x = 18。
再将等式两边同时除以7,得到x = 18/7。
将x的值代入第一个方程,可以求得y的值为y = 7 - 2x = 7 - 2(18/7) = 7 - 36/7 = 7/7 - 36/7 = -29/7。
所以方程组的解为x = 18/7,y = -29/7。
3. 求解二次方程:x^2 - 5x + 6 = 0。
解:可以使用因式分解法来求解这个二次方程。
首先,将方程化简,得到(x - 2)(x - 3) = 0。
根据乘积为零的性质,可以得到x - 2 = 0或者x - 3 = 0。
解这两个方程,可以得到x = 2或者x = 3。
所以方程的解为x = 2或者x = 3。
4. 求解三次方程:x^3 - 3x^2 + 2x - 4 = 0。
解:可以使用综合除法来求解这个三次方程。
首先,将方程按照降幂排列,得到x^3 - 3x^2 + 2x - 4 = 0。
然后,尝试将方程的第一项x^3除以x的最高次数x^3,得到商为1。
将这个商乘以方程的所有项,得到x^3 - 3x^2 + 2x - 4 - (x^3 - 3x^2 + 2x - 4) = 0。
化简这个等式,可以得到0 = 0。
07级数理方程试题答案

07级数理方程试题答案07801-808数学物理方法期中测验试题一填空题(每题5分,共20分)1 现有一长度为l 的均匀细弦,弦的0x =端固定,x l =端受迫作简谐振动sin A t ω,弦的初始位移和初始速度都是零,那么弦的位移函数(),u x t 所满足的定解问题是()。
2000(0,0),0,sin (0),0,0(0).tt xxx x l t t t u a u x l t u u A t t u u x l ω====?=<<>??==>??==≤≤?? 2 有一矩形薄板,其中板的一组对边绝热,而另一组对边中,一边的温度保持零度,另一边保持常温0u ,那么此矩形板的稳定温度分布所满足的定解问题是()。
0000(0,0),0,0(0),0,(0).x x y y x x x x a y y b u u x a y b u u y b u u u x b ====?+=<<<<??=<<(,)u u f M t n αβΩ+=?),当(0β= )就是第一类边界条件;当(0α= )时,就是第二类边界条件。
4 积分()30x J x dx =?()。
解利用递推公式1[()]()m mm m d x J x x J x dx-=和分部积分法,得32002321113212()[()][()]()2()()2().x J x dx x xJ x dxx d xJ x x J x x J x dxx J x x J x C ===-=-+?二求解下列本征值问题的本征值和本征函数(每题10分,共20分)(1) ()()0,(0)0,()0.X x X xX X l λ''+=??'==? (2)2'''2()()(9)()0,()0,|(0)|.r R r r R r r R r R a R μ?++-=?=<∞?解(1)因为我们已经知道,本征值0λ≥。
数理方程习题全解

93
2k 1 j sin 2k 1 = 2 cos 4 4
k 0,1,2,3
1 1 k 0 : z1 2 cos j sin 2 j 1 j 4 4 2 2 3 3 1 1 k 1 : z2 2 cos j sin 2 j 1 j 4 4 2 2 5 5 1 1 k 2 : z3 2 cos j sin 2 j 1 j 4 4 2 2 7 7 1 1 k 3 : z4 2 cos j sin 2 j 1 j 4 4 2 2
3 8
k k 2 8 cos j sin 2 16 2 16
3 3 8 3
k 0,1,2,3
7 7 2 cos j sin , 2 8 cos j sin , 16 16 16 16 9 15 15 9 2 cos j sin , 2 8 cos j sin ; 16 16 16 16
1 3 5 5 (2) j sin cos j sin 2 2 j cos 3 3 3 3 1 3 j 2 2
4
cos j sin 4 4
4
2
cos j sin 1 j 3 5 5 cos j sin 3 3
数理方程模拟试题1X

200__~200__学年第___学期《数理方程》期末模拟试卷1 题号 一 二 三 四 五 六 总分 得分一、 选择题(每题只有一个正确答案, 每小题4分,共28分)1、34233(,,)v v v xyv g x y z x x y z ∂∂∂+++=∂∂∂∂ 是( )偏微分方程 A 、 一阶 B 、二阶 C 、 三阶 D 、 四阶 2、2(,)tt xx u a u x t ϕ-= (其中0>a ) 属于( )型偏微分方程 A 、 抛物 B 、双曲 C 、 椭圆 D 、 混合 3、在用分离变量法求解定解问题200,0,0|0,|0|()t x x x x xl t u a u x l t u u u x ϕ===⎧=<<>⎪==⎨⎪=⎩时,得到的固有函数系为( )A 、,...2,1,sin=⎭⎬⎫⎩⎨⎧n x l n π B 、,...2,1,0,cos=⎭⎬⎫⎩⎨⎧n x l n π C 、(21)cos,1,2,...2n x n l π-⎧⎫=⎨⎬⎩⎭D 、 (21)sin,1,2,...2n x n l π-⎧⎫=⎨⎬⎩⎭4、下列方程是非线性偏微分方程的是( ) A 22()()sin u u x x y 抖+=抖 B (,)u u f x y x y抖+=抖 C 22(,)(,)cos u u a x t b x t x x t 抖+=抖 D 3433(,,)v v v g x y z x x y z∂∂∂++=∂∂∂∂ 5、对Laplace 变换的性质下列式子错误的是( ) A 22[sin ](Re 0)L t p p ww w =>+B []2[][]L f g L f L g p *=?C 0[()]()(Re )p L f t e F p p tt g --=>D 0000[()]()(Re Re )p t L e f t F p p p p g =->+6、在弱相等意义下,对d 函数的说法错误的是( ) A ()()x x d d =- B ()x x x d = C 1()()(0)||ax x a a d d =? D ()()()()x x a a x a j d j d -=-7、给出未知函数 u 在区域Ω的边界Γ上的值0,),,(|≥Γ∈=Γt M t M u μ 的边界条件,称为第( )类边界条件。
方程题100道带答案

方程题100道带答案1. 2x + 3 = 7,答案:x = 22. 5x 8 = 12,答案:x = 43. 3x + 4 = 19,答案:x = 54. 7x 15 = 14,答案:x =5.29(约等于5.3)5. 9x + 11 = 32,答案:x = 1.89(约等于1.9)6. 4x 6 = 18,答案:x = 6.57. 8x + 5 = 37,答案:x = 3.758. 6x 9 = 21,答案:x = 5.59. 10x + 13 = 53,答案:x = 410. 3x + 7 = 16,答案:x = 311. 2x 5 = 9,答案:x = 712. 4x + 8 = 24,答案:x = 413. 5x 3 = 22,答案:x = 514. 7x + 6 = 51,答案:x = 5.(约等于5.9)15. 9x 4 = 35,答案:x = 4.11(约等于4.1)16. 6x + 5 = 47,答案:x = 617. 8x 7 = 29,答案:x = 5.2518. 10x + 2 = 42,答案:x = 419. 3x 8 = 7,答案:x = 520. 5x + 9 = 44,答案:x = 5.2继续完善方程题100道带答案文档:21. 若4x 2 = 14,求x的值。
答案:x = 422. 解方程6x + 3 = 39,得x等于多少?答案:x = 623. 当7x 5 = 46时,x的值为多少?答案:x = 7.29(约等于7.3)24. 8x + 4 = 36,求x的值。
答案:x = 3.525. 如果9x 6 = 30,那么x等于多少?答案:x = 4.22(约等于4.2)26. 解方程3x + 5 = 14,得x的值。
答案:x = 327. 当5x 2 = 23时,求x的值。
答案:x = 528. 7x + 8 = 57,求x的值。
答案:x = 5.29(约等于5.3)29. 9x 3 = 42,求x的值。
数理方程练习题

数理方程练习题第二章定解问题与偏微分方程理论习题2.11. 密度为ρ均匀柔软的细弦线x =0端固定,垂直悬挂,在重力作用下,于横向拉它一下,使之作微小的横振动。
试导出振动方程。
2. 长为L ,均匀细杆,x = 0端固定,另一端沿杆的轴线方向被拉长b 静止后(在弹性限度内)突然放手,细杆作自由振动。
试写出振动方程的定解条件。
3. 长为L 、密度为ρ的底半径为R 的均匀圆锥杆(轴线水平)作纵振动,锥的顶点固定在x =0处。
导出此杆的振动方程。
4. 一根长为L 、截面面积为1的均匀细杆,其x =0端固定,以槌水平击其x =L 端,使之获得冲量I 。
试写出定解问题。
习题2.21. 一半径为r ,密度为ρ,比热为c ,热传导系数为k 的匀质圆杆,如同截面上的温度相同,其侧面与温度为u 1的介质发生热交换,且热交换的系数为k 1。
试导出杆上温度u 满足的方程。
4. 设有一根具有绝热的侧表面的均匀细杆,它的初始温度为)(x ?,两端满足下列边界条件之一:(1)一端(x =0)绝热,另一端(x = L )保持常温u 0;(2)两端分别有热流密度q 1和q 2进入;(3)一端(x =0)温度为u 1(t ),另一端(x = L )与温度为)(t θ的介质有热交换。
试分别写出上述三种热传导过程的定解问题。
习题2.41. 判断下列方程的类型:(1)04=+++++u cu bu au au au y x yy xy xx ;(2)02=+++++u cu bu au au au y x yy xy xx ;(3)02222=+++++u au bu au au au y x yy xy xx ;(4)0=+yy xx xu u 。
2. 求下列方程的通解(1)0910=++yy xy xx u u u ;(3)0384=++yy xy xx u u u 。
第三章分离变量法习题3.12. 求解下列定解问题(1)-====><<=====)(,00)0,0(,0002x L x u u u u t L x u a u t t t L x x xx tt3. 求下列边值问题的固有值和固有函数:(1)===+''==0,000L x x X X X X λ (3)0,0012===+'+''==e x x y y y y x y x λ 习题3.21.求定解问题:-===><<====)(0,0)0,0(,002x L x u u u t L x u a u t L x x xx t 习题3.52. 求解定解问题:===><<=+-===-00020,0)0,0(,0T u u u t L x Ae u a u t L x x x t xx α 0T 是常数。
数理方程常规例题I

数学物理方程常规例题I(1-20题)一、数学模型例题例1. 密度为ρ均匀柔软的细弦线x =0端固定,垂直悬挂,在重力作用下,横向拉它一下,使之作微小的横振动。
试导出振动方程。
解:考虑垂直悬挂的细弦线上一段微元ds ,该微元在坐标轴上投影为区间[x ,x+d x ],在微元的上端点处有张力:)(1x L g T -=ρ,在下端点处有张力:)(2dx x L g T --=ρ考虑张力在位移方向的分解,应用牛顿第三定律,有tt u m T T =-1122sin sin αα 由于细弦作微小振动,所以有近似)(tan sin 22dx x u x +=≈αα )(tan sin 11x u x =≈αα代入牛顿第三定律的表达式,有tt x x u ds t x u x L g t dx x u dx x L g ρρρ≈--+--),()(),()(上式两端同除以ds ρ,得tt x x u dsx u x L dx x u dx x L g≈--++-)()()())((由于dx ds ≈,而x x x x x u x L dxx u x L dx x u dx x L )]()[()()()())((-≈--++-所以,细弦振动的方程为tt x x u u x L g =-])[(例2. 长为L 密度为ρ底半径为R 的均匀圆锥杆(轴线水平)作纵振动,锥顶点固定在x =0处。
导出此杆的振动方程。
(需要包括假设在内的具体推导) 解:设均匀圆锥杆作纵振动时位移函数为u (x ,t )则在点x 处,弹力与相对伸长量成正比,即),(),(t x Yu t x P x = 其中,Y 为杨氏模量。
在截面上张力为T (x , t ) = S (x ) P (x , t )这里,S (x )为x 处圆锥截面积。
考虑圆锥杆上对应于区间[x ,x+dx ]处的微元(如右图所示)。
应用牛顿第二定律,得),()]()()[(31),(),(t x u x xS dx x S dx x t x T t dx x T tt -++=-+ρ 由于圆锥截面积2)()(x LR x S π= 微元(圆台)体积)33()(31)]()()[(313222dx xdx dx x LRx xS dx x S dx x ++=-++ρπρ 所以),()33()(31)],(),()[()(3222222t x u dx xdx dx x L Rt x u x t dx x u dx x L R Y tt x x ++=-++ρππ两端除dx ,并取极限,得),()],([22t x u x t x u x Y tt x x ρ=记ρ/2Y a =,则有方程)2(2x xx tt u xu a u += 二、二阶偏微分方程化简与求通解只考虑未知函数是两个自变量情形,即),(y x u 。
数理方程题库

第一章定义和方程类型1、34233(,,)v v v xyv g x y z x x y z∂∂∂+++=∂∂∂∂ 是( D )偏微分方程 A 、 一阶 B 、二阶 C 、 三阶 D 、 四阶 1、22(,,)vxy v g x y z z∂+=∂ 是( A )偏微分方程 A 、 一阶 B 、二阶 C 、 三阶 D 、 四阶1、33232(,,)v v vv xyv g x y z x x y z ∂∂∂+++=∂∂∂∂ 是( C )偏微分方程A 、 一阶B 、二阶C 、 三阶D 、 四阶 2、2(,)txx u a u f x t -= (其中0>a ) 属于( A )型偏微分方程A 、 抛物B 、双曲C 、 椭圆D 、 混合 2、2(,)ttxx u a u x t ϕ-= (其中0>a ) 属于( B )型偏微分方程A 、 抛物B 、双曲C 、 椭圆D 、 混合2、22(,,)tt xx u a u x y t ϕ+= (其中0>a ) 属于( C )型偏微分方程 A 、 抛物 B 、双曲 C 、 椭圆 D 、 混合 2、(,)xx yy u u f x y += (其中(,)u u x y =) 属于( C )型偏微分方程A 、 抛物B 、双曲C 、 椭圆D 、 混合 4、下列方程是非线性偏微分方程的是( A )A 22()()sin u u x x y 抖+=抖 B (,)u uf x y x y抖+=抖 C 22(,)(,)cos u ua x tb x t x x t抖+=抖 D 3433(,,)v v v g x y z x x y z ∂∂∂++=∂∂∂∂ 7、下列方程是非齐次方程的是( A )A(,)(,)0u uxy f x y f x y x y 抖+=?抖, B 2,0t xx u a u a =?C 22(,)(,)0u u a x t b x t x t 抖+=抖 D 34330v v v x x y z ∂∂∂++=∂∂∂∂3、在用分离变量法求解定解问题200,0,0|0,|0|()t xx x x x l t u a u x l t u u u x ϕ===⎧=<<>⎪==⎨⎪=⎩时,得到的固有函数系为( D ) A 、,...2,1,sin=⎭⎬⎫⎩⎨⎧n x ln π B 、,...2,1,0,cos=⎭⎬⎫⎩⎨⎧n x l n π C 、{},...2,1,sin =n x n π D 、 ,...2,1,2)12(sin =⎭⎬⎫⎩⎨⎧-n x ln π 3、在用分离变量法求解定解问题⎪⎩⎪⎨⎧====><<=====)(|),(|0|,0|0,0,0002x u x u u u t l x u a u t t t l x x x x xx tt ψϕ时,得到的固有函数系为( B )A 、,...2,1,sin=⎭⎬⎫⎩⎨⎧n x l n πB 、,...2,1,0,cos=⎭⎬⎫⎩⎨⎧n x l n πC 、(21)cos ,1,2,...2n x n l π-⎧⎫=⎨⎬⎩⎭ D 、 ,...2,1,2)12(sin =⎭⎬⎫⎩⎨⎧-n x l n π3、在用分离变量法求解定解问题⎪⎩⎪⎨⎧===><<====)(|0|,0|0,0,002x u u u t l x u a u t l x x xx t ϕ时,得到的固有函数系为( A )A 、,...2,1,sin=⎭⎬⎫⎩⎨⎧n x l n π B 、,...2,1,0,cos=⎭⎬⎫⎩⎨⎧n x l n πC 、(21)cos,1,2,...2n x n l π-⎧⎫=⎨⎬⎩⎭ D 、,...2,1,2)12(sin=⎭⎬⎫⎩⎨⎧-n x l n π7、给出未知函数 u 在区域Ω的边界Γ上的值0,),,(|≥Γ∈=Γt M t M u μ 的边界条件,称为第( A )类边界条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、填空题1.二阶线性偏微分方程xx xy yy x y Au Bu C u D u Eu Fu G +++++=(其中各系数均为x 和y 的函数)在某一区域的性质由式子:24B AC -的取值情况决定,取值为正对应的是( 双曲 )型,取值为负对应的是( 椭圆)型,取值为零对应的是( 抛物 )型。
2.在实际中广泛应用的三个典型的数学物理方程:第一个叫( 弦自由横振动 ),表达式为(2tt xx u a B u =),属于(双曲)型; 第二个叫( 热传导 ),表达式为( 2t xx u a B u =),属于( 椭圆 )型; 第三个叫(拉普拉斯方程和泊松方程),表达式为(0x x y yu u+=,(,)xx yy u u x y ρ+=-),属于(椭圆)型;二、选择题1.下列泛定方程中,属于非线性方程的是[ B ](A) 260t xx u u xt u ++=; (B) sin i t tt xx u u u e ω-+=; (C) ()220y xxxxy u x yuu +++=; (D) 340t x xx u u u ++=;2. 下列泛定方程中,肯定属于椭圆型的是[ D ](A)0xx yy u xyu +=; (B) 22x xx xy yy x u xyu y u e -+=;(C)0xx xy yy u u xu +-=; (D)()()()22sin sin 2cos xx xy yy x u x u x u x ++=; 3. 定解问题()()()()()()2,0,00,,0,0,,0tt xx x x t u a u t x lu t u l t u x x u x xϕφ⎧=><<⎪==⎨⎪==⎩的形式解可写成[ D ](A) ()01,coscos2n n a n at n x u x t a ll ππ∞==+∑(B) ()001,coscosn n n at n x u x t a b t a llππ∞==++∑(C) ()0,cos sin cos n nn n at n at n x u x t a b l l l πππ∞=⎡⎤=+⎢⎥⎣⎦∑(D) ()001,cos sin cos n n n n at n at n xu x t a b t a b l llπππ∞=⎡⎤=+++⎢⎥⎣⎦∑ 4. 若非齐次边界条件为12(0,)(),(,)()x u t t u l t t μμ==,则辅助函数可取[C ] (A) ()()12(,)W x t t x t μμ=+; (B) ()()21(,)W x t t x t μμ=+; (C) ()()()12(,)W x t x l t t μμ=-+; (D) ()()()21(,)W x t x l t t μμ=-+;三、求解下列问题(1)2,0,tt xx u a u t x =>-∞<<∞ ,其中a 为常数。
解:设试探解为 f (Ax+Bt),代入泛定方程。
得 B 2f” = A 2a 2f” B 2 = A 2a 2不妨取A=1,则B=+a 或-a故试探解的形式为 f (x+at)或 f (x-at) 问题的通解为u (x,t) = f (x+at)+g (x-at),其中f 和g 为任意函数。
(2)()()2,0,,0cos(),,00tt xx t u a u t x u x x a u x ω⎧=>-∞<<+∞⎪⎨==⎪⎩,其中a 和ω为常数。
解:由上题知 u (x,t) = f (x+at)+g (x-at) 代入初始条件,得u (x,0) = f (x)+g (x) = cos(ωx/a) u t (x,0) = a f (x)-a g (x) = 0 联合求解得f (x)=g (x) = 0.5cos(ωx/a) 故u (x,t) =0.5cos[ω(x+at)/a]+ 0.5cos[ω(x-at)/a]= cos(ωx/a)cos (ωt) 本题也可以用行波法公式直接求解。
(3)()()()()2,0,00,,0,0sin(2),,00tt xx t u a u t x lu t u l t u x x a u x ω⎧=><<⎪==⎨⎪==⎩, 其中 2a l πω=,a 和ω均为常数。
解:由边界条件得形式解为:11(,)cos sin sin cos sin sin 222n nn n nn n at n at n x u x t a b l l l n t n t n x a b a πππωωω∞=∞=⎛⎫=+ ⎪⎝⎭⎛⎫=+ ⎪⎝⎭∑∑将初始条件代入上式,得:11,42sin sin 20,0n nn n n n x xa a a ab ωω∞=⎧=⎧=⇒=⎨⎪⎨⎩⎪=⎩∑当其它时由上述结果得 2(,)sin cos 2x u x t taωω=四对给定的二维金属矩形谐振腔()a b ⨯,横电模式的电场强度(,)E x y 满足定解问题:其中ω 和c 为电磁波频率和光速。
用分离变量法求通解;ω 能连续取值吗?解:令 E = X(x)Y(y),代入定解问题,有:2X Y X Y c ωλ''''⎛⎫-=+= ⎪⎝⎭由0,(0)()0X X X X a λ''+===,知λ只在满足2m a πλ⎛⎫= ⎪⎝⎭时有非零解:()sinm m m x X x A aπ=,其中m = 1,2,3…同理,由220,(0)()0m Y Y Y Y b c a ωπ⎡⎤⎛⎫⎛⎫''+-===⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦仅当Y 的本征值满足:222m n c a b ωππ⎡⎤⎛⎫⎛⎫⎛⎫-=⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,其中n = 1,2,3…时,Y 有axy b20(0,)(,)0(,0)(,)0xx yy E E E c E y E a y E x E x b ω⎧⎛⎫++=⎪ ⎪⎪⎝⎭⎨==⎪⎪==⎩非零解 ()sinn n n y Y y B bπ=故故问题的通解为:()()sinsinm n m m x n y X x Y y C abππ=,m 和n 为整数因 222m n c a b ωππ⎛⎫⎛⎫⎛⎫=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,知ω不能连续变化,一、填空题二阶线性偏微分方程xx xy yy x y Au Bu C u D u Eu Fu G +++++=分成三类,决定于24B AC-的取值:24B AC ->0对应的是( 双曲 )型,24B AC -=0对应的是( 抛物)型,24B AC -<0对应的是(椭圆 )型。
对于常见的三类泛定方程,热传导方程或扩散方程的表达式是(2t xx u a u =),属于(椭圆 )型;弦振动方程的表达式是(2tt xx u a u =),属于( 双曲 )型;泊松方程的表达式是(0xx yy u u +=),属于( 抛物)型。
二、单选题1.下列泛定方程中属于线性方程的是[ C ] (A) 0t xx u u u ++=,其中u 表示u 的复共轭; (B) sin i t tt xx u u u e ω-+=; (C)()()22220xx yyx yu x yu-++=; (D) 0t x xx u uu u ++=;2. 下列泛定方程中,肯定属于椭圆型的是[ B ](A)0xx yy u xyu +=; (B) 22x xx xy yy x u xyu y u e -+=;(C)0xx xy yy u u xu +-=; (D)()()()22sin sin 2cos xx xy yy x u x u x u x ++=; 3. 定解问题()()()()()()2,0,00,,0,0,,0tt xx t u a u t x u t u t u x x u x xππϕφ⎧=><<⎪==⎨⎪==⎩的形式解是[ B ](A) ()[]0,cos()sin()cos()nn n u x t anat b nat nx ∞==+∑(B) ()[]0,cos()sin()sin()nn n u x t anat b nat nx ∞==+∑(C) ()[]001,cos()sin()cos()n n n u x t a b t a nat b nat nx ∞==+++∑(D) ()[]001,cos()sin()sin()n n n u x t a b t a nat b nat nx ∞==+++∑三、用适当方法求解下列问题。
(1)2,0,tt xx u a u t x =>-∞<<∞解:设试探解为 f (Ax+Bt),代入泛定方程。
得 B 2f” = A 2a 2f” B 2 = A 2a 2不妨取A=1,则B=+a 或-a 故试探解的形式为 f (x+at)或 f (x-at) 问题的通解为u (x,t) = f (x+at)+g (x-at),其中f 和g 为任意函数。
(2)()()2,0,,00,,0cos()tt xx t u a u t x u x u x x ω⎧=>-∞<<+∞⎪⎨==⎪⎩解:由上题知 u (x,t) = f (x+at)+g (x-at) 代入初始条件,得u (x,0) = f (x)+g (x) =0 u t (x,0) = a f’(x)-a g ’(x) = cosx 联合求解得f (x)= -0.5(sinx+c); g (x) =0.5(sinx-c)故u (x,t) =-0.5sin (x+at) + 0.5sin (x-at) = -cosxsin (at) 本题也可以用行波法公式直接求解。
(3)()()()()2,0,00,,0,00,,0cos()tt xx t u a u t x u t u t u x u x x ππω⎧=><<⎪==⎨⎪==⎩解:由边界条件得形式解为:()1(,)cos sin sin nn n u x t anat b nat nx∞==+∑将初始条件代入上式,得:101sin 001sin cos cos sin n n n n nn a nx a nab nx x b x nxdxna πωω∞=∞=⎧=⇒=⎪⎪⎨⎪=⇒=⎪⎩∑∑⎰(4)()()()()2cos ,0,00,,0,00,,00tt xx t u a u x t x u t u t u x u x ωππ⎧=+><<⎪==⎨⎪==⎩解:由边界条件,得形式解 1(,)()sin nn u x t Tt nx∞==∑,代入泛定方程,得2(0)(0)0n n nn n T a T bT T ⎧''''+=⎪⎨'==⎪⎩求上述常微分方程,可得最后解。